"The envelope hamiltonian for electron interaction with ