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Semiclassical analysis of a two-electron quantum dot in a magnetic field: Dimensional phenomen
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It is shown that with the inclusion of the vertical extension of a quantum dot the experimental findings of
Ashoori et al. @Phys. Rev. Lett.71, 613 ~1993!# can be modeled consistently with a parabolic confinement.
Furthermore, the magnetic properties such as the magnetic moment and the susceptibility are sensitive to the
presence and strength of a vertical confinement. Using a semiclassical approach the calculation of the eigen-
values reduces to simple quadratures providing a transparent and almost analytical quantization of the three-
dimensional quantum dot energy levels that differ from the exact energies only by a few percent. While the
dynamics for three-dimensional axially symmetric two-electron quantum dot with parabolic confinement po-
tentials is in general nonseparable due to the Coulomb interaction we have found an exact separability for
specific values of the magnetic field.

DOI: 10.1103/PhysRevB.65.155307 PACS number~s!: 73.21.La, 03.65.Sq, 75.75.1a, 05.45.Mt
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I. INTRODUCTION

Current nanofabrication technology allows one to cont
the size and shape of quantum dots.1–3 Due to the confine-
ment of the electrons in all three spatial directions the ene
spectrum is quantized creating excellent experimental
theoretical opportunities to studycontrolled single-particle
and collective dynamics at the atomic scale. Depending
the experimental setup, the spectrum of a quantum dot
plays shell structure4–6 or follows predictions of random ma
trix theory ~for a review see, Ref. 7!. Furthermore, it be-
comes possible to trace the transition from a quant
mechanical to an almost classical regime.

Few-electron quantum dots have attracted spe
attention,4,8 since they may provide a natural realization o
quantum bit.1 The simplest quantum dot~QD! with the es-
sential features of more complex systems contains two e
trons. Experimental data, including transpo
measurements9,10 and spin oscillations in the ground sta
under a perpendicular magnetic field11–13 in two-electron
QD’s, have been explained quantum mechanically as a re
of the interplay between the two-dimensional~2D! lateral
confinement potential, electron correlations, and the m
netic field.14–17 However, the usual 2D interpretation of th
experiments10,11 leads to inconsistencies10,17 that can be
avoided if one takes into account the 3D physical nature
the QD, as we will show in the following.

We will investigate these dimensional effects semiclas
cally that makes almost analytical solutions possible. Hen
we are able to trace the dynamical effects of the confinem
strength, the magnetic-field strength, the Coulomb repuls
and their mutual interplay in a way complementary to t
full numerical approaches. In particular, the possibility f
full separable dynamics despite the interaction of the e
trons is clearly visible in the classical dynamics for certa
values of the magnetic field. However, in contrast to a cir
lar ~2D! two-electron QD whose classical dynamics is
0163-1829/2002/65~15!/155307~7!/$20.00 65 1553
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ways separable and, therefore, regular, the corresponding
system with axial symmetry is in general a nonintegra
problem with typical features of mixed dynamics~regular/
chaotic!. In Sec. II we briefly discuss this classical dynami
of the relative two-electron motion in a QD. The semiclas
cal quantization including an adiabatic approximation f
lows in Sec. III. We discuss the results and the conseque
for the interpretation of the respective experiments in S
IV. The paper ends with a summary given in Sec. V.

II. THE MODEL AND CLASSICAL DYNAMICS

The Hamiltonian for the 3D two-electron QD reads

H5(
j 51

2 H 1

2m*
S pj 2

e

c
A j D 2

1
m*

2
@v0

2~xj
21yj

2!1vz
2zj

2#J ,

1VC1Hspin, ~1!

where VC5a/ur12r2u is the Coulomb energy @a
5e2/(4p««0)# and Hspin5g* mB(s11s2)•B describes the
Zeeman energy, wheremB5e\/2mec is the Bohr magneton
Herem* andg* are the effective electron mass andg factor,
respectively, and« is the dielectric constant. The confinin
potential is approximated with a 3D axially symmetric ha
monic oscillator and\vzÞ\v0 are the energy scales of con
finement in thez direction and in the (x,y) plane, respec-
tively. For the typical voltage;1 V applied to the gate, the
confining potential is some eV deep that is large compare
the few meV of the confining frequency.2,3 Hence, the elec-
tron wave function is localized close to the minimum of t
well that always can be approximated by a parabolic pot
tial. In real samples the electron-electron interaction is u
ally screened. However, the pure Coulomb interaction sho
suffice to understand the main features of the system. For
perpendicular magnetic field (Biz) we choose a gauge de
scribed by the vectorA5@B3r #/25 1

