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Abstract. In two recent letters results for threshold ion idon  of hydrogen by electron impact 
(Rost I M 1994 Phys. Rev. left 72 1998) and positmu impact (Rost I M and Heller E J 1994 
Phys. Rev. A 49 R4289) were communicated. The results were obtained by calculating the S- 
matrix semiclassically in Feynman’s path integral formalism. This paper gives a more complete 
a m u n t  of the theoretical method. Moreover, it is shown how the ionization cross section of 
atomic “gas other than hydrogen can be expressed with the hydrogen cross section ~ o u g h  a 
scaling relation. This demonstr&tes the univenaliry of the threshold behaviour. 

1. Introduction 

The motivation for this work, more specifically, for using a semiclassical approach to 
understand threshold ionization, is threefold. Low-energy inelastic scattering has been 
described within different frameworks, dependent on the process under consideration. 
For excitation and charge transfer (for instance in ion-atom collisions) coupled channel 
calculations with basis sets centred on the target and the projectile have been successful 
(see, for example, Burke and Benington 1993). Ionization in the low- and intermediate- 
energy regime is much more difficult to describe since a formulation of observables with 
discretized continuum states does not necessarily converge for long-range potentials. Only 
recently the ‘convergent close-coup!ing method‘ (CCC) has provided numerically converged 
cross sections and the asymmetry parameter for ionization of hydrogen at about 10 eV 
excess energy and higher (Bray and Stelbovics 1993). For small excess energies it has 
not been possible to obtain converged results since the accuracy depends sensitively on 
the number of excitation channels included. In the limit E + 0 an infinite number of 
these states would be necessary for an accurate ionization cross section. Hence, even the 
spectacular success of the cCC method over a wide energy range still leaves the threshold 
region as a theoretically unsolved problem. This is one motivation for the semiclassical 
S-matrix theory as presented here. 

Another motivation is the notorious difficulty with final states containing more than 
two charged fragments in the continuum. Quantum mechanically there is a big difference 
between these states and states representing ‘free’ particles in problems with short-range 
forces (Rosenberg 1974, Brauner et al 1989, Berakdar and Briggs 1994). In contrast, 
semiclassically there is no conceptual difference in describing charged or neuhal particles in 
the continuum. Moreover, it is not necessary to know the form of the continuum final states, 
for instance, in an ionization calculation. To demonstrate these conceptual advantages of 
semiclassical scattering theory, in particular for long-range potentials, is a second motivation 
for this work. 
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Finally, a third motive arises from the historical perspective on threshold ionization. 
Since Wannier’s fascinating paper on the mechanism of threshold ionization based on 
purely classical reasoning in 1953 there has been a continuing discussion as to whether 
Wannier’s ionization scenario is correct and whether a classical approach is justified. 
Important contributions can be found in the papers by Peterkop (1971), Rau (1971). Temkin 
(1982), Feagin (1984) and Crothers (1986). The semiclassical S-matrix description naturally 
contains the classical result as a limit and can shed new light on the accuracy and justification 
of the classical limit. 

An overview of the literature about threshold ionization has been given in the 
review articles by Read (1984a), Rau (1984). Grujic (1986) and Lubell (1994). Recent 
developments include the time-dependent evolution of wavepackets on the Wannier ridge 
(Kazansky and Ostrovsky 1993) and the classical and quantum mechanical investigation of 
the so-called ‘s-wave model’ for helium (Handke eta1 1993). Not specifically designed for 
the threqhold but very successful in the description of differential cross sections at small 
excess energies is the approach developed initially by Brauner eta1 (1989) with important 
improvements by Berakdar and Briggs (1994) and the application to photoionization by 
Maulbetsch and Briggs (1992). Rather than repeating the overview of the literature in 
detail, here we prefer to put the semiclassical S-matrix approach into a broader perspective. 

Semiclassical approximations have existed almost as long as the quantum theory itself. 
They have served two rather different purposes: first, to explore the classical limit of 
quantum mechanics and to gain more insight into the nature of quantum phenomena. 
Second, to develop a theory that provides reliable approximations for cases in which it 
is not possible to solve the full problem quantum mechanically. Certainly, the formulation 
of the semiclassical propagator initiated by van Vleck (1928) and completed by Maslov 
(see Maslov &d Fedoriuk 1981) and Gutzwiller (e.g. Gutzwiller 1990) belongs to the 
fist category. Within the second category the WKB approach has been most successful in 
different areas of physics. The essentially one-dimensional theory has led to useful results 
in times where we lacked the computer power to *eat complicated, more dimensional 
problems. For scattering problems a logical application has been the calculation of WKB 
phase shifts for elastic scattering. pioneered by Ford and Wheeler (1959). Subsequent 
topics of semiclassical scattering theory have dealt with problems that fulfil the traditional 
criterion for the application of semiclassical methods, that is, that the relative change of 
the wavelength in the physical problem is small. An example is nucleus-nucleus scattering 
where the heavy masses and the large charges of the nuclei provide a short de Broglie 
wavelength (Brink 1982). 

With the improvement of computers, even the most general semiclassical formulation 
by van Vleck has become computationally feasible and thus conceptually interesting 
again (Sepulveda and Heller 1994). Miller showed in the seventies that semiclassical 
approximations for the Green’s function itself can lead to remarkable results for reactive 
scattering in molecular complexes, whose dynamics cannot be characterized by short 
wavelengths (Miller 1974, 1975 and references therein). For the energy spectrum of bound 
systems Gutzwiller formulated the ‘trace formula’ (Gutzwiller 1990). Together with the 
‘cycle expansion’, a resummation method, the trace formula was used recently by Wintgen 
et al (1992) to show that helium can be quantized semiclassically despite the initial failure 
of the old quantum theory some 60 years ago. Using the van Vleck propagator directly in 
the time domain Tomsovic and Heller (1994) obtained spectra and selected eigenstates of 
classically chaotic systems semiclassically to a good accuracy. Other recent applications of 
semiclassical theory include electron transport problems in mesoscopic devices, quantum 
dots etc (see for instance Baranger et al 1993). These are only a few, although spectacular. 



