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Abstract
Based on simple rate equations for the Rydberg excitation process, we are able
to model microscopically the dynamics of Rydberg excitation in ensembles of
a large number of ultracold atoms, which is beyond the capabilities of fully
ab initio approaches. Our results for the distribution of Rydberg atom numbers
are in good agreement with recent experimental data, confirming the quenching
of the distribution caused by Rydberg–Rydberg interactions.

(Some figures in this article are in colour only in the electronic version)

Recently, the effect of ‘dipole blockade’ has been suggested as a way towards controlling
Rydberg excitation in a cold atomic gas and using ensembles of Rydberg atoms for quantum
information processing [1]. The essential idea behind this blockade effect is the fact that highly
excited Rydberg atoms, due to their large dipole moments, are strongly interacting with each
other even at distances typical for dilute gases trapped and accumulated in a standard magneto-
optical trap (MOT). This interaction shifts the doubly excited state of two Rydberg atoms out of
(two-photon) resonance with an excitation laser tuned to the single-atom excitation frequency,
thereby suppressing the excitation of further Rydberg atoms in the neighbourhood of an excited
atom. While the original proposal is based on a dipole–dipole interaction between the Rydberg
states, the same mechanism of course also works for other types of interaction. In fact, the
first experimental demonstrations of an interaction-induced suppression of Rydberg excitation
have been achieved in systems with a van der Waals interaction rather than a dipolar one [2–4].

The experiments [2, 3] have demonstrated the excitation suppression by investigating the
fraction of atoms that can be excited as a function of the laser intensity and of the density
of ground-state atoms, respectively. The recent study of Cubel Liebisch et al [4], on the
other hand, has investigated the statistics of the Rydberg excitation. In this work, the effect
of interatomic interactions on the excitation process has been linked to the quenching of the
distribution of Rydberg atom numbers in a sequence of repeated experiments with the same
initial-state parameters. In the present letter, we focus on a theoretical modelling of this latter
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Figure 1. Calculated distribution of Rydberg atom numbers for the case of negligible interaction,
n = 45 (a), compared to that of a system with strong interactions, n = 85 (b). The solid lines
show Poissonian distributions with the same 〈Ne〉.

experiment, whereas first numerical simulations of the experiments [2, 3] have been reported
in [2, 5].

In the experiment [4], Rb atoms have been collected in a MOT and excited to nD Rydberg
states with a two-step excitation scheme via the 5P intermediate state. For each principal
quantum number n, the intensity of the Rydberg excitation laser was adjusted to yield the
same average number of about 30 Rydberg atoms after the excitation pulse. After the pulse
was over, the number of Rydberg atoms was determined by field ionizing them and counting
the number of electrons arriving at a micro-channel plate (MCP) detector. Each experiment
was repeated up to 5000 times, resulting in a probability distribution for the Rydberg atom
number, the atom counting statistics (figure 2 of [4]; cf our calculated results in figure 1).
If the interaction between Rydberg atoms is negligible, i.e. for sufficiently low gas densities
or principal quantum numbers, all Rydberg excitations in the gas are independent of each
other. The resulting distribution is close to a Poissonian distribution, with the deviation from
a Poissonian being due only to the finite Rydberg excitation probability (see below). At
higher principal quantum numbers, on the other hand, the atom number distribution was seen
to become highly sub-Poissonian and the quenching of the distribution was ascribed to the
interatomic interactions in the gas which modify the dynamics of the excitation process.

The deviation of the atom counting statistics from a Poissonian distribution can be
quantified by the so-called Mandel Q-parameter,

Q =
〈
N2

e

〉 − 〈Ne〉2

〈Ne〉 − 1, (1)

where Ne is the number of Rydberg atoms and 〈 〉 denotes the average over the probability
distribution as usual. For a Poisson distribution, Q = 0. In general, not much can be said
about the value of Q in the present context without explicitly calculating (or measuring) the full
counting statistics. However, two limiting cases can be treated exactly. First, for a pure Fock
(number) state where