2 B(2y,x,0). Introduc-
©2002 The American Physical Society07-1
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ing the relative and center-of-mass coordinatesr5r12r2 ,
R5 1

2 (r11r2), the Hamiltonian, Eq.~1!, can be separate
into the center of mass~CM! HCM and relative motionH rel
terms: H5HCM1H rel1Hspin. The solution to the CM
Hamiltonian is well known18 and the effect of the Zeema
energy has been discussed in Refs. 14 and 15. In the fol
ing we will concentrate on the dynamics ofH rel .

For our analysis it is convenient to use cylindricalscaled

coordinates, r̃5r/ l 0 , p̃r5prl 0 /\, z̃5z/ l 0 , p̃z5pzl 0 /\,
wherel 05(\/mv0)1/2 is the characteristic length of the con
finement potential with the reduced massm5m* /2. The
strength parametera of the Coulomb repulsion goes over
l52a/(\v0l 0). Using the effective massm* 50.067me ,
the dielectric constant«512, which are typical for GaAs
and the confining frequency\v053 meV, we obtainl
'3. Hereafter, for the sake of simplicity, we drop the tild
i.e., for the scaled variables we use the same symbol
before scaling.

In these variables the Hamiltonian for the relative moti
takes a particular simple form~in units of \v0)

e[
H rel

\v0
5

1

2 F pr
21

m2

r2
1pz

21S vr

v0
D 2

r21S vz

v0
D 2

z2

1
l

Ar21z2G2
vL

v0
m, ~2!

wherem5 l z /\, vL5eB/2m* c is the Larmor frequency and

vr5~vL
21v0

2!1/2 ~3!

is the effective confinement frequency in ther coordinate
that depends throughvL on the magnetic field.

Due to the cylindrical symmetry, thez componentl z
[pf of the angular momentum is conserved and the mo
in f is separated from the motion in the (r,z) plane. Since
the Coulomb term couples the two coordinates, the prob
is in general nonintegrable that is reflected in the Poinc´
sections shown in Fig. 1 for increasing magnetic field. T
chosen ratiovz /v053 is of the same order of magnitude
in the experiment.19 For vL50 and small values ofm the
motion is mainly chaotic@see Fig. 1~a!#. With the magnetic
field the frequency of oscillations along ther coordinate can
be controlled that leads to qualitatively different dynamic
situations@Figs. 1~b!–1~d!#. For equal effective confinemen
frequenciesvr

25vz
2 , the Hamiltonian Eq.~2! becomes sepa

rable in spherical coordinates and the dynamics is integr
@Fig. 1~c!#. For two other limiting cases, the dynamics
nearly integrable, namely, in the limitm→` and for vz
→`. The latter case represents a two-dimensional QD, c
sically, we havepz ,z→0 in this limit.

III. SEMICLASSICAL QUANTIZATION AND CLASSICAL
ADIABATIC TREATMENT

We will use a one-dimensional WKB-type quantizatio
that allows us to reduce the dynamical problem to quad
tures. This is possible since we can effectively separate
dynamics in all degrees of freedom~see below!, either due to
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exact symmetries or due to different time scales that allow
to apply a classical adiabatic approximation in terms of
‘‘removal of resonances’’ method~RRM!. The RRM is
widely used in classical problems of nonlinear dynamics a
in celestial mechanics.20

A. Integrable cases

1. The circular 2D quantum dot

The semiclassical quantization of the circular 2D quant
dot is particularly simple since it reduces to a on
dimensional WKB quantization of ther motion due to the
separability of the problem. For givenm and pz5z50 the
momentumpr determined from Eq.~2! enters the action in-
tegral

I r5
\

2p R pr dr5
\

pErmin

rmax
uprudr, ~4!

with the turning pointsrmin ,rmax as the positive roots o
equationpr(r)50. The WKB quantization conditions

I r~e!5\S nr1
1

2D , nr50,1, . . . , m50,61, . . .

