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What happens to two-electron resonances when their energy
approaches the break-up threshold?
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Abstract. – Using semiclassical S-matrix theory in a simulated electron-hydrogen scattering
experiment and converged quantum calculations for the widths of high-lying resonances in H− we
show that resonance formation (or the lifetime of resonances) below the fragmentation threshold
E = 0 and ionization above threshold have the same energy dependence |E|1.127 for |E| → 0.
Hence, series of resonances which have been characterized by approximate quantum numbers
will disappear towards threshold.

The dynamics of three charged particles is a fundamental problem, exactly solvable nei-
ther in classical nor in quantum mechanics. With increasing computer power, the resonance
spectra of two-electron atoms can be now calculated numerically without approximations for
high excitations of both electrons [1], [2]. The theoretical spectra show good agreement with
photoabsorption spectra from recent experiments that have generated and resolved isolated
resonances in doubly excited helium and H− to high precision [3], [4]. Theoretical and experi-
mental attempts are now devoted to probe the region very close to the break-up threshold with
high resolution. The task is complicated by the fact that at energies reached by experiment and
theory entire resonance series are perturbed by members of other series [2] and it is not obvious
whether the concept of isolated resonances is adequate for the dynamics in the threshold [5].

In this letter we predict that in an experiment probing the spectrum in the limit E → 0−

multiple series of isolated resonances will generally disappear for two reasons: Firstly, the
probability of exciting a resonance from an initial state with finite spatial extension (a typical
situation in photoabsorption or a scattering experiment) vanishes towards threshold. Secondly,
for E → 0− the average width of resonances decreases slower than the number of resonances
increases. Hence, resonances which had been isolated for lower energies will strongly overlap
and most of them disappear in the background signal.

Since the discovery of (low-lying) two-electron resonances [6] and the experimental confir-
mation [7] of the previously predicted anomalous threshold law for two-electron escape close
to E = 0 [8] there has been a continuing interest in the connection between resonant (E < 0)
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and escaping (E > 0) two-electron states [9]-[13]. Recently this connection has been demon-
strated qualitatively on the basis of classical S-matrix theory [14]. Here, we further elucidate
this connection and present quantitative consequences for the relation between two–electron
resonances and two-electron escape.

The energy dependence of the cross-section for resonance formation (E < 0) and for two-
electron escape (E > 0) is obtained from a simulated electron-hydrogen scattering process
where it is possible to cover the energy range from negative energies through threshold to
positive energies (by tuning the energy of the projectile) with the same theoretical description,
a (semi)-classical S-matrix approach [14]. We will show that the global cross-section for
resonance formation below threshold is related to the widths of resonances which we have
determined quantum mechanically by complex scaling [2]. Expanded to leading order about
the threshold energy E = 0, the widths of certain two-electron resonances and the two-electron
escape cross-section have the same energy dependence.

The (semi)-classical S-matrix description of total cross-sections for electron-hydrogen scat-
tering near threshold is facilitated by approximations which enter naturally through the clas-
sical dynamics and which have been described elsewhere [15]:

i) For |E| → 0 the classical dynamics for all fixed total angular momenta L collapses to
the same effective Hamiltonian. Hence for the relative total cross-section it is sufficient to
calculate the L = 0 case.

ii) The interelectronic angle of Θ12 = π is a fixed point of the classical equations of
motion. For global features like the total cross-section, the dynamics at this fixed point give
a sufficiently accurate picture of the scattering process. In the “one-dimensional world” (only
one coordinate, the distance to the nucleus, ri, describes electron i) the cross-section reduces
to a probability and is directly proportional to the S-matrix.

iii) We are only interested in the region very close to threshold (|E| < 1 eV) where a purely
classical calculation is justified (see [16]).

The classical probability for inelastic scattering of an electron from hydrogen in its 1s ground
state is given by [14]

Pε,ε′(E) =
∑
i

P(ε, ε′, E)i
R

≡ R−1
∑
i

∣∣∣∣ ∂ε∂r′i
∣∣∣∣−1

ε′
, (1)

where R is the normalization constant resulting from the preservation of probability and
P(ε, ε′, E)i is the contribution from the i-th trajectory. The sum runs over all trajectories i
that take the projectile from energy ε′ = E −E1s to ε during the collision. These trajectories
differ by their starting point r′i of the projectile while the target electron is always started
at the same (but otherwise arbitrary) point on its orbit. As can be seen from fig. 1a), the
function ε(r′) is monotonic so that only a single trajectory contributes to a final ε. Then the
total ionization cross-section, defined as