Threshold ionizaton of atoms by electron and positron impact 3005 

examples from a substantial body of work that has advanced semiclassical theories so much 
in the last few years that it might be justified to speak of a revival of the semiclassical 
perspective. The revival is fueled by new experiments with excellent energy resolution 
even for highly excited spectra (Main ef a! 1986). Their interpretation needs a theoretical 
description and understanding of dynamics in the limit of large quantum numbers. This 
implies a natural demand for further developing semiclassical methods. An impressive 
example of such a development is the understanding of a complicated spectrum of hydrogen 
in a magnetic field. Accompanied by exact quantum mechanical treatments (see the reviews 
by Wintgen and Friedrich (1989) and Hasegawa et a1 (1989) as well as the special issue 
of J. fhys. B: At. Mol. Opt. Phys. 27 (1994)) the semiclassical approach was pioneered by 
Wintgen (1987, 1988) and Delos @U and Delos 1987). 

Here we will present a semiclassical formulation for inelastic electron-atom scattering. 
It is derived from the path integral representation of the S-matrix and in the form given 
here is especially designed to describe the threshold region of ionization. The result will be 
similar to Miller’s ‘classical S-matrix’, formulated 25 years ago and applied to 2~ model 
calculation in reactive scattering of molecules (Miller 1970, 1970h, 1970~. Rankin and 
Miller 1971). The major difference is the application to scattering involving the long- 
range Coulomb force. However, this actually improves the accuracy of the semiclassical 
approximation in comparison to Miller‘s results for molecular problems. 

The paper is organized as follows. In section 2 we parametrize the ionization cross 
section with variables suitable for describing threshold ionization. The formulation utilizes 
partial waves of fixed total angular momentum L. Furthermore, based on the classical 
scaling properties for the Coulomb potential, we give an argument why Feynman’s path 
integral can be evaluated semiclassically for fragmentation close to threshold E = 0. 
An additional substantial simplification emerges that allows the total cross section to be 
described ultimately with only two degrees of freedom, the radial distances ri between the 
electrons and the nucleus. In section 3 the semiclassical S-matrix for ionization is explicitly 
derived from Miller’s classical S-matrix (1974) for reactive scattering. Section 4 is devoted 
to an application of the semiclassical S-manix approach to positron-hydrogen scattering. 
The essential features of Coulomb fragmentation will become clear in this example. In 
addition, we present a simple alternative derivation of the S-matrix. In section 5 we attack 
the problem of threshold ionization of hydrogen, the ‘classical’ Wannier problem. Here 
we will discuss in detail the differential cross section for the energy sharing between the 
electrons as well as the total ionization cross section and will derive the classical origin 
for the different behaviour of the singlet and the triplet partial wave. In section 6 we use 
some properties of the threshold ionization to extend the results obtained for hydrogen as 
a target by a simple scaling argument to valence-shell as well as to inner-shell ionization 
of complex atoms. Finally, in section 7, we will summarize the results and conclude with 
some remarks about the connection of threshold ionization ( E  > 0) and resonant scattering 
( E  4 0). 

2 Formal considerations for the threshold analysis 

2.1. Irreducible decomposition of the cross section according to the constants of motion 

The ionization cross section can be parametrized in many different ways (mar and Fehr 
1992). Our intention is to formdate a cross section whose variables are as close as possible 
to the quantities relevant for the approximations traditionally introduced when the behaviour 
of the scattering system is discussed close to the fragmentation threshold E = 0. To this 
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end we use the constants of motion of the two-electron Hamiltonian for an irreducible 
decomposition of the cross section. The Hamiltonian for three different particles interacting 
via two-body central forces preserves the total spatial angular momentum L,  and parity R .  

If two of the three p d c l e s  are identical (e.g. two electrons) there is an additional exchange 
symmetry (el cf ez) which can be denoted by the net spin S that is preserved in the non- 
relativistic case for the identical pair (S = 0 for singlet and S = 1 for triplet). On the 
other hand, the final state in the continuum is characterized by the two electron momenta 
(;I, &), For a general three-body system we choose $1 and & to connect the two particles 
of the same polarity with the third particle, respectively. Another set of variables more 
convenient for the parametrization with the constants of motion would contain PI, p2 and 
812 arccos ,?l~?z/(plpz) through which the position of the three particles relative to each 
other is fixed. The position of this triangle in space is then described by a rotation with 
a set of Euler angles (rp.8.4) = S23. Instead of momenta we may use energies and the 
energy conservation explicitly, E = p:/2 and p ; / 2  = E - E ,  so that finally ( C l ,  ;2) 
is replaced by the set (Sa3, E ,  e.812). By integrating the triple differential cross section 
d3u/(dSa, dcos 812 de) over S23 we obtain the double differential cross section ( D D C ~ )  which 
is differential in the angle 812 and the energy e of one electron. It can be written as a sum 
of partial cross sections parametrized by the total angular momentum 

where 01' denotes the initial state that we take in this paper to be the ground state (1s) of 
the target electron and a projectile with the energy E' = E - El,. As mentioned above, we 
want to start our threshold consideration from a formulation of the cmm section in terms of 
the variables 6 and 012 traditionally used in threshold theories. By starting from the cross 
section (1) the approximations to be introduced for the threshold ionization will become 
transparent. These approximations can be motivated by evaluating the partial cross sections 
0' in (1) \*.ith a semiclassical S-matrix approach. Since only elements of the classical 
dynamics of the three-body system enter the semiclassical S-matrix, the approximations 
are based on the properties of the classical Hamiltonian in the l i t  of vanishing excess 
energy E --+ 0 and the relation to previous threshold approaches by Wannier and others 
will become clear. 

2.2. Properties of rhe classical equations of mofion ofa three-body Coulomb system 

A classical system of N particles interacting via two-body Coulomb forces has some 
remarkable properties that turn out to be important for the semiclassical description of 
the scattering process. They do not depend on the choice of the coordinate system but are 
particularly simple to derive in hyperspherical coordinates (Rost 1994b). The hyperradius 
R2 = xi pir,?, composed of all mass weighted lengths of the Jacobi coordinates, measures 
the overall extension of the system. The mass weighting factors p; are the reduced masses 
along the Jacobi vectors ?;. The rest of the new coordinates spans a space of 3N - 4 
angles Sa on the hypersphere with radius R. We scale the coordinates, momenta and the 
Hamiltonian H itself with the energy 

* = E R  p = ~ - l / ~ p  I ~ = E - ' H = ~ .  (2)  

i = i A j = 4% A p' = ai. 
From equation (2) it follows that the orbital angular momentum L and the action 0 4 0 t h  
have the same dimensions-scale as - . . -  

(3) 
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The angles and the corresponding generalized momenta are dimensionless and therefore not 
affected by the scaling. The scaled Hamiltonian reads 

where A(S2) is the grand angular momentum operator, which contains the dependence 
upon all the momenta in the angles S2 while C(S2) can be viewed as an angle-dependent 
generalized charge whose exact form is not important for the present context. From the 
smcture of the Hamiltonian one can derive the following properties (see appendix A): 

(i) As a function of time the hyperradius R(t) has one extremum that is a minimum. 
(ii) In the limit E -+ 0 the dynamics for any (preserved) total angular momentum L in 

a two-electron atom is govemed by the same effective Hamiltonian as L = 0 (this follows 
immediately from (3)). 