~5!

determine the energy levels. For noninteracting electr
(l50) the analytical calculation of the action integral@see
Eq. ~A7!# leads to the ~quantum mechanically exact!
eigenenergies

FIG. 1. Poincare´ surfaces of sectionsz50, pz.0 of the relative
motion for the axially symmetric 3D two-electron quantum d
(vz /v053,l53,m50,e55) in the magnetic field for:~a! vL50,
~b! vL /v052.5, ~c! vL /v05A8, and~d! vL /v053.3. The section
~c! indicates that for the corresponding value of the magnetic fi
the system is integrable.
7-2
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e5A11S vL

v0
D 2

~2nr1umu11!2
vL

v0
m, ~6!

which are the well-known Fock-Darwin energies.18 For l
Þ0, we calculate the action integral Eq.~4! numerically with
a few iterations to determine the quantum eigenvalues.
energy spectra for noninteracting and interacting electr
are shown in Fig. 2. In the interacting case the semiclass
result, although not exact~the error is less than 1%!, repro-
duces very well the quantum-mechanical results.14,15

2. Separability for the 3D quantum dot

Turning now to the 3D quantum dot we have seen that
dynamics is separable forvz

25vr
2[vL*

21v0
2 and the

Hamiltonian Eq.~2! in scaled spherical coordinates takes t
form

e5
1

2 H pr
21S vz

v0
D 2

r 21
l

r
1

~ l/\!2

r 2 J 2
vL*

v0
m. ~7!

In this case the square of the total angular momentuml2 is an
additional integral of motion. Therefore, the classical dyna
ics reduces again to a one-dimensional, radial problem.
ing Eq. ~7! and calculating the action integral for the rad
motion analogous to that in Eq.~4! ~i.e., with r instead ofr),
we obtain the energy levels from the standard WKB qua
zation conditions

I r~e!5\S nr1
1

2D , u lu5\S l 1
1

2D ,

nr ,l 50,1, . . . , m50,61, . . . ,6 l . ~8!

Note that it is only the magnetic field that generates
spherical symmetry of the problem and, therefore, its se
rability leading to three good quantum numbersnr , l, andm.

The restoration of the rotational symmetry of the ele
tronic states by the magnetic field for noninteracting el
trons is a well-known fact~see, for example, Refs. 6,21!.
This phenomenon was also recognized in the results forin-
teracting electrons in self-assembled QD’s.22 It was inter-
preted in Ref. 22 as an approximate symmetry that had
vived from the noninteracting case due to the dominance
the confinement energy over the relatively small Coulo

FIG. 2. The energy spectrum of the circular 2D quantum dot~in
units \v0) as a function of the ratiovL /v0 for nr50 and m
50, . . . ,9 in thecases:~a! l50 and~b! l53.
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interaction energy. However, as it is clear from the form
Eq. ~7!, the symmetry is not approximate butexacteven for
strongly interacting electrons because the radial electr
electron repulsion does not break the rotational symmetr

B. Adiabatic approximation for the 3D quantum dot

In the general case (vrÞvz) of an axially symmetric 3D
quantum dot we have nonintegrable motion and a semic
sical quantization is neither straightforward nor does it g
results that allow for a simple understanding of the dyna
ics. For the parameters we have chosen the contributio
the Coulomb interaction to the total energy is comparable
the confinement energy at zero magnetic field and it beco
for small m even more important with increasing magne
field @compare Figs. 2~a! and 2~b!#. In this case, the standar
perturbation theory is not valid, since the Coulomb intera
tion prevails over the confinement energy. Therefore,
make use of the fact that in real samples the confining
tential in thez direction is much stronger than in the (x,y)
plane that allows us to analyze the 3D nonintegrable sys
with the RRM. To lowest order the RRM consists of avera
ing the Hamiltonian function over the fastest angle of t
unperturbed motion (l50) after rewriting coordinates an
momenta in terms of action-angle variables (Jr ,Jz ,ur ,uz).
The original coordinates of the 3D axially symmetric ha
monic oscillator read in terms of action-angle variables~for a
derivation, see Appendix A!

r25
v0

vr
~2 j r1umu22Aj r~ j r1umu!cos 2ur!, ~9a!

z25
2 j zv0

vz
sin2uz , ~9b!

and pr5 ṙ/v0 ,pz5 ż/v0. Here, j z5Jz /\ and j r5Jr /\. If
vz.vr one averages over the angleuz5vzt. As a result, the
motion effectively decouples into an unperturbed motion
thez coordinate governed by the potential (vz /v0)2z2/2 and
into the relative motion in ther coordinate governed by th
effective potential~see Appendix B!

