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The quantum-classical hybrid description of rare-gas clusters interacting with intense light pulses which we
have developed is described in detail. Much emphasis is put on the treatment of screening electrons in the
cluster which set the time scale for the evolution of the system and form the link between electrons strongly
bound to ions and quasifree plasma electrons in the cluster. As an example, we discuss the dynamics of an
Ar147 cluster exposed to a short vuv laser pulse of 20 eV photon energy.
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I. INTRODUCTION

The interaction of rare-gas clusters with intense laser
pulses has attracted considerable attention over the last de-
cade since spectacular experiments showed how effective en-
ergy from the laser beam can be coupled into the cluster,
culminating in the demonstration of fusion in exploding deu-
terium clusters �1�. Other efforts aim at understanding the
interaction of matter beyond a few atoms with light of dif-
ferent wavelengths, motivated by the fact that little is known
about such processes with intense light of frequencies differ-
ent than the infrared range around 800 nm wavelength. First
experiments at FLASH �Free-electron LASer in Hamburg�
have revealed very efficient energy absorption at 98 nm
wavelength �2� and have triggered theoretical research �3–6�
as recently reviewed �7�.

Clearly, the time-dependent description of a finite many-
body system interacting with a laser pulse is challenging. A
full quantum description is numerically impossible and
would probably provide little insight conceptually. One can
observe two different strategies in the literature to tackle this
problem: �i� A more or less full quantum approach for a
single atom in the cluster treating the influence of the other
atoms and ions in the cluster more approximately as a kind
of environment �3,8�. �ii� A classical propagation of all
charged particles in time �ions and electrons� with quantum
mechanical elements added in the form of rates at various
levels of sophistication �9–16�.

We have followed the latter route, describing the motion
of all charged particles classically, while they interact and are
subjected to the external dipole-coupled laser field. Initial
bound electronic motion is not treated explicitly, but only in
the form of �quantum� ionization rates which are integrated
into the classical dynamics with a Monte Carlo scheme �7�.
The approach works very well, as long as the electrons, once
ionized from their mother ions, behave essentially classi-
cally. This is the case if they are subject to a strong external
field �as is in the case with strong ir pulses� or are instanta-
neously free �as in the case of hard x rays�. Under vuv ra-
diation, however, the photoelectrons stay often very close to
their mother-ions or other ions, effectively screening them
and modifying subsequent ionization processes.

The reason for this behavior is the size of the quiver mo-
tion �typically less than a ground-state electron orbit of the

rare-gas atom� and the small kinetic energy which remains of
the photon energy in excess of the ionization potential. The
latter is not the case for hard x rays where the photon energy
is high enough to remove the photoelectrons completely
from the cluster �at least for moderate cluster sizes�. For
intense ir fields, on the other hand, the photon energy is
much too low for the photoelectrons to leave the cluster in-
stantaneously, but the quiver motion is �for typical intensi-
ties� of the size of the cluster or even larger implying that the
photoelectrons certainly will not remain in the vicinity of
specific ions. Rather, they are dragged back and forth
through the cluster by the laser field. Hence, the photoion-
ization of ions surrounded by screening electrons is a phe-
nomenon unique to vuv radiation, adding to the challenge of
a theoretical description. On the other hand, as will become
clear subsequently, exactly those electrons which screen in-
dividual ions define a time scale, suitable to formulate a
coarse-grained electron dynamics in the cluster. It is the key
to incorporate physical processes which in our approach lie
at the interface of the classical and quantum descriptions,
such as the influence of the surrounding charged particles
�ions and electrons� on the photoionization rate of an ion in
the cluster.

In the next section we summarize our quantum-classical
hybrid description which contains quantum photoionization
rates of multielectron ions, classical propagation, and, as an
element in between, the treatment and identification of those
electrons which screen the ions. In Sec. III we explain how
to deal with photoionization of bound electrons into the
plasma of cluster electrons. Section IV discusses as an appli-
cation and illustrative example the illumination of Ar147 with
a vuv pulse of 62 nm wavelength. The paper ends with a
short summary in Sec. V.