(iii) The angle 812 = 180”, for instance, between the electrons in a two-electron atom 
is a fixed point of the classical equations of motion, i.e. if 8&) = 180” and &(to) = 0 
then e&) = S&) for all times t .  It must be emphasized that this property holds only for 
three particles and not in the general case of N particles. 

2.3. The S-matrixforfragmentation in the limit E + 0 

The relevant dynamical object for scattering is the S-matrix which describes the transition 
from an initial state li) to a final state I f  ). In the momentum representation we may write 

where we have formally denoted the (3N - 3)-dimensional momentum vector as p .  The 
propagator can now be expressed with Feynman’s path integral 

where @[PI = L dr is the classical action along an individual path p ( t ) .  The action scales 
with the energy of the path, according to (3), as @[PI = 6 E [ p ] - ’ / 2 .  Generally the paths 
contributing to the path integral (6) will have different energies E [ p ]  and it is not possible 
to identify the energy E of the S-matrix with the energy E[?]  of the paths. 

For complete fragmentation, however, the final state of asymptotically free particles 
(pI f )  = S ( p  - p f )  forces all paths in (6) on the energy shell, E[?] E .  Hence, for any 
finite action 6 the integrand in (6) will oscillate infinitely rapidly for E @ ]  = E -+ 0 and 
on mathematical grounds we can evaluate the (path)-integral by stationary phase, i.e. with 
the paths that minimize the action S @ [ j ]  = 0. Of course, these paths are just the solutions 
of the classical equations of motion and the result is the same as the semiclassical limit 
h + 0 of the Feynman path integral. This is also obvious from (6) where only the product 
hE[j11’2 appears. The fact that the energy E[?] ofthe paths for fragmentation is the energy 
E of the system enables us to identify the limit E -+ 0 with the semiclassical limit h + 0 
of the path integral. 

2.4. Simplifying approximations for threshold ionization 

With the results from sections 2.2 and 2.3 we can justify a considerable simplification 
for electron- or positron-atom scattering close to the fragmentation threshold (the atom is 



3008 J-M Rost 

treated as a core with one active electron). Using (ii) from section 2.2 we may describe 
the DDCS of (1) with the L = 0 partial wave only. The situation seems to be similar to 
the familiar elastic scattering under short-range forces where a partial wave analysis shows 
that only L = 0 survives for E -+ 0. Note however, that the situation is in fact radically 
different for inelastic Coulomh scattering: all partial waves contribute with an a priori 
unknown weight but the dynamics for each L is determined in the l i t  E -+ 0 by the 
same Hamiltonian as for the S-wave. Formally, we may write (suppressing here and in the 
following the labels S and K when not explicitly needed) 

Q ( E  -+ 0, E, eI2. QO = s L u 0 ( ~ ,  E, e12. 01') (7) 
where the sL are simple numbers and specify the relative weight of the partial cross sections 
UL for E --f 0. With equation (7) the DDCs of (1) becomes proportional to the L = 0 partial 
intensity 

with p' = CL SL. 
Furthermore, with (iii) we can expect that the main contribution to the single differential 

cross section (i.e. integrated over 6'12) comes from the fixed point at 6'12 = 180". With this 
final approximation the single differential cross section close to threshold reduces to 

Hence, leaving only the overall normalization B undetermined, the classical problem 
necessary to solve for a semiclassical approximation of (9) has been reduced from 12 phase 
space variables to 4, the two electron-nucleus distances ri and the conjugate momenta p i .  

3. The semiclassical S-matrix for the L = 0 partial wave 

3.1. The collinear Hamiltonian and its implications for the scattering amplitude 

The scattering for the L = 0 partial wave at 6'12 = 180" may be regarded as an approximation 
to the total cross section justified for E -+ 0 within the semiclassical S-matrix approach 
following the steps from (1) to (9). Alternatively one might look at it as a model for 
scattering under the Hamiltonian 

(10) 

in atomic units (e = m, = h = 1). Since h plays a crucial role in the semiclassical 
limit we will write h explicitly in the important equations. The mass indices indicate the 
reduced masses m.0 = m,mp J(mu + mp) between the particles Q and B. The particles A 
and B have the same polarity and particle C has opposite polarity, so that rl = rAc and 
r; = r s c .  In the case of electron-atom scattering the nucleus would be the thud particle 
with I / m c  = 0. For positron-atom scattering the electron is particle C with l / m c  = 1, 
and the nucleus is particle B with m s c  = 1 and mAc = 4. In the past the Hamiltonian 
(10) was studied quantum mechanically as well as classically (Bliimel and Reinhardt 1991, 
Kim and Ezra 1991). We will give a self-consistent semiclassical scattering amplitude 
for the Hamiltonian (IO) and ultimately with this result describe the true physical situation 
close to threshold in the context of (9). Quanhun mechanically, even for a partial cross 
section at 6'12 = 180", it is necessary to treat the angle 6'12 as a dynamical variable for the 

1 +- 
~ A C  Zmsc mc rI rz r1 - t r z  

H=- p: + P;  PIP2 1 1 
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collision. Semiclassically, however, because of the fixed point at 6'12 = 180" (see (ii)), one 
can treat 812 as a parameter throughout the dynamical calculation, i.e. one can start from the 
collinear Hamiltonian (10) and interpret the result later as uo in (9). There is, however, a 
subtle problem in the transition from the quantum mechanical to the semiclassical treatment 
of (10). The variables r; are not Cartesian coordinates but radii in spherical coordinates. 
It is cumbersome to switch in the semiclassical path integral representation from Cartesian 
coordinates to any set of curved coordinates. This will introduce additional terms in the 
effective Lagrangian to be used in the propagator (see Gutzwiller 1990, p 202). For the 
special case of spherical coordinates an additional centrifugal potential which acts like an 
artificial angular momentum appears in the Lagrangian. This term, known as the 'Langer 
modification', has been investigated recently in the context of the semiclassical propagator 
for a Coulomb potential by Manning and Ezra (1994). In the present treatment of threshold 
ionization we have not included the curvature correction for the same reason that we have 
used the L = 0 partial wave exclusively (see (ii) in section 2.2). 