Veff~r, j z!5
1

2 S vr

v0
D 2

r21
m2

2r2
1

l

pr
KS 22

v0

vz

j z

r2D ,

~10!

whereK(x) is the first elliptic integral. Hence, the effectiv
Hamiltonian reads

e5
pr

2

2
1Veff2

vL

v0
m1

vz

v0
j z . ~11!

Applying a similar procedure as in the 2D case, we calcul
the action integral numerically. The momentumpr is deter-
mined from Eq.~11! and the turning pointsrmin ,rmax are as
usual the~positive! roots of the equationpr(r)50. Finally,
the WKB-quantization conditions

I r~e!5\S nr1
1

2D , j z5nz1
1

2
,

7-3
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nr ,nz50,1,2, . . . , m50,61,62, . . . , ~12!

determine the energy levels.

C. The effective charge

Comparing the exact and the RRM results for eigenen
gies for the spherical casevz /vr51 we found good agree
ment even for large values of the magnetic field@Fig. 3~a!#
although RRM is expected to work best forvr /vz,1. With-
out magnetic field we havevr /vz51/3 that means that th
motion in z and r approximately decouples justifying th
widely used 2D approximation. This is also reflected in t
small difference between 2D and 3D results@compare Fig.
2~b! with Fig. 3~a! at vL50#. Turning on the magnetic field
increases the coupling of the dynamics inr andz that allows
the two electrons eventually to access the full 3D space. A
consequence, the electrons can avoid each other more e
tively and the Coulomb interaction has a smaller effect
the 3D spectrum than on the 2D spectrum that is most cle
visible for them50 energies, see Fig. 3~a!.

We can understand this effect quantitatively by averag
the elliptic integral in Eq.~10! over the unperturbed (l
50) motion inr. It gives rise to an effective charge in th
Coulomb interactionVC'leff/2r, where

leff5
2l

p2E0

p

KS 2
vr /vz

11umu2A112umucos 2ur
D dur

~13!

for nr5nz50 ( j r5 j z51/2). The 3D energy quantized wit
this effective charge for the repulsion is close to the f
interaction@dotted line in Fig. 3~a!#.

The effective chargeleff /l as a function ofvr /vz for
differentm is shown in Fig. 3~b!. The maximum repulsion a
vr /vz50 corresponds withvz→` to the 2D case. The 3D
case without magnetic field starts for our paramet
vr /vz51/3 at some valueleff /l,1 that decreases furthe
for increasingvr /vz , i.e., increasing magnetic field. Thi

FIG. 3. ~a! The comparison between energy levels~in units
\v0) of the axially symmetric 3D quantum dot withvz /v053 and
l53 for nr5nz50 andm50, . . . ,9obtained using the RRM~full
lines! and exact results for the spherical case~circles!. The inset
shows a good agreement between the RRM and the exact re
The dashed and dotted lines display the energy level withm50 for
the 2D and 3D cases withleff at v0 /vz50 and 1/3, respectively
~b! The dependence of the effective strength of the Coulomb in
actionleff /l on the ratiovr /vz .
15530
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explains quantitatively through the effective charge the d
ference of the effect of a magnetic field on a quantum sp
trum in 2D and 3D cases. However, this difference becom
weaker for largerm as it is seen in Fig. 3~b!. The effective
charge clearly demonstrates that the Coulomb interactio
stronger, especially for smallm, in the 2D case compared t
the 3D case. This simply understandable classical find
clarifies numerical quantum-mechanical results obtained
the 2D and 3D cases of many-electron QD’s.23

IV. OBSERVABLE CONSEQUENCES OF THE THIRD
DIMENSION IN QUASI-2D QUANTUM DOTS

A. The first singlet-triplet transition in the two-electron QD

The ground-state energy of a QD as a function of
magnetic field can be probed very elegantly by single el
tron capacitance spectroscopy11 or by single electron tunnel
ling spectroscopy.10 Applying a gate voltage to the contac
brings the electrochemical potential of the contacts in re
nance with the energym(N,B) necessary to add theNth
electron that tunnels through the barrier into the dot. T
chemical potential of the dot is given by the ground-st
energy of the dot withN andN21 electrons~see,e.g., Ref.
10!,

m~N,B!5E~N,B!2E~N21,B!. ~14!