II. HYBRID DESCRIPTION OF TIME-DEPENDENT
CLUSTER EVOLUTION

The interaction of a cluster with intense radiation can be
partitioned into three parts: �A� atomic ionization, �B� coop-
erative interaction of ions among each other and with elec-
trons, and �C� relaxation. During phase �A� which lasts ap-
proximately until every second atom in the cluster is �singly�
ionized, one can simply apply the atomic photoionization
cross sections for many-electron atoms supplied, e.g., in
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�17,18�. Gradually, the bound electrons feel the cluster envi-
ronment, which has roughly three effects: �i� the ionization
potential is lowered through close by ions, �ii� previously
ionized electrons trapped by the cluster screen the ion under
consideration, and �iii� the global field, generated by elec-
trons and ions, modifies the ionization potential as well. We
will treat all three effects which happen during phase �B� of
the dynamics in Sec. III. Here, we describe briefly how to
extrapolate the known photoionization cross sections below
the ionization threshold.

A. Atomic photoionization

The calculation of photoionization and excitation for in-
dividual energy levels of isolated atoms and ions is straight-
forward. Including �quantum� rates into the classical propa-
gation of charged particles in the cluster, we do not resolve
the angular dependences of the photoionization or photoex-
citation cross section. Averaging over angular degrees of
freedom considerably simplifies the cross sections which
only depend on the radial wave functions for the respective
mean initial and final energies of the phototransition; for a
similar philosophy, see �6�. We start from the dipole matrix
element for linearly polarized light along the ẑ direction and
consider the transition between initial and final atomic states
with well-defined orbital quantum numbers lm:

�f �z�i� = dr�� f,�i�� d� Y�fmf

� ���cos �Y�imi
��� , �1�

with the radial dipole matrix element

dr��i,� f� = �
0

�

dr u�f
�r�ru�i

�r� . �2�

Within the independent-particle picture all states in a shell
defined by orbital angular momentum �i are degenerate and
have the same radial wave function u�i

�r�. It is an eigenfunc-
tion to a spherically symmetric effective single-particle po-
tential obtained �along with the eigenfunction� from the
Cowan code �17�. Within this mean-field approximation the
full photoabsorption cross section is easily obtained by sum-
ming over all available final states and averaging over the
initial states in the shell �:

����� =
wi

3

4�2��

2� + 1
��� + 1�dr

2��,� + 1� + �dr
2��,� − 1�� .

�3�

Here, wi gives the number of available initial electrons.
Furthermore, in the cluster the ions are surrounded by

other electrons and ions. The latter lower the potential barri-
ers for ionization into the cluster. Hence, what is discrete
photoexcitation in an isolated atom becomes at the same
photon energy ionization into the cluster. Therefore, we need
an interpolation of the discrete excitation spectrum distribut-
ing the oscillator strength over the respective photon energy
interval.

In the following, we compare two different interpolations.
In the first one �19�, approximate analytical expressions for

the photoabsorption of many-electron atoms are derived. The
corresponding results for the Ar atom are shown in Fig. 1
with dashed lines. For comparison, the cross sections with
hydrogenic wave functions �20� are also shown. In the sec-
ond approximation we define a continuous photoabsorption
in the region of discrete spectral lines by demanding that the
renormalized photoexcitation cross section merge smoothly
with the photoionization cross section at threshold �21�. This
is achieved by distributing the oscillator strength fn of a
spectral line En over an interval halfway to each of the adja-
cent lines such that

�n��� =
2��fn

�En+1 − En−1�/2
, �4�

where �n��� is now the interpolated photoabsorption cross
section, Eq. �3�, for �En−1+En� /2	�	 �En+En+1� /2. The
result �solid line in Fig. 1� shows reasonable agreement with
the analytical approximation for low and high energies. For
intermediate energies, the well-known Cooper minima lead
to considerably lower values than in the analytical approxi-
mation which does not account for this interference effect.
Hence, we will use in the following the approximation �4�.