〈
N2

e

〉 = 〈Ne〉2,QF = −1. In the present context of Rydberg excitation
of an atomic gas, such a state can never be reached exactly. However, it includes the artificial
limiting case of a ‘full blockade’ due to infinitely strong interaction, where one atom is excited
with probability 1, and excitation of this atom completely suppresses the excitation of any
other atom. (In the case of a finite probability Pnoex that no Rydberg atom at all is excited by the
laser pulse, the limit of infinitely strong interaction is given by Q∞ = Pnoex − 1.) In the other
limit of negligible interaction between the atoms, the dynamics of each atom is independent of
that of the other atoms. Assuming that the excitation laser covers the whole sample and acts
on each atom in the same way, the excitation probability Pe = 〈Ne〉/NA is the same for all
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atoms. In this case, Q0 = −Pe. Hence, as stated above, in the case of non-interacting atoms
the deviation of the atom counting statistics from a Poisson distribution is simply determined
by the excitation probability Pe, i.e. the finite ratio of the number Ne of excited atoms to the
number NA of atoms in the gas cloud. Moreover, as is the case in the opposite limit of strong
interaction, the value of Q does not depend on the time evolution of the excitation process, but
just on the final number of excited atoms.

In the intermediate range of finite interaction strength, no exact statements about the value
of Q can be made from the elementary considerations above. It seems reasonable to assume
that in this regime a transition must take place from the (Q = 0)-limit to the (Q = −1)-
limit as the interaction strength is increased. However, in order to make more quantitative
statements, a numerical simulation of the corresponding experiment is required. To this
end, we have performed simulations using a microscopic approach based on a rate equation
model for the single-atom excitation dynamics. The approach will be described in more detail
elsewhere [6]. Briefly, one can solve, for a single, non-interacting atom, the optical Bloch
equations of the three-level system corresponding to the two-step excitation scheme used in the
experiments [3, 4]. One can further show that the Rydberg excitation dynamics of an atom
can be well described by a simple rate equation for an effective two-level system under the
conditions of these experiments3. We then use a Monte Carlo procedure to model the full
system of interacting atoms, where the van der Waals interaction between the atoms leads to
a—time- and space-dependent—shift of the detuning of each atom from resonance with the
excitation laser and hence to a change in excitation probability. In this way, we can model the
evolution of systems of several thousand atoms, which is clearly beyond the capabilities of
quantum mechanical ab initio approaches [5], within a few minutes of CPU time. Moreover,
as we simulate the full system, we obtain information about spatial correlations as well as,
our focus in the present letter, statistical properties of the Rydberg excitation, which is not
possible with the mean-field approach pioneered in [2].

For our simulations, we use parameters corresponding to those of the experiment [4].
More precisely, we assume a Gaussian ground-state density with peak density ρ0 = 5 ×
109 cm−3 and width σ = 500 µm, and an excitation laser waist of 16 µm FWHM, leading
to an effective excitation volume of 1.8 × 10−4 mm3 containing NA ∼ 900 atoms. The Rabi
frequency of the laser pumping the 5S → 5P transition is kept fixed at �pump = 2π × 4 MHz,
while the intensity of the Rydberg excitation laser is varied in order to achieve the desired
Rydberg atom number 〈Ne〉. The interaction between two Rydberg atoms is calculated using
the simplified two-state model used in [7], leading to a van der Waals-like 1/R6 behaviour at
large distances and a dipole–dipole-like 1/R3 behaviour at short distances. To be concrete,
the level shift � due to the interaction of two Rydberg atoms in nD states is given by
�(R) = 1

2

(
�0 −

√
�2

0 + 4V 2(R)
)
, where V (R) = −µDFµDP/R

3 is the dipole coupling of
the nD–nD asymptote to the energetically nearby (n − 2)F–(n + 2)P3/2 molecular state and
�0 is the energy difference between those two asymptotes. We use the parameters of the
46D–46D ↔ 48P3/2–44F transition (µDP = 1548 au, µDF = 1587 au, �0 = 0.003 au [7]) as
reference and calculate the interaction strength of other principal quantum numbers by applying
appropriate scaling laws (µDPµDF ∼ n4,�0 ∼ n−3). For each set of initial conditions,
200 000 repetitions have been performed in order to have good statistics. The resulting
Rydberg atom counting statistics is shown in figure 1 for the case of negligible interaction,
principal quantum number n = 45, and for a significant amount of interaction, n = 85.
While the distribution is close to a Poissonian in the first case, it is strongly sub-Poissonian