The formulation of the cross section is now straightforward. Since for each particle 
there has only one dimension left, the cross section with the dimension of an area in D = 3 
reduces in D = 1 to a probability, directly proportional to the square modulus of the 
symmetrized S-matrix, semiclassically given by 

The weight of the j th  trajectory is determined by its probability 

where R is the normalization constant resulting from the preservation of classical probability 
and rj is the initial position of the projectile on the j th  trajectory. The sum runs 
over all classical trajectories j that take the projectile from energy E' to f during the 
collision. Each trajectory accumulates a phase, which is defined by the classical action 
@,(E,  E') = 1 q1 d p l f l  qz dpz and a contribution of u,n/2 from caustics along the trajectory 
(Gutzwiller 1990). 

3.2. Connection with Miller's classical S-matrix 

The form of the semiclassical S-matrix ( 1 1 0 )  is similar to Miller's 'classical S-matrix' 
(Miller 1974) for transition probabilities between an initial bound state with quantum number 
n' to a final state with quantum number n. In this case the S-matrix reads (Miller 1974, 
equation (3.30)) 

We have added the sum over the trajectories and the phase U due to the Maslov indices 
not explicitly mentioned by Miller. Furthermore, we have adopted Miller's notation to our 
situation by mapping the multidimensional quantum number vector of the initial state into 
our single quantum number for the onedimensional bound state n'l + n' and similarly 
for the final state n'2 + n. The phase space variables (n.  q )  represent a pair of conjugate 
action-angle variables where the classical action is taken at its quantized integer value n. 
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This 'quantum number function' n = n ( f )  is classically continuous and with its help we 
can rewrite P(6, t ' )  from (1 lb) (we suppress the index j for a specific trajectory) as 

The most important modification, however, concerns the initial state which we would like to 
describe with the asymptotic position r' of the projectile and not the classical angular variable 
j of the target electron. The connection between these two variables in the asymptotic limit 
before the collision was already given by Miller (1974, equation (3.31)) 

where p' is the momentum of the projectile before the collision and E - f' = -(2nah2)-' 
is the hydrogenic bound state energy. Then 

so that 

With the results (13t(16) we can now evaluate the chain of derivatives 
31 a$ af 

an ", 
- _ _  - - 

art af e, an' 
The action Q, of the S-matrix is independent of the coordinates. Hence, equation (Ila) 
agrees with (12) under the normalization 

R(E', E )  = 2np'(2d - 2E)-3'2. (18) 
In terms of the classical trajectories for the electrons the normalization (IS) has a direct 
physical interpretation which will be discussed in the next section. 

3.3. The choice of initial conditions 

Although unfamiliar it is completely equivalent to the conventional procedure to take the 
radial distance r' of the projectile from the scattering centre as an 'impact parameter'. 
The usual initial conditions for the scanering may be formulated as follows. The bound 
electron moves on a Kepler ellipse without eccentricity and with binding energy E s  = f au 
(we describe a 1s ground-state elecmn of hydrogen). The free electron has an energy 
of 6' = E + E8 and its trajectory is started at some position r; sufficiently far away 
from the scattering centre (the nucleus) to define an asymptotic state. The only free 
parameter to vary is the phase $0 of the electron on the bound orbit. Since only 
positions and momenta of projectile and target electron relative to each other are relevant 
to specify an asymptotic scattering state we can formulate an equivalent but numerically 
more convenient set of initial conditions: the trajectory of the bound electron is always 
started at the outer turning point of the ellipse so that the momentum of the target 
electron is zero. The initial distance of the projectile from the nucleus is taken to be 
r; + r' where r; is fixed at some arbitrary distance large enough so that the result is 
independent of rh (we have taken 1000 au). Instead of the phase & we vary r' over 
the length that the projectile travels during the time the target electron needs to complete 
a full period of motion. Thus, r' serves as a generalized 'impact parameter' in our 
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approach. This choice of initial conditions is numerically more convenient because the 
Coulomb singularity, i.e. the initial condition where the trajectory of the target electron is 
at its inner turning point (with infinite momentum at the position of the nucleus), can be 
avoided. 

3.4. Relation to previous classical work 

The approach described here utilizes only information from classical orbits which are 
also the basis of classical trajectory work on electron-hydrogen, electron-He+ and 
positron-hydrogen scattering (Abrines and Percival 1966, Boesten L G J et al 1976, 
Dimitrijevic and Gruji6 1983, Read 1984, Gailitis 1986, Wetmore and Olson 1986, Gu 
and Yuan 1993, for reviews see Rau 1984, Read 1984a and GrujiC 1986). There 
are some minor differences concerning technical details l i e  the regularization of the 
Coulomb singularities which is described well by Gaspard and Rice (1993) for the 
electron-hydrogen system. We use essentially the same procedure, the difference is 
that instead of the new time differential de = dt/(rlrZ) we take d r  = dt/(rl + rz) 
which is more appropriate for the scattering application. The regularization has the 
pleasant side effect that integration of the trajectories to extremely large distances ri 
is possible with a moderate number of time steps Ar. The feature is not only 
pleasant but crucial for a converged ionization probability calculation for E -+ 0. In 
this limit only at very large distances can it be determined whether slow electrons 
belong ultimately to a highly excited Rydberg orbit or if they are really continuum 
electrons. 

The major difference to previous classical work, however, lies in the theoretical 
formulation of the scattering problem. Within the framework of a semiclassical S- 
matrix it is possible to provide a complex scattering amplitrtde. With equation (Ila) 
we can formulate a differential cross section from a specified initial state including all 
sorts of interference effects from different classical paths. Of course, the scattering 
amplitude is an approximation. However, it has invaluable conceptual advantages, in 
particular, for ionization under long-range (Coulomb) potentials. The difficult question 
of a final state for three or more charged particles in the continuum does not arise 
since the boundary conditions appear naturally for the semiclassical S-matrix through the 
properties of the classical trajectories. From each trajectory only the final momentum of 
the projectile must be extracted to determine if the trajectory contributes to fragmentation, 
excitation or (classical) exchange. This will become much clearer through the following 
example. 