FIG. 1. Atomic photoionization cross sections extrapolated be-
low the threshold according to �19� �dashed lines� and by interpo-
lation of the discrete spectrum �solid lines�. The dash-dotted lines
are an approximation with hydrogenic wave functions; see text. The
initial configuration is displayed in each panel.
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There is a special case for Eq. �4�—namely, ionization
just above the threshold. In this case, the oscillator strength
of the first spectral line n0 above the threshold has to be
distributed on the whole interval between the ionization
threshold, 
Eip

eff, and the next higher line n0+1:

�n0
��� =

2��fn0

�En0+1 + En0
�/2 − 
Eip

eff . �5�

As will be shown later in Sec. III C, 
Eip
eff depends strongly

on the cluster environment. The dotted line in Fig. 1 depicts
the lower bound for the photoionization cross section which
corresponds to the extreme case when the ionization poten-
tial has been lowered to its smallest value.

B. Classical propagation for the Coulomb interaction under
vuv radiation

The propagation of classical particles is in principle
straightforward. More refined methods, such as tree codes
are only worth the effort of coding for large clusters �105

electrons and ions and more�. Another issue is the Coulomb
interaction. Using the real Coulomb potential with its singu-
larity is numerically very costly �small time steps close to the
singularity� and leads for more than two bound electrons to
artificial autoionization since one electron can fall into the
nucleus �below the quantum ground-state energy� and an-
other one can be ionized with the released energy. In strong-
field physics �at ir frequencies� the so-called soft-core poten-
tial

U�r� = −
Z

�r2 + a2�1/2 �6�

has been used routinely where the singularity is cut off by
the smoothing parameter a chosen to get potential depths
�slightly� below the true ionization potential of the atom or
ion. As long as the quiver amplitude xquiv=F /�2�a, the
cutoff is irrelevant for the dynamics, as is typically the case
for a strong pulse �for 3�1016 W/cm2 and 800 nm wave-
length, xquiv	500a0, while a is of the order of 1a0�. How-
ever, at 10 times higher photon frequency and a factor of 100
weaker peak intensity—which is realistic, e.g., for the
FLASH source—xquiv	a. Even more problematic is the fact
that the soft-core potential is harmonic about its minimum
with a characteristic frequency �Z /a3�1/2 which could be-
come resonant with the vuv laser frequency.

To avoid these problems we use a different approximative
potential which has the correct asymptotic Coulomb behav-
ior at large distances, but lacks an eigenfrequency since it
has a nonzero slope at r=0:

V�r� = −
Z

r
�1 − e−r/a� . �7�

Here, a is chosen in analogy to the potential �6� discussed
above. Note that U�r→0�=V�r→0�=−Z /a. For rare-gas at-
oms a is of the order of 1: a=1.74 for Xe and a=1.4 for Ar.

For the photon frequency used here ���=20 eV� there is
no qualitative difference using a U-shape �soft-core� or a

V-shape potential. The subsequent considerations also do not
depend on the approximate or exact form of the of the Cou-
lomb potential. Therefore we will use the generic form
v�i , j�, which could be either of the two options

v�i, j� = 
���ri − r j�2 + a2��−1/2 U shape,

�1 − e−�ri−rj�/a��ri − r j�−1 V shape.
� �8�

Our numerical examples presented here have been obtained
with the V-shape potential.

C. Identification of localized and delocalized electrons

At photon energies comparable to or less than the ioniza-
tion potential of a cluster ion ���30 eV�, most of the
photoelectrons remain in the cluster; i.e., quasifree electrons
are produced. They thermalize quickly; i.e., they form a
plasma.

We have to determine which among these quasifree elec-
trons travel all over the cluster and visit many ions �delocal-
ized quasifree electrons� and which revolve about a single
ion—that is, are effectively in excited states about an ion
�localized quasifree electrons�. To do so, we record the revo-
lution angle ��t� of each classical electron about its closest
ion as a function of time. If the electron j moves for two
revolutions �� j�

=4�� about the same ion �, we consider it as
localized, and the period of its motion Tj� is then given by
2�=� j��Tj��.