Pε′(E) =
∫ E

0

Pε,ε′(E)dε =
∆r′(2+)

R
, (2)

becomes proportional to the interval of initial conditions ∆r′(j) for which ionization happens
(fig. 1 a)). This is the case for interval j = 2+ where 0 < ε < E leaves a positive energy for the
second electron as well. If after the collision ε < 0 (interval 1+) then the projectile has become
bound in exchange for the target electron. Interval 3+ describes, with ε > E, an excitation
process (the target electron is still bound after the collision). The normalization is given by
the sum of all processes that can happen, R =

∑3
j=1 ∆r′(j+). The intervals j+ indicate initial

conditions for positive energies while the respective intervals for E < 0 are labelled j−.
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Fig. 1. – Energy dependence ε/|E| of the projectile on its initial position 1000 a.u. + r′, normalized
to the total energy |E|. The inverse derivative of this function enters eq. (1), see text. The intervals
1 and 3 stand for exchange and excitation, respectively. Part a) is for a total energy of 0.1 a.u. with
interval 2+ marking the ionization events. Part b) is for a total energy of −0.1 a.u. with interval 2−

for chaotic scattering.

Below the ionization threshold (E < 0, fig. 1 b)) the intervals for exchange (1−) and for direct
excitation (3−) are very similar to the corresponding intervals for E > 0 (fig. 1 a)). The interval
2−, however, is characterized by chaotic scattering [17] replacing ionization (as in 2+) which is
energetically not possible for negative energies. Chaos is generated by trajectories along which
both electrons bounce many times into the nucleus. Thereby, they suffer a time delay compared
to electrons following “direct” trajectories from the intervals 1 and 3. The time delay is the
signature of a resonance [18]. Hence, what had been ionization above threshold, described by a
regular behaviour of interval 2+, becomes resonance formation below threshold, characterized
by the irregular scattering in the corresponding interval 2−. Although it might seem hopeless
to deal with a fractal object like the interval 2− in fig. 1 b), we can form the analogy to the
total ionization cross-section. Instead of integrating all contributions from interval 2+ over all
electron energies ε as we did in eq. (2), we integrate now over all contributions from the interval
2−. What we will obtain is the probability for resonance scattering, that is, the probability that
the electron suffered a time delay in the scattering event and, for a short time, an (excited)
3-body complex had been formed. For each ε there is not only one but an infinite set of
trajectories {i} contributing to the sum of eq. (1). However, to each index i there belongs a
continuous branch of trajectories with all energies ε. This branch yields, upon integration over
ε, a small subinterval δi(r′). The sum over i then recovers the entire interval ∆r′(2−) =

∑
i δi

of chaotic scattering, which replaces ∆r′(2+) in eq. (2). Thus, the probability for resonance
formation below threshold is in exact analogy with the total ionization cross-section (eq. (2))
above threshold. Together the probabilities represent 3-body events where both electrons have
to participate in the scattering process simultaneously. Experimentally such events have been
detected by measuring extremely slow (“zero kinetic energy”, ε ≈ 0) electrons produced in
electron-atom collisions [10] or in photoionization [13]. Assuming that the energy distribution
of the electron dσ/dε is almost flat for energies E ≈ 0 [10], [16] the probability for three-body
events, as discussed above, is related to the slow-electron spectrum through

σε=0(E) ≈ σ±
P (E)
E

. (3)
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Fig. 2. – Cross-section for the production of slow electrons following electron impact on atoms close
to the fragmentation threshold. The black squares are experimental data for a He(1s2) target [10].
The black circles are the theory for a hydrogen target H(1s). The solid line is a fit of the theory
according to eq. (4).

Fig. 3. – Relative error of the fit (eq. (4)) for 1Se saddle resonances in H− shown with black stacks.
For comparison the error for a fit with a linear exponent α = 1 is shown with grey stacks.

The constant of proportionality σ± is expected to be different for negative and positive energies
E. The actual ratio σ−/σ+ depends on experimental parameters (such as pressure in the gas
cell) and is not yet fully understood [13]. However, in the present context, we are more
interested in the energy dependence determined by P (E). The cross-section (3) calculated
with P (E) from (2) is shown in fig. 2 with black points. The spectrum has been normalized
to the experimental data from [10] (open squares) separately for E > 0 (σ+) and E < 0 (σ−).
The solid line is a parameterization of the theoretical cross-section with the function