Moreover, specialized to the threebody Coulomb fragmentation, the reduction to the 
‘collinear problem’ of two degrees of freedom, often thought of as a model assumption, 
can be justified as a reasonable approximation for energies close to threshold within the S- 
matrix approach as formulated above. However, what ‘close’ means quantitatively cannot 
be determined within the approximation. As we will see in section 5 the comparison with 
the experiment suggests a range of validity of the collinear semiclassical S-matrix up to 
8-10 eV above threshold for ionization of hydrogen by electron impact. With the scaling 
law to be described in section 6 the corresponding range of validity for other targets is 
easily deduced and in agreement with the experimental cross sections. Since the collinear 
S-matrix remains valid well above the threshold E = 0 it is possible to determine threshold 
properties and even the range of excess energies for typical threshold behaviour within the 
present approach (Rost 1994). 
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4. Positron-hydmgen scattering dose to the fragmentation threshold 

4.1. The classical deflectionfunction 

As can be seen from (I lb)  the crucial quantity for the S-matrix is the classical deflection 
function, c(r'). A more familiar example for a deflection function (which is introduced, 
for example, in Brink (1985) or Jung (1986)) is Q(b) in Rutherford scattering where 0 is 
the scattering angle and b is the impact parameter. As already mentioned above, r' plays 
the role of the impact parameter and the final energy E of the projectile is the final state 
observable which corresponds in Rutherford scattering to the scattering angle 0. 

The present deflection function E@'), shown in figure 1, reveals three intervals I ( i )  
of initial conditions leading to physically distinct final states. For r' E Z(1) positronium 
is formed in a classical exchange reaction indicated by the negative energy E c 0. The 
positronium energy E is defined relative to the energy of the centre of mass between the 
proton and the positronium. Fragementation into three free particles for r' E Z(2) and 
excitation with r' E Z(3) both create a free positron whose kinetic energy defines 6 relative 
to the proton which is at rest. The necessary kame transformation leads to a piecewise 
continous deflection function. It has a 'gap' at the border between Z(1) and I(2)  where the 
coordinates are changed. The reason is that in the rest frame of the proton positronium is 
formed at a positron kinetic energy of E = E / 2 .  Hence, fragmentation only occurs 'with 
final positron energies E / 2  < E -= E .  Finally, with r' E l ( 3 )  and E > E, excitation occurs 
with the electron remaining bound after the collision. 

Remarkably, the deflection function E@') is monotonic: it has only one intersection 
with a horizontal line at E indicating the correct initial condition r'. In other words to each 
differential cross section with a final projectile energy E only a single trajectory contributes. 
This property can be understood from (i) in section 3.2 where it was shown that each 
trajectory is uniquely described by the value for its minimum hyperradius R. It is a 
general property of the classical dynamics for particles interacting through Coulomb forces 
irrespective of the individual charges. 
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4.2. Energy dependence of the total cross section 

With only one term remaining in the sum of (1 la) the semiclassical result collapses to the 
classical cross section (Rost and Heller 1994) without any effects from the phase factor of 
( 1  la)  to give 

The total cross section is then simply proportional to the intervals of r' for which a certain 
process, for instance fragmentation, happens: 

The normalization is given by the sum of all processes that can happen, 

The intervals Ar'(i) can be read off directly from figure 2. The relative probabilities 
Pi(E) = Ar'(i)/R are shown in figure 3. Excitation and positronium formation are the 
dominant processes close to threshold while the cross section for fragmentation is very small. 
The fragmentation cross section initially follows the power law u(E) a E2,65 derived by 
Klar (1981b) from the Wannier threshold theory in the limit E -+ 0 (see figure 4). For higher 
excess energy the calculated cross section is Batter than the Wannier threshold prediction. 
The same tendency is found in electron-hydrogen scattering to be discussed in section 5. 

The easiest way to obtain the fragmentation cross section experimentally in electron- 
atom scattering is to count the ions in the exit channel. The fragmentation of the positron- 
hydrogen or, in general, a positron-atom system near threshold is more complicated to 
observe, since in the ion signal fragmentation must be discriminated against positronium 
formation which also produces ions. Furthermore, due to the large exponent or = 2.65 the 
fragmentation cross section is much smaller for positron impact than it is for electron impact 
(or = 1.127) resulting in poor statistics in the experiment. However, ow results contain one 
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positive aspect of threshold fragmentation by positron impact: the threshold regime extends 
to higher excess energies than in electron impact ionization. Hence, it is possible to probe 
the threshold properties experimentally at higher energies where the yield is already better. 
Hopefully experiments will be performed in the near future (Weber and Raith 1994). 

Our analysis has revealed that the fragmentation of hydrogen by positron impact close 
to threshold is essentially a classical process since no interferences from different classical 
paths occur. Hence, the classical calculation should give the same result. Surprisingly, 
Wetmore and Olson (1986) extract 6om their classical-trajectory Monte Carlo (cmc) data 
a threshold exponent of CY zz 3. However, only data higher than 5 eV excess energy were 
used for the determination of the exponent due to very poor statistics for the cross section 
closer to threshold. (In this sense the CTMC calculation must fight the same difficulties as 
the experiment.) Wetmore and Olson conclude for these reasons that the CTMC exponent 
might not be reliable. 

4.3. A simple derivation of the semiclassical S - m t r i x  

Before we continue with electron impact scattering we will demonstrate briefly how the 
scattering amplitude ( I l a )  can be derived in a very simple manner with the insight we have 
gained in the present section. From the initial conditions as described at the end of the last 
section we know that the length R representing the normalization is the distance that the 
(asymptotically free) projectile travels during a complete cycle T on the Kepler ellipse of 
the bound electron, R = Tp'. This is also the direct outcome of (204 since the deflection 
function E@') is periodic in r' with the period R triggered by the period of the bound motion 
according to R = Tp'. The classical period T for a bound electron is given (in atomic 
units) by T = Zn(2~' - ZE)-3/2 (Goldstein 1980, p 100) which leads with the momentum 
p' of the projectile to (18). The normalization guarantees that the classical probability to 
find the projectile after the collision is (still) unity. (Semiclassically, the S-matrix preserves 
unitarity only to the order of h).  

Now we have derived the functional dependence of the normalization R ( E ,  E') in a 
very simple way without referring to Miller's S-matrixt. We can complete this shortcut 
for the derivation of the semiclassical S-matrix with the following argument. It is clear 
from energy conservation and the total dimensionality of the problem (four phase space 
variables) that the classical probability P is a simple derivative of an appropriate one- 
dimension01 deflection function. Any final and initial parameter suitable to characterize the 
dynamics can be chosen and their mutual dependence creates a deflection function. The 
normalization will be different for each choice of variables but the scattering amplitude will 
always be the same. Thus, the only non-trivial quantity is the normalization which we have 
just determined. 