The average period T̄j� of all localized classical electrons
sets the time scale for a coarse-grained dynamics. This time
scale changes slowly in real time t due to changes in number
and energy of the localized electrons; see Fig. 2. With an
initial guess for the first averaged period T0=1 fs, we update
T after a time t=Ti according to the general sequence

T̄i+1 =
Ti

n
�
�=1

N

�
j�=1

n� 2�

� j�
�Ti�

, �9�

where the actual time interval used is increased by the stan-

dard deviation �i+1 of the mean, Ti+1= T̄i+1+�i+1. Adding one
standard deviation guarantees that the majority of the local-
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FIG. 2. Time intervals Ti of the averaged localized motion of the
screening electrons as a function of real time for an Ar147 cluster
with laser parameter as specified in Sec. IV.
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ized electrons have made at least one full revolution.
The coarse graining of time through the time intervals Ti,

whose length is defined by the localized electrons, plays a
crucial role for the description of the entire cluster dynamics.
It provides the natural time scale to interpolate between the
explicit time-dependent dynamics of the classical electrons
and the time-averaged rate description of the bound “quan-
tum” electrons. Over an interval t0	 t	 t0+Ti in time all
processes involving quantum rates will be considered within
a fixed cluster environment with properties averaged over the
previous interval �t0−Ti−1 , t0�.

III. COARSE-GRAINED PHOTOIONIZATION INTO THE
PLASMA

We are now prepared to calculate atomic properties in the
environment of other cluster ions and electrons with the un-
derstanding that all these processes are for a specific time
interval Ti as introduced in the previous section. The photo-
ionization dipole matrix elements for many-electron atoms
provided within the Hartree-Fock approximation �17� allow
one to determine the cross section for ionization of indi-
vidual occupied orbitals to the continuum; see Sec. II A.

To apply these cross sections, we have to approximately
map the present situation of a cluster ion surrounded by the
localized electrons and other charged particles �ions and de-
localized electrons� into an effective single-ion scenario.
This requires one first to determine the electronic energy of
an ion with its localized electrons and then to construct an
energy-equivalent configuration.

A. Electronic energy of the ions including localized electrons

Averaged over Ti we calculate the number n� of electrons
localized about ion � and their mean energy

E�
� = E�q�� + �

j=1

n�  pj
2

2
− q�v�j,��� + �

j�k=1

n�

v�j,k� , �10�

with v�j ,k� the interaction potential, Eq. �8�, between two
particles of unit charge at positions r j and rk, q� the charge
of the ion �, and E�q�� the energy of its bound electrons.

The localized electrons are in excited states of the ion �,
as shown in Fig. 3. Starting from the energy E� of this actual
configuration, we include them in the photoionization pro-
cess by constructing the equivalent configuration of ion �. In
this configuration, we relax all localized electrons but one
onto the last occupied orbital of the actual configuration. We
put the remaining electron on a Rydberg orbit, whose energy
is given by the condition that the actual and equivalent con-
figurations have the same energy E�.

B. Ionization potential of the equivalent configuration

To find the binding energy of electrons in occupied orbit-
als in the presence of a Rydberg electron, we assume that
neither the quantum number n nor the angular momentum �
of the Rydberg electron changes upon release of an electron
from a deeper orbital. Then the ionization energy 
E is given
by


E�Cq,n� = E�Cq+1,n� − E�Cq,n� , �11�

where E�Cq ,n� is the energy of the valence shell configura-
tion C with charge q and an additional electron in a Rydberg
orbital n. We have omitted � as an index in Eq. �11� since the
following discussion does not depend on it. As an illustrative
example, we will use �=1. The quantum number n can take
values from n0 up to �, with n0 corresponding to the situa-
tion where the “Rydberg” electron is in the lowest possible
state; for argon and �=1 it is n0=3. Figure 4 provides ener-
gies for six configurations and n=3, . . . ,9. In five of the
configurations the valence shell does not contain electron
holes. Thus they are solely defined by the charge Cq�q. The
case C2�=3s3p4np, also shown in Fig. 4, is an example for an
exception with a hole in 3s. Obviously, we have