Here, E(N,B) denotes the total energy of the QD withN
electrons under a magnetic field of strengthB. Presently, we
are concerned withm(1,B) and m(2,B) only. The first is
simply the harmonic-oscillator energy for a single electron
the dot,m(1,B)5E(1,B). The latter can be split into contri
butions from the relative and center-of-mass motionECM ,
whereECM5E(1,B). The most direct probe of electron co
relation in the quantum dot is thedifferenceof the chemical
potentials that takes the form

Dm21[m~2,B!2m~1,B!5\v0e2E~1,B!, ~15!

wheree is the relative energy of Eq.~2! andE(1,B)5\vr

1\vz/2.
In a number of papers~e.g., Refs. 10,11,13,17! m(1,B)

has been used to estimate the confining frequency\v0 in a
two-dimensional model of the QD. Indeed, with\v0
55.4 meV (\vz50) one obtains a very satisfactory fit t
m(1,B). However, with this\v0, neitherDm21 ~which is by
almost a factor 2 too large! nor the value forB, where the
first singlet-triplet transition occurs, is reproduced correc
as is obvious from Fig. 4~a!. It has been argued that fo
increasing magnetic fieldm(N,B) might not follow the be-
havior modeled with a pure QD with constant confining fr
quency, see Refs. 10,17, and Ref. 11 in Ref. 13. Hence
believe it is more realistic to extract\v0 from the difference
of the chemical potentialsm(2,0)2m(1,0) at zero magnetic
field. This has been done in Fig. 4~a! and leads with\v0
52.3 meV (l53.32) to the first singlet-triplet splitting a
B51.02 T. This value differs from the experimental valu
of B'1.5 T only by about 30% in contrast to the differen
of more than a factor 2 with\v055.4 meV~dashed line!.

lts.
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The discrepancy of 30% vanishes if one proceeds to a
description of the QD. In this case\v052.6 meV (l
53.12) is needed to matchm(2,0)2m(1,0), only slightly
different from the 2D case, but the first singlet-triplet tran
tion occurs now atB51.59 T@see Fig. 4~b!#. If one includes
the contribution from the Zeeman energy~with g*
520.44) this value reduces toB51.52 T in a good agree
ment with the experiment. Of course, this agreement
achieved by tuning a second parameter, available in the
case, namely,vz /v052.4, i.e., the ratio of vertical to latera
confinement. On the other hand, a rough estimate assum
vz /v0;d0 /dz ~see, for example, Ref. 6! reveals with the
experimental valuedz5175 Å, a lateral size of d0

'420 Å that is the correct order of magnitude although
exact lateral extension in the experiment is not known.11

The analysis shows that in contrast to a 2D description
3D description provides a way to describe the energy sp
trum for smallB, the value of the magnetic field for the firs
singlet-triplet transition, and the ratio of lateral to vertic
extension of the dot consistently.

B. Magnetic moment and susceptibility

The singlet-triplet transitions in the ground-state ene
appear as discontinuities in the magnetic properties of
dot. For temperatureT50 the magnetic moment and th
magnetic susceptibility are defined bymmag52]Egr /]B and
x5]mmag/]B, respectively. We find that the resulting spik
shift when going from the 2D quantum dot to the 3D case
shown in Fig. 5. For the parameters used in the results
Figs. 2 and 3 the shift in the magnetic field can be calcula
from the relationDB'3.47Dx T wherex5vL /v0. For ex-
ample, in the region 1.25,x,1.5 we obtain that the spike in
the magnetic moment should occur in the 3D case at
magnetic field that is byDB'0.8 T higher than the one
expected for the 2D case. The increase/decrease of the
fining frequency in the third dimension at fixed value of t
lateral confinement will decrease/increase the difference
tween the 2D and 3D predictions for spikes of the magn
moment and magnetization.

FIG. 4. DifferenceDm of electrochemical potentials, Eq.~15!,
from the experiment11 ~shaded curve!. ~a! shows the theoretica
Dm21 from a 2D quantum dot model with\v055.4 meV~dashed!
and\v052.3 meV~solid!. ~b! showsDm21 from a 3D model with
\v052.6 meV andvz /v052.4 ~solid!.
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V. SUMMARY

By relaxing the restriction of two dimensions for a qua
tum dot and working in the physical three-dimensional sp
we have investigated physical examples of nonintegra
systems close to integrability. Using the classical RRM
could effectively reduce the nonintegrable problem of tw
electrons in the parabolic potential under the perpendic
magnetic field to an integrable case. Under these circu
stances the WKB-approach provides a simple and trans
ent way to calculate the spectrum of the 3D two-electron Q
and produces reliable results even for the ground state.