5. Electron impact ionization of hydrogen dose to the threshold 

5.1. The classical cmss section 

Compared to positron-impact scattering we have to deal with one more complication, the 
symmenization of the indistinguishable electrons. However, in a first step we may ignore 
the Pauli principle and calculate the classical scattering probability. The deflection function 
e@') in figure 5 has exactly the same stlllcture as in positron-hydrogen scattering, in 

t The derivation of the normalization d m  not hinge upon the monotony of the deflection function, see for instance 
Rost (1994~). 



Threshold ionizaton of atoms by electron and positron impact 3015 

particular it is monotonic so that to there is again only the contribution of one trajectory to 
the unsymmetrized S-matrix. The intervals of initial conditions describe the same physical 
processes as in figure 1, namely r' E 1(1) represent classical exchange trajectories, r' E 1(2) 
stands for ionization (fragmentation) and r' E 1(3) leads to excitation. Since the energy 
of the bound electron in I(1) as well as the kinetic energy of the free electron in I ( 3 )  are 
defined relative to the same centre of mass, the proton which is at rest, there is no frame 
transformation necessary. Hence, unlike in the postitron-hydrogen case, there is no 'gap' 
in the deflection function. In analogy to (20a) we can define the classical cross section for 
ionization in elecmn-hydrogen scattering by 

which behaves for E + 0 like f'd a E'.'" (see figure 6) as predicted analytically by 
Wannier (1953). How does the result change if the Pauli principle is employed? 

5.2. The differential cross section 

The scattering amplitude must now be symmetrized with respect to the identical electrons 
leading to a singlet (+) and a triplet (-) partial cross section 

with the S-matrix element S,,,.(E) as in ( I la ) .  Since quantum mechanics is linear in the 
amplitude (the wavefunction) it is legitimate to take a symmetry into account a posteriori 
as in (22). In fact this is the standard quantum mechanical procedure in scattering theory 
(compare e.g. Taylor 1972, chapter 22). 

In the present context special circumstances help to simplify (22). It is convenient to 
introduce a scaled energy variable x = € / E  - 1/2 so that the electron exchange is given by 
inversion, x + - x .  Keeping in mind that only one trajectory contributes to S,,,-(E) the 
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au, (b) E = 

symmetrized probabilities (22) are now constructed from the coherent sum of two classical 
paths which could show an interference pattern. However, the action is exactly symmetric 
under electron exchange @(x,x ’ )  = Q(-x ,x ’ ) .  This property originates in the Coulomb 
interaction only in so far as it has been possible to reduce the relevant phase space to four 
dimensions which is the true reason for the symmetric action (see the proof in appendix B). 
We now have the simple differential probabilities 

Normalized to P& they are shown in figure 7 for energies spanning three orders of 
magnitude from E = IO-’ to 1 au. In the singlet configuration at threshold there is a 
preference of about 5% for equal energy sharing. This threshold energy sharing was also 
obtained by Read (1984) and Gailitis (1986) in classical trajectory calculations without a 
physical initial state. Our present findings, with a well defined initial state, together with 
these previous results c o n h  that certain properties of threshold ionization are independent 
of the initial state as already predicted by Wannier (1953). For more details see Rost 
(1994~). However, only in the limit E -+ 0 i s  the energy distribution universal with a 5% 
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preference for equal energy sharing. As described in Rost (1994) this preference decreases 
towards a ‘transition region’ around 3 eV excess energy where the energy distribution is 
flat within 1%. For higher energies a preferred unequal energy sharing is approached (with 
a fast projectile electron and a slow target electron). In the symmetry there is no 
transition since equal energy sharing is not allowed. Hence, the shape of the cross section 
changes only slightly for different excess energies (figure 8). The ratio of triplet to singlet 
probability is reflected by P;/P,’ which demonstrates that the triplet probability is orders 
of magnitudes smaller relative to the singlet probability for small excess energies. At E = 1 
au both probabilities have the same order of magnitude (compare figure 7(d) with 8(d)). 
The behaviour can be understood analytically from a perturbation expansion of the triple 
collision manifold, a task which is beyond the scope of the present paper. However, we 
use a result from this analysis to interpret figures 7 and 8. 

5.3. Analytical interpretation of the differential scattering cross section 

The unsymmetrized scattering amplitude P ( x )  can be represented as a sum of two functions 
P&) and P,(x) which are symmetric and antisymmetric under electron.exchange. These 
two functions scale differently with the total energy, namely (Rost 1994d) 

(24) P&, x‘, E )  a Em P.(x. x’ ,  E )  0: E” 



3018 J-M Rost 

10 

4.0 5.0 

-0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5 
X X 

Figurr 9. The classical probaLMities, (a )  P,(x), and ( b )  P.(x) as defined in the text and scaled 
according to their behaviour with the total energy for E = au (full curve). E = IOm2 au 
(broken curve), E = IO-' au (dotted curve) and E = 1 au (chain curve). 

where LY = 1.127 is the Wannier exponent (Wannier 1953). The reason for the scaling can 
be found from an analysis of the triple collision manifold (TCM) which is responsible for 
the ionization dynamics in the limit E --f 0 (Eckhardt 1991). Essentially, each contact 
of a trajectory with the TCM leads to a factor E" in the probability for this trajectory. 
For trajectories contributing to Pg one contact is sufficient while for the antisymmetric 
probabilities two contacts with the TCM are necessary. This explains the scaling (24) which 
is demonstrated in figure 9 for an energy range spanning the same three orders of magnitude, 

< E < lau as in the previous figures. While the total energy dependence follows (24) 
very well, the dependence of P8(x) and P.(x) on x changes appreciably from IOm3 au to 
1 au excess energy. 

As an immediate consequence of (24) we can expand the mixed term in the singlet and 
triplet probabilities Pi from (23) according to 

The approximation (25). shown in figures 7 and 8 with open circles, is excellent for small 
excess energies and even for E = 1 au is still reasonable. From equation (25) it follows 
that P+/P- s E-" which for E = 

With regard to the question of semiclassical corrections to the classical result close to 
threshold our andysis shows that even the triplet cross section is classical in the sense that 
no fi dependence occurs. Due to the symmetry of the action O(x)  under electron exchange, 
classical probabilities in the form of (23) are sufficient to describe the symmetrized cross 
sections. The result might prove interesting for the justification of purely classical trajectory 
methods such as the m c .  With the classical probabilities obtained by these methods 
symmetrized cross sections could be constructed according to (23). 