E�Cq,�� = E�Cq+1,n0� = E�Cq,n0� + Eip�Cq�; �12�

i.e., the asymptotic energy n→� of a Rydberg series coin-
cides on the one hand with the origin of the Rydberg series of

FIG. 3. �Color online� Sketch for the construction of the equiva-
lent electronic configuration �right panel� from the actual configu-
ration �left panel� of a cluster ion with three localized electrons
�red� around a 3s13p1 �upper row� and 3s2p1 �lower row� configu-
ration. Holes are shown as open circles.
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FIG. 4. Total energies �circles� for ions with one of the electrons
in a Rydberg state with quantum number n and angular momentum
�=1. The valence shell configuration Cq is specified for each set of
energies. Fitted curves �thick lines� according to Eq. �13�. As an
example, the energy E� for an equivalent configuration �dotted line�
as defined in Sec. III A and the corresponding energy 
E� for ion-
ization �dashed line� are shown.
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the next higher charge state, as can be seen in Fig. 4. On the
other hand, it is equal to the sum of the ground-state energy
and the ionization potential Eip for an ion with configuration
Cq. For finite values of n we approximate the energies by a
quantum defect formula �22�

E�Cq,n� = E�Cq,�� −
1

2
 Zeff

n − �q
�2

, �13�

where in contrast to the usual ionic charge Z we use an
effective one

Zeff = �n0 − �q��2E�Cq,�� − 2E�Cq,n0��1/2, �14�

chosen such that the first level �n0� of the series agrees with
the exact value while the quantum defect �q is fitted. Hence,
Eq. �13� is very accurate at intermediate n, where we need it.
When fitting the curves, Eq. �13�, to the calculated energies
�cf. Fig. 4�, we found the quantum defects �q to be almost
independent of q. This allows us in the calculation of energy
differences, Eq. �11�, to eliminate the term containing n and
� in Eq. �13�. We get for a configuration Cq with an initial
energy E�


E��Cq� = �E�Cq+1,�� − E�� − b�E�Cq,�� − E�� , �15�

with

b: =
Eip�Cq+1�
Eip�Cq�

, �16�

the ratio of the ionization potentials; cf. Eq. �12�. Thus we
have obtained an expression for the energy necessary to ion-
ize an electron from a valence shell in the presence of a
Rydberg electron. This expression does not depend on the
actual quantum numbers n and �, but only on the energy E�.

C. Condition for overbarrier inner ionization

Although we know now with Eq. �15� the ionization po-
tential for a screened isolated ion, we have to position the ion
in the cluster environment in order to decide if photoabsorp-
tion leads to photoexcitation within the ion � or to inner
ionization above the lowest barrier on the way to a neighbor-
ing ion. The energy balance for the photoelectron which de-
cides between these two options is

Ei + Vi + � = Ef + Vf , �17�

with local contributions from the ion to which the electron is
bound �see Fig. 5�,

Ei = − 
E�, Ef = Ekin − �q� + 1�v��,bar� , �18�

and contributions from the background of charges in the
cluster,

Vi = − �
j��

qjv�j,��, Vf = − �
j��

qjv�j,bar� , �19�

where the index j runs over the delocalized electrons and all
ions but ion �. As introduced earlier, v�l ,m� is the interaction
between two Coulomb particles at positions rl and rm.
Hence, Vi refers to the potential energy of the electron under

consideration and located at the position of its mother ion �
due to interaction with particles of charge qj at r j. Likewise,
Vf is the potential energy of the same electron at the potential
barrier rbar due to the interaction with the same charged par-
ticles as before. The energy balance, Eq. �17�, is taken with
respect to the location r� of the ion and the location rbar of
the lowest potential barrier near the ion. 
Eeff in Fig. 5 is
defined by putting Ekin=0 in Eq. �18�—i.e.,


Eeff = 
E� − �q� + 1�v��,bar� + Vf − Vi. �20�

Figures 6 and 7 give an overview of the coarse-grained vari-
ables during the laser pulse for an atom at the center and one
at the surface of the Ar147 cluster. Figure 6 shows first of all
an overview of their evolution during the whole interaction
with the laser. Starting at the ground state of the neutral Ar,
each absorbed photon leads to a rising step in the total en-
ergy. Note that for an ion in the cluster the electron has to be
excited only above the lowest barrier. Moreover, the energy
E� of the equivalent configuration takes merely the localized
electrons into consideration and not the newly ionized one.
Therefore, each ionization event leads to jumps of E� higher
than the energy of the photon; cf. Fig. 6.