We have found that atspecificvalues of the magnetic field
vL* 5Avz

22v0
2 an axially symmetric QD exhibits spherica

symmetry. At these values its dynamics becomes comple
separable with three integrals of motion and three co
sponding quantum numbers, since the electron-electron in
action does not break spherical symmetry.

We have shown how the confinement in thez direction,
neglected in the 2D description of quantum dots, does h
an influence on the spectrum. In fact, the vertical confi
ment reduces the Coulomb repulsion between electrons
cluding the third dimension a consistent description of
experimental data11 becomes possible. Finally, by changin
the confining frequency in thez direction only slightly one
can increase or decrease the magnetic moment and the
ceptibility, i.e., one can control the magnetic properties of
two-electron quantum dot.

APPENDIX A

We briefly derive the action-angle variables for the axia
symmetric 3D harmonic oscillator. Straightforward but t
dious to calculate these expressions cannot be found in
books that contain only the general transformation formu
see, e.g., Ref. 20.

FIG. 5. Magnetic momentsmmag ~a! in the units of effective
Bohr magnetonmB* 5(me /m* ) mB and the magnetic susceptibilit
x ~b! for the 2D~dashed lines! and 3D~full lines! cases as a func
tion of the magnetic-field strength~in vL /v0-units!. We use the
same parameters as in Figs. 2 and 3.
7-5
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The Hamiltonian can be written in the form

e05er1ez, ~A1!

where

er5
pr

2

2
1

m2

2r2
1

ṽr
2r2

2
, ez5

pz
2

2
1

ṽz
2z2

2
, ~A2!

and ṽr5vr /v0 ,ṽz5vz /v0.
The momenta as functions of the corresponding coo

nates depend on the energies of the oscillator modes

pr56A2er2ṽr
2r22m2/r2,

pz56A2ez2ṽz
2z2 ~A3!

and the classical turning points

rmin,max5
1

ṽr

~er7Aer
22ṽr

2m2!1/2,

zmin,max57
1

ṽz

A2ez ~A4!

are the roots of equationspr(r)50,pz(z)50.
The corresponding action integrals

j r5
1

2p R prdr5
1

pErmin

rmaxA2er2ṽr
2r22m2/r2dr,

j z5
1

2p R pzdz5
2

pE0

zmaxA2ez2ṽz
2z2dz ~A5!

can be solved analytically

j r5
1

2 S er

ṽr

2umu D , j z5
ez

ṽz

~A6!

and the energies of these two oscillatory modes are
pressed in terms of the corresponding action variables

er5ṽr~2 j r1umu!, ez5ṽzj z . ~A7!

In order to express ther,z coordinates in terms of the
action-angle variables, the equations of motion

dr

dt
5pr ,

dz

dt
5pz ~A8!

must be integrated. The scaled time variablet5v0t is intro-
duced in order to keep the dimensionless form of equati
of motion. Therefore
15530
i-

x-

s

E
r0

r dr

A2er2ṽr
2r22m2/r2

5t,

E
z0

z dz

A2ez2ṽz
2z2

5t. ~A9!

Using initial valuesr05rmin ,z050, we obtain

arcsinS ṽr
2r22er

Aer
22ṽr

2m2
D 1

p

2
52vrt,

arcsin
ṽzz

A2ez

5vzt, ~A10!

or inverting

r25
1

ṽr
2 ~er2Aer

22ṽr
2m2cos 2vrt !,

z5
A2ez

ṽz

sinvzt. ~A11!

Finally, using expressions~A7! we have

r25
1

ṽr

~2 j r1umu22Aj r~ j r1umu!cos 2ur!, ~A12!

z5A2 j z

ṽz

sinuz , ~A13!

whereur5vrt, uz5vzt.

APPENDIX B

If vz.vr we average the Hamiltonian for the relativ
motion, Eq.~2!, over the angleuz . Therefore, it is enough to
express onlyz variables in terms of the corresponding actio
angle variables

e5er~pr ,r!1ṽzj z2
vL

v0
m1vc , ~B1!

where the energyer is given by Eq.~A2! and

vc5
l

2r S 11
2 j z

ṽzr
2
sin2uzD 21/2

. ~B2!

Since the Coulomb term is the only one that depends on
angleuz , the procedure reduces to evaluation of the effect
Coulomb interaction

vc
eff5

1

2pE0

2p

vc~r, j z ,uz!duz5
l

pr
KS 2

2 j z

ṽzr
2D , ~B3!

whereK is the first elliptic integral. Thus, the full effective
potential Eq.~10! depends only on ther coordinate.
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