σ0(E) = σ±|E|α−1(1 + a|E| 12 + bE), (4)

where α = 1.127. For E > 0 eq. (4) reflects the “classical” result [8], [16] that the total
ionization cross-section close to threshold is proportional to the 1.127-th power of E. Noting
from fig. 2 and eq. (4) that this holds also below threshold, we can conclude that |E|1.127

originates in the 3-body amplitude of the S-matrix and should be independent of the process
through which it was activated. The residual dynamics depends on the initial state and the
excitation as a whole (by photon or particle impact etc.) However, the residual part varies
slowly with energy. This includes slow electrons from direct excitation. Hence, we can take
these contributions into account with a Taylor expansion about E = 0 in eq. (3) represented
by the energy-independent parameters a and b. Since a and b depend on the actual threshold
process, they are not universal like the threshold exponent α.

One might suspect that the good agreement between experiment and theory below threshold
is misleading: The absence of structure in the cross-section could be a consequence of the finite
energy resolution on the experimental side and an artifact of the classical treatment on the
theoretical side.

To clarify the situation, we have determined highly excited resonant states in H− quantum-
mechanically by complex scaling [2]. The widths, formulated as transition matrix elements
with an S-matrix [19], contain the same 3-body amplitude as the cross-section for ioniza-
tion/resonant scattering. Hence, we expect an energy dependence |E|α for widths of states
which approach, in the limit E → 0−, a similar geometrical configuration to that given by
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the classical fixed point with θ = π. Such states are well known and often referred to in the
literature as Wannier resonances, saddle resonances or intrashell resonances. The last name
indicates that these resonances are characterized by approximately equal principal quantum
numbers n1 = n2 ≡ N of both electrons.

We have calculated the widths ΓN and positions EN for the saddle resonances 2 ≤ N ≤ 8
in H−. In fig. 3 we show the relative error for the fit of ΓN/EN with eq. (4). To demonstrate
the sensitivity on the exponent α = 1.127, we also give the fit with a linear exponent α = 1
which reproduces the quantum-mechanical widths not very well.

Thus, the picture of the threshold dynamics for E → 0− obtained classically is quantum-
mechanically confirmed. In particular, the energy dependence of the widths Γ ∝ |E|1.127

implies that these resonances will strongly overlap because their spacing EN −EN−1 ∝ N−3 ∝
|E|1.5 decreases faster towards E = 0 than their widths. Indeed, the N = 8 resonance was
the highest saddle resonance isolated enough so that a converged complex energy could be
obtained. The experimental spectrum in fig. 2 does not exhibit isolated resonances for the
displayed energy range of E ≥ −0.15 eV. Although not conclusive due to the experimental
energy resolution, this observation is nevertheless consistent with our quantum calculation
because the N = 8 resonance lies at E = −0.28 eV.

On the other side, a quasi-regular part of the spectrum will prevail towards threshold
although the energy intervals it occupies become smaller and smaller compared to the intervals
the irregular spectrum covers. The surviving regular spectrum consists of configurations where
n1 À n2 À 1, that is where electron one is very far outside the already highly excited core with
the second electron. Such a configuration implies little interaction between the two electrons.
The resulting long lifetime of these asymmetric resonances makes them difficult to observe
experimentally.

To summarize, we have formulated threshold dynamics in a two-electron system below
and above E = 0 in the framework of a (semi)-classical S-matrix theory. The results,
consistent with early experimental observations and our quantum-mechanical calculations
below threshold, imply drastic consequences for the high-precision experiments currently being
prepared in the limit E → 0−: We predict that the spectrum of isolated resonances that can
be related to approximate constants of motion [20] will disappear for E → 0−. Furthermore,
we have discovered that the energy dependence of the widths for saddle resonances, which
have been related to the Wannier ionization mechanism for a long time, is indeed given by
the Wannier power law for |E| → 0. Different power laws |E|α have been predicted [11] for
the width which neither agree among themselves nor with our result, apart from a recent
prediction of an approximately linear behaviour α ≈ 1 for helium [21]. A detailed comparison
is beyond the scope of this letter, even more, since the quantities which have been discussed
respectively (partial cross-section for excitation, intensity at resonance, total width etc.) are
slightly different.

We are still far from having solved the threshold problem, however, we believe that the
present results will provide a new direction in the formulation of questions concerning threshold
ionization. For instance, it is necessary to understand how the complicated spectrum of
multiple Rydberg and dipole-like series of resonances disappears withE → 0−. It is conceivable
[21] that in a small energy range a global fluctuation pattern like that of Ericson fluctuations,
known from nuclear physics [22], replaces the resonance structure before the cross-section
becomes smooth very close to E = 0.
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