The electron localization is equivalent to a relaxation of
the system and lowers therefore E�. The flat regions observ-
able for both ions correspond to the case where there are no
localized electrons, when the total energy of the ion is given
solely by the bound, “quantum” electrons. The smaller final
charge of the surface atom is a consequence of the cluster
expansion. The surface expands much faster than the core,
leading to higher interionic barriers and an early suppression
of the inner-ionization. A detailed view of the evolution of
the two atoms is shown in Fig. 7 for the time interval from
t=143 to 151 fs. The coarse graining is symbolized by the
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FIG. 5. Sketch of the energy balance for the photoionization of
a cluster ion �. The cluster environment is symbolized by a single
neighboring ion. The thick solid line indicates the full cluster po-
tential, and the thin long dashed line represents the cluster environ-
ment V�r�—i.e., the cluster potential without the contribution from
the ion itself. The dotted line is the Coulomb potential for
q�+1—i.e., the field of the ion if the electron were ionized. The
interaction of the bound electron with the nucleus is represented by

Eip

� . The saddle point of V�r�− �q�+1�v�� ,r� defines the position
rbar of the barrier.
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solid lines, showing the total energy E�
� of the two atoms

averaged over the time intervals Ti, as described in Sec. II C.

D. Effective cross section for inner photoionization

Finally, we are in the position to adopt the photoionization
cross section as formulated in Sec. II A for an isolated ion to
the situation of an ion in the cluster. Here, we take the lowest
potential barrier to a neighboring ion as effective ionization
threshold. Therefore, the actual cross section as shown in
Fig. 1 can vary between minimum and maximum possible

values of potential barriers according to Eq. �5�. The interval
is indicated for small photon energies in Fig. 1 with the
additional dotted line.

The electrons available for photoionization are only the
tightly bound ones from the actual configuration, while the
matrix elements entering the expression for the cross section,
Eq. �3�, take into account the screening of the electrons as
provided by the equivalent configuration �=��qeqv�. Hence,
the multiplicity has to be taken from the actual configuration
wact to arrive at the screened photoionization cross section

�scr�q� =
wact

weqv
��qeqv� . �21�

IV. DYNAMICS OF Ar147 UNDER AN INTENSE VUV
LASER PULSE

We will illustrate the theoretical framework introduced
above with the dynamics of Ar147 exposed to a 100-fs vuv
laser pulse with ��=20 eV �i.e., wavelength �=62 nm� and
an intensity of 7�1013 W/cm2. Figure 8 shows the main
quantities characterizing the response of the cluster to the
vuv pulse—namely, the energy absorption, the ionization de-
gree, the temperature of the plasma, and the cluster explo-
sion. The latter is characterized by the interionic distance
Ravg, defined as
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FIG. 6. Number of localized quasifree electrons nloc and the
corresponding energy E� according to Eq. �10� for the central ion
and a surface ion of an Ar147 cluster from the microscopic calcula-
tion in Sec. IV.
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=20 eV: �a� solid line, total absorbed energy per atom; dashed line,
energy absorbed due to photoionization; �b� solid line, total number
of ionized electrons per atom; �, quasifree electrons; �, localized
electrons; �c� temperature of the quasifree electrons; �d� expansion,
average interionic distance �see Eq. �22��.
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Ravg =� 1

N
�
�=1

N

min
���

��r� − r��2� . �22�

In the first part of the pulse, until approximately t=80 fs, the
absorption is dominated by photoionization. After that, in-
verse bremsstrahlung �IBS� sets in and photoionization starts
to saturate. We can easily disentangle the two contributions
to the total absorbed energy since we treat photoionization
via rates �see Sec. II A� and IBS through classical propaga-
tion �see Sec. II B�. The energy Etotal shown in Fig. 8�a� is
the sum of all photoionization events and the energy ab-
sorbed during the laser driven dynamics divided by the num-
ber of cluster atoms.