Most Wannier-like threshold approaches use a quadratic approximation about the 
Wannier saddle (x  = 0,812 = 180"). in this context it is interesting to note that the 
energy sharing distribution P i ( x )  can only be represented by a function quadratic in x 
in a very limited region around x = 0 (see the broken curves in figures 7(a) and (e)). 

an is still a factor of 100. 
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The necessity to go beyond the quadratic approximation has also been emphasized recently 
by Kazansky and Ostrovsky (1994). Another necessary extension of the Wannier theory 
towards reliable differential observables like the energy sharing probability is a realistic 
description of the initial state. Without invoking the Wannier picture the present approach 
satisifies both criteria. Hence, the transition from the threshold behaviour manifested in 
preferred equal energy sharing to the preference for unequal energy sharing characteristic 
for higher excess energies could be demonstrated here and awaits experimental confirmation. 

5.4. The total cross section 

Formally the total cross section for a given symmetry is obtained by integration of (23) 

i 
P*(E) = J P$(E)dx 

0 

As expected from the energy scaling (24) the singlet cross section for E + 0 follows the 
Wannier power law P+(E) a (broken curve in figure 6 )  and the hiplet cross section 
behaves as P - ( E )  cx E3.381. More interestingly, the symmetrized cross section P + ( E )  lies 
very close to the purely classical total cross section (21). This follows from (25) since 

Thus, the Pauli principle mainly has the effect of doubling the classical cross section for IS 
symmetry as can be expected for perfect constructive interference. Based on the underlying 
chssicd trajectories we can interpret the 3S cross section with the semiclassid S-matrix 
as a destructive interference effect between the two classical paths whose contribution to 
the scattering amplitude must be summed coherently. 

In the 'classical' electron impact ionization experiment of McGowan and Clarke (1968) 
the total cross section has been measured f" 0 to 8 eV excess energy. It is shown 
together with the present result of semiclassical S-matrix theory in figure 10. Only the 
overall normalization was matched at some arbitrary energy (5.82 eV). 

The good agreement of the theoretical curve with the experimental data justifies a 
posteriori our approximations, first of all the semiclassical approach, and within this 
approach the restriction to the L = 0 contribution and to the classical fixed point at 
012 = 180". Still, the theoretical curve must be normalized to the data at one point since 
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under the present approximations it is not possible to predict an absolute cross section. 
However, our inclusion of the initial state determines the energy scale which is in most 
threshold theories another fit parameter. Furthermore, there is no principal obstacle to 
calculating an absolute cross section with the semiclassical S-matrix in the future. For 
the time being it seems to be more interesting to see how far the simplified picture, as 
presented here, can describe reality. Of course, most of the experiments have been performed 
with targets different from atomic hydrogen. Hence, in the next section we will derive a 
semiempirical extension of the hydrogen theory to describe general electron-atom threshold 
ionization. 

6. Electron impact ionization of atoms close to threshold 

The considerable experimental material that has been accumulated over the years involves 
valence-shell as well as inner-shell ionization near threshold. We will show that both 
processes, as far as they are not influenced by core excitations, can be described Like the 
hydrogen ionization. Similar arguments apply to positron-atom scattering. However, here 
the experimental material is scarce and, moreover, it is difficult to separate (experimentally) 
fragmentation from positronium formation. Hence, we will only discuss electron-atom 
scattering in the following. 

6.1. The influence of the initial state on threshold ionization 

From the Wannier theory one can deduce that the dynamical aspects of ionization near 
threshold are a final state property. ?his statement refers to observables whose properties 
are induced by the triple collision manifold (Eckhardt 1991, Rost 1994d), for instance the 
energy dependence of the total cross section, the energy sharing between the continuum 
electrons and the distribution in the interlectronic angle 012. As far as the present S-matrix 
approach covers these observables, our results confirm the statement (see sections 5.2 and 

For our present purpose we need to ask how does the initial state influence the ionization 
yield for finite excess energies? We expect the universality of the threshold phenomena to 
persist to some extent also for finite excess energies and assume in the following empirical 
ansatz that the initial state determines only the energy scale PA of the ionization cross 
section. Together with the scaling , 8 ~  of the absolute cross section we now have two 
parameters to adapt the otherwise universal threshold ionization yield to the specific targets. 
The cross section for threshold ionization of atom A in its specified initial state (this includes 
inner-shell ionization) reads then in terms of the hydrogen cross section UH 

OAW) = BA~H(PAE) .  (28) 

Figure 11 shows ionization cross sections of valence shell electrons for He(ls), Na(3s) 
and, as already discussed, H(1s). In addition, three inner-shell ionization cross sections are 
shown, namely Ne(1s). MIS) and Xe(2p). The full curves correspond to (28) with suitable 
scaling parameters and PA. As can be seen the agreement is generally good despite the 
great variation of the ionization potential from around 5 eV for Na to nearly 5 keV for Xe. 

5.4). 

6.2. The energy scaling as afunction of the ionization potential 

We may go one step further and parametrize the energy scaling factor with the respective 
ionization potentials I A  of the target electrons. On a logarithmic scale the function 
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Figure 11. Total ionization moss sections in arbivary units. The full m e  is the hydrogen 
cross seetion with adapted scaling parameters according to (28). The ionization c m s  sections 
(a&) are for the valence shell elect” (a)  H(ls) (McGowan and Clarke 1968). (b) He(ls) 
(CvejanoviC and Read 1974) and ( e )  Na(3s) (Kelley etnl 1983). In (dW) inner-shell ionization 
is shown for ( d )  Ne(W (Kamm et a l  1994), ( e )  MIS) and If) Xe(2p) (both Hippler er ol 1983). 
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pA = ~ ( I A )  is linear with a slope of of -: (figure 12) so that we may approximate 

Together with (28) only the absolute scale of the individual cross sections OA remains 
undetermined. However, as already mentioned above, the absolute cross section is not 
measured in most threshold experiments. To demonstrate the validity of (29) we show in 
figure 13 all experimental cross sections from figure 11, scaled to the hydrogenic cross 
section according to (29). 