3 In fact, the excitation pulse lengths used in [4] are at the border of the regime of applicability of the rate equation
model since coherences have just enough time to damp out.
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Figure 2. (a) Mandel Q-parameter (1) as a function of principal quantum number of excited
Rydberg state for two different values of 〈Ne〉 = 30 (filled circles) and 〈Ne〉 = 43 (open squares).
Results are shown only up to the principal quantum number where the Rydberg Rabi frequency
�Ryd required to excite the desired number of atoms starts to become comparable to the pump
Rabi frequency �pump, more precisely �2

Ryd = �2
pump/2, where the assumptions underlying our

rate equation treatment start to break down. (b) Q-parameter QD of the measured distribution
(squares) versus that of the true distribution, QA (circles), demonstrating the effect of a finite
detector efficiency η. For comparison, the experimental values of [4] are shown as an inset.

in the latter, in accordance with the experimental findings of [4]. More quantitatively, the
Q-parameter (1) is plotted in figure 2 as a function of principal quantum number n of the
Rydberg state. Since the coefficient of the Rydberg–Rydberg interaction strongly scales with
n, the principal quantum number directly determines the strength of the interatomic interaction.
As can be seen, there is indeed a smooth transition from the non-interacting limit Q � 0
towards the highly sub-Poissonian case where Q → −1. Comparing our figure 2 to figure 3
of [4], there is a very good qualitative agreement between the experimental and the theoretical
results. Quantitative discrepancies between the two may to some extent be attributed to
the fact that the value we use for the strength of the interaction, determined from a two-
state approximation, is probably not very accurate for the nD states used in the experiments.
Changing this interaction strength would correspond to a compression or stretching of the
abscissa in figure 2, explaining the fact that a saturation of Q is observed at smaller quantum
numbers n in the experiment. Moreover, the issue of a finite detection efficiency of the MCP
detector used in the experiment has been raised in [4]. In order to quantify this effect, we
take it into account in our simulations by artificially introducing a detection probability η

for the Rydberg atoms. As can be seen in figure 2(b), doing so modifies the Q-parameter
of the observed distribution quantitatively, leading to smaller Q-values at large interaction
strength. The value of Q obtained under the assumption of a 70% detection efficiency agrees
very well with what is observed in the experiment [4]. Note that the relation between QA, the
Q-parameter of the true distribution, and QD, the Q-parameter of the measured distribution,
is not a trivial scaling QD = ηQA. This is due to the fact that the two curves correspond to
equal measured 〈Ne〉, but different real 〈Ne〉, hence different amount of interaction in the gas.
On the other hand, the scaling relation applies for distributions with the same real 〈Ne〉.

In figure 2, we also compare the behaviour of Q for different Rydberg laser intensities
leading to a different average excitation of 〈Ne〉 = 30 and 〈Ne〉 = 43, respectively. As
discussed above, the value of Q in the interaction-free low-n limit depends on the ratio
〈Ne〉/NA, i.e. on the average number of excited atoms. This different low-n limit of Q in the
two cases is immediately apparent from the figure. In the opposite limit of strong interaction,
the curve corresponding to a larger number of Rydberg atoms seems to flatten out at smaller
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Figure 3. Q-parameter as a function of principal quantum number of excited Rydberg state for two
different excitation pulse profiles (open squares: constant Rydberg Rabi frequency, full circles:
sin2-envelope). For details, see the text.

n and at a higher value of Q, which would be in agreement with the qualitative picture that in
this interaction-dominated regime the number NA/Ne − 1 of ‘blockaded atoms’ per excited
atom, and hence the interaction-induced suppression of excitation, is smaller for larger 〈Ne〉.

As stated in the caption of figure 2, results are shown there only up to the principal quantum
number where �2

Ryd = �2
pump

/
2. At this point, the assumptions underlying the rate equation

treatment start to break down [6]. While this specific cut-off is due to the rate equation model
used in the present simulations we note, however, that the curves shown in figure 2 can in
principle not be continued to arbitrarily high Rydberg principal quantum numbers. This is not
merely an artefact of the numerical treatment, but applies also to the experiment. The reason
is the nonlinear dependence of the effective Rydberg excitation rate on the Rydberg Rabi
frequency in the two-step excitation scheme used in [4]. Contrary to a single-step excitation
such as used, e.g., in [2], increasing �Ryd while keeping all other parameters constant results
in a maximum of the effective excitation rate for a finite �Ryd, beyond which it decreases
again. Consequently, for large interaction strength the corresponding interaction-induced
detuning from resonance cannot be compensated by increasing the Rydberg Rabi frequency
accordingly.

As mentioned above, the pulse lengths of ≈100 ns used in [4] are at the border of the
regime where our rate equation model accurately describes the evolution of the Rydberg
level population for a single, non-interacting atom. However, in a numerical simulation it is
possible to use longer excitation pulses of 2 µs, with the intensity of the Rydberg excitation
laser adjusted so as to yield the same average number of Rydberg atoms. In such a pulse regime,
the rate equation model accurately describes the single-atom dynamics. Within the limit of
validity of our rate equation model, �Ryd � �pump/

√
2 for both pulses, such a stretching of

the pulse does not visibly change the statistical properties of the excitation process, i.e. the
Q-value. Moreover, we have gone further and investigated the influence of the excitation pulse
profile on the statistics. In figure 3, we show the Q-parameter for two different scenarios,
namely constant Rydberg Rabi frequency on the one hand and a sin2-envelope of the Rabi
frequency on the other. As can be seen, both excitation schemes lead to the same statistical
properties of the Rydberg number distribution. Hence, we speculate that the quenching of this
distribution is indeed purely an effect of the interatomic interaction, and probably to a large
extent independent of the precise properties of the excitation process, such as the temporal
profile of the excitation pulse or interatomic coherences.
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Figure 4. Asymmetry of the Rydberg atom number distribution for 〈Ne〉 = 30, parameterized by
the parameter R (equation (2)).

As a final point, we address the possibility of quantifying the counting statistics beyond
the second moment of the distribution entering the Q-parameter. From the physical basis of
the excitation blockade, one would intuitively expect a stronger quenching of the distribution
for Rydberg atom numbers Ne > 〈Ne〉 than for Ne < 〈Ne〉, since the interaction-induced
blockade will inhibit the excitation of a large number of Rydberg atoms but not that of a small
number. Hence, one might expect an asymmetry of the counting statistics beyond the ‘natural’
asymmetry of the Poisson distribution due to the finite value of 〈Ne〉. To quantify this effect,
we define the parameter

R = 〈(Ne − 〈Ne〉)3〉
〈
N2

e

〉 − 〈Ne〉2
(2)

which contains the third moment of the atom number distribution and hence is a measure
for its asymmetry. By construction R = 1 for a Poisson distribution and R = 1 − 2Pe for
non-interacting atoms. In figure 4, it is shown as a function of principal quantum number n.
As expected, R is found to decrease monotonically as the strength of the interaction between
the atoms increases, thereby demonstrating the changing asymmetry of the atom number
distribution. So far, experimental evidence for this change has not been presented. It might in
fact be obtained from the distributions measured in [4]. We note, however, that we found the
third moment of the distribution entering R to fluctuate much more strongly than the variance
entering Q, so that averaging over a significantly larger number of realizations was necessary to
obtain converged results. Hence, the 5000 realizations measured in [4] might not be sufficient
to observe a clear trend.

In summary, we have developed a theoretical description of Rydberg excitation in ultracold
atomic gases which can be easily implemented numerically. Our approach, based on a
rate equation description of the single-atom dynamics and a Monte Carlo treatment of the
interacting system, is particularly well suited for the microscopic simulation of large ensembles
of atoms. We have focused on the properties of the Rydberg atom counting statistics as
measured in [4]. The results of our simulations agree well with the findings of the experiment,
clearly demonstrating the change in the statistics due to the interaction between the atoms.
Taking into account a reasonable estimate for the counting efficiency of the detector used in the
experiment, quantitative agreement with the measured Q-values in the strongly interacting limit
has been obtained. The fact that the transition to a sub-Poissonian distribution takes place at
higher quantum numbers n in the simulation can be attributed to a simplified expression for the
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interaction potential which probably underestimates the strength of the interaction. In addition
to the simulation of the experiment [4], we have investigated the influence of the temporal
profile of the excitation pulse on the Rydberg number statistics. For the case considered (sin2-
envelope of the Rydberg Rabi frequency), we have found the statistics to be independent of
the pulse shape, i.e. entirely determined by the average number of Rydberg atoms in the final
state. Moreover, we have gone beyond the parameterization of the distribution by its width,
measured by Mandel’s Q-parameter, and demonstrated its asymmetry using the parameter R
defined in (2). As might be expected from the physical basis of the excitation blockade, larger
numbers of Rydberg atoms are suppressed more strongly than smaller numbers.
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