Note that until this time, as can be seen in panel �b� of
Fig. 8, almost all electrons �ntotal� are trapped �nquasifree� in-
side the cluster due to their low kinetic energy. They start to
leave the cluster with the onset of the IBS heating. Even
when the photon frequency is larger than the first atomic
ionization potential, not all atoms can be ionized as if they
were separated. Rather, the space charge built up even in a
relatively small cluster such as Ar147 allows the electrons to
become quasifree only. Hence, the “ionization into the clus-
ter”, as described in Sec. III, starts very early in the pulse.
These electrons thermalize very quickly and obey a
Maxwell-Boltzmann velocity distribution with a temperature
T, which is shown as a function of time in Fig. 8�c�.

Figure 8�b� also shows the average number nloc of the
quasifree electrons which are localized, as introduced in Sec.
II C. They reach a maximum �t	90 fs� when the photoion-
ization becomes unlikely. The increase of the temperature of
the electron plasma �see Fig. 8�c�� from this point on favors
a decrease of the number of localized electrons. At the point
�t	120 fs� where the cluster expansion �see Fig. 8�d��
starts, the temperature of the electrons plasma decreases, de-
spite the continuing energy absorption, and the localization
increases again to an average of two electrons per atom.

This transient complex behavior of electrons and ions in
the cluster may be accessible experimentally soon using at-
tosecond pulse probe techniques; for a proposal, see �23�.
For the time being, we present in Fig. 9 more conventional
observables measurable in the experiment, such as the final
charge distribution of ions and the kinetic-energy distribution
of electrons for the dynamics of Ar147. They have been ob-
tained by propagation up to t=6.4 ps—i.e., much longer
than shown in Fig. 8. This time is long enough to ensure that
the ions are so far separated that electron exchange between
them is negligible. Those electrons which are �classically�
recombined would stay at the corresponding ion if the propa-
gation would be extended. The dominating fragment is Ar3+

despite the fact that about five electrons �Fig. 8�b�� per atom
have been photoionized. The kinetic energy distribution
of the electrons can be fitted with an exponential decay
exp�−Ekin /E0� with E0=5.4 eV, thus emphasizing the ther-

mal origin of the electrons. The temperature of the plasma
has similar values; see Fig. 8�c�.

In comparison with an earlier approach �4�, which com-
pletely neglects the effect of the screening electrons, one
observes as a general trend that the number of quasifree elec-
trons is considerably smaller. This is connected with a
weaker absorption of energy. E.g., for the example discussed
above, only about five electrons per atom are �inner� ionized
as compared to eight using the earlier approach �4� and the
total absorbed energy is less by about 50%.

V. SUMMARY

We have described a quantum-classical hybrid approach
to follow the time-dependent dynamics of rare-gas clusters
exposed to intense short laser pulses. Special attention has
been paid to incorporate the screening of cluster ions by the
electron plasma, formed by quasifree electrons which have
been ionized from their mother ions, but cannot leave the
cluster as a whole due to the strong background charge. The
mean time scale of these localized quasifree electrons is de-
termined and provides the link between the microscopic dy-
namics of all charged particles and the quantum dynamics of
photoionization which is described by ionization rates
adopted to the screening in the cluster environment.

Hence, this approach is especially well suited to tackle
interaction of clusters with light from vuv and x-ray free-
electron laser sources. As an illustrative example, we have
discussed the dynamics of Ar147 exposed to a 100-fs laser
pulse of I=7�1013 W/cm2 intensity and ��=20 eV pho-
ton energy.
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FIG. 9. Ion charge distribution �top panel� and kinetic energy
distribution of the released electrons �bottom� after the cluster ex-
plosion for the same pulse as in Fig. 8. The propagation time was
t=6.4 ps. The electron signal can be exponentially fitted by
exp�−Ekin/E0� with E0=5.4 eV �dashed line�.
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