6.3. Comment on the threshold behaviour of inner-shell ionization 

The present results indicate that the cross section for any threshold ionization behaves like 
the hydrogenic cross section characterized with the Wannier exponent CL. Particularly for 
inner-shell ionization this deserves some explanation. The electron pair leaving the atom 
from an inner-shell region must penetrate the entire atomic electron cloud (Bar 1981). Slow 
electrons might be passed by the Auger electron following the decay of the inner-shell hole. 
Subsequently, the slow ionized electron will see a core whose charge has increased by one 
and it is conceivable that a significant fraction of the slow electrons will not escape but 
fall back into the nucleus. These hindered ionization events should change the ionization 
characteristics compared to a structureless target. Why do such processes not alter the energy 
dependence of the cross section? The energy sharing function (7) provides an explanation. 
This function is relatively smooth (fkom threshold to 8 eV excess energy in hydrogen the 
maximum difference between the probability for an electron with energy 6 % 0 and E E/2 
is not more than 8% (compare with figure 5(c) of Rost (1994)). In a crude approximation 
we could assume that the energy sharing is constant. In this case, the eventually missing 
tail of slow electrons in the energy sharing distribution of the ionization yield of inner-shell 
electrons will mainly affect the absolute value of the signal (which is represented by BA in 
(28)) but not the functional energy dependence of the total ionization cross section. 
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6.4. The determination of the power law in experimental cross sections 

One goal in the analysis of experimental threshold cross sections has always been to confirm 
or contradict the Wannier law E’.’” of the total cross section. In many experimental 
situations the threshold itself is a problematic region due to finite energy resolution and 
do to the uncertainty in the position of the threshold. In this situation the power law has 
been applied to some finite energy region above threshold. Tkis is the main reason for 
the discrepancies which have been reported for the threshold exponent 01 from different 
experiments. To determine the threshold exponent correctly it is crucial (i) to have reliable 
data very close to E = 0 and this implies, in turn, that (ii) it is necessary to know precisely 
where E = 0 is in the experiment and (E)  that the theoretical curve must be convoluted 
with the experimental energy resolution. In practice, this is impossible and the dilemma 
can only be avoided if the shape of the cross section is known for a wider energy range 
than just at threshold. A magnification of figure 10 for the threshold region in figure 14 
highlights, in particular, point (iii). The discrepancy between theory and experiment can 
be amibuted to the energy resolution of O.leV in the experiment by McGowan and Clarke 
(1968). 

Here we have assumed that we know the (universal) shape of the ionization cross section 
from the calculation for hydrogen. With this ansatz we could indirectly show that, in fact, 
all types of threshold cross sections are consistent with the Wannier power law U K E’.’”. 

7. Summary and outlook 

This paper documents the first attempts to formulate and apply semiclassical S-matrix theory 
to fragmentation under long-range (Coulomb) potentials. We find the results encouraging 
and hope that they will provide motivation for further studies. 

With only a single classical trajectory contributing to a differential cross section, it has 
been possible to justify an exwemely simple version of the semiclassical S-matrix approach 
for scattering near the fragmentation threshold. Thereby, the semiclassical S-matrix has 
provided a link between Wannier’s and others’ classical phase space theories and standard 
quantum mechanical scattering theory. 

Besides more applied work of calculating differential cross sections following electron, 
ion or photon impact, future studies could elaborate on the fundamental question concerning 
the relation between a quantum mechanical and a semiclassical description. For this 
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issue scattering below threshold is of particular interest exhibiting such complex classical 
phenomena as chaotic scattering with fractal structures @ost and Wintgen 1994). Overall, 
the results from this work provoke the question: to what extent is electron-atom scattering, 
not only close to threshold, a (semi)classical process? 
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Appendix A. Proof of the classical properties of a Coulomb system from section 2.2 

Here we briefly sketch the proof of the properties (i)-(iii) which do not appear to be well 
known. However, specialized to the twoelectron atom they can be found explicitly (i) and 
implicitly (ii,iii) in Wannier's paper from 1953. 

(i) To prove that the hyperradius R(t) has a single minimum as a function of time we 
consider the classical Hamiltonian of 3N - 3 degrees of freedom (relative motion of N 
particles) with a homogeneous potential of degree n in hyperspherical coordinates 

where A2 is the squared grand angular momentum operator that acts on the N- 1 hyperangles 
51. The angles may be defined in various ways, see for instance Louck (1960). With 
Hamilton's equations we can write 

Using equation (AI) and the fact that P = d'R/dt = 0 at an extremum we can reformulate 
642) 

d2R n A2(51) n E  
'R 

One sees from (A3) that for n = 0, -1, -2 the second derivative of R(t) at the extremum 
(if it exists) is positive provided that E > 0. In these cases each trajectory has a single 
minimum in the hyperradius (because all extrema would be minima according to (A3) and 
R(t) is differentiable). The solution corresponds to the dipole potential (n = -2). the 
Coulomb potential (n  = -1) and the hivial case of free motion (n = 0). Additional 
solutions occur for E < 0. Mathematically a single minimum in 'R(t) may exist if n > 0. 
Physically it is simply the 'centre' of attraction of the multidimensional but attractive and 
homogeneous potential. From the structure of the proof it is clear that the result holds for 
arbitrary masses of the N particles. 

(ii) In the scaled Hamiltonian (4) the scaled grand angular momentum operator A has 
an implicit dependence upon the total scaled angular momentum i hut not on the energy E ,  
A(51) = A(51, i). From equation (3) we know that L = E'/*L. Hence, for any finite L,  
we have limE+o A(51, i) = L(Q. 0) which is independent of the total angular momentum 
L and coincides with L = i = 0. Therefore all partial waves L in (AI) are described by 
the L = 0 partial wave for E -+ 0. 
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(iii) This property follows from the equations of motion for pe with the appropriate 
initial conditions e(ro) = 180" and p&) = 0. However, it holds only for three particles, 
N = 3. 

Appendix B. Proof of the identical actinn for a direct and an exchange orbit 

We s t a n  from the initial state consisting of a bound (Kepler) orbit denoted by a' and a free 
projectile with momentum p i .  We want to prove that the action for an orbit that goes from 
this initial state to a final continuum state with momenta p l ,  pa is the same as for an orbit 
which starts with the same initial state but ends at a final state with exchanged elecaons, 
pa, PI. The action differential d@ = rl dpl + rz dpz itself is symmetric under electron 
exchange. We have to prove that 

Li.4 d @ =  L i . A  (B1) 

where p& denotes the initial momentum on the Kepler ellipse. Interchanging the indices 
1 tt 2 on the right-hand side of (B1) reveals that (Bl) is valid if pi  = p i .  Since p i  is fixed 
by the projectile energy we must be able to choose the initial momentum on the Kepler 
ellipse p i  = p; ,  This choice is indeed always possible for two reasons. Firstly, in principle 
all momenta p i  E] - 00, CO[ are available along a Kepler ellipse. Secondly, the discussion 
of the initial conditions in section 3.3 has revealed that we are free to choose the starting 
point on the Kepler ellipse. Hence, the condition pi = p; can always be fulfilled and the 
action of the direct and the exchanged path are indeed identical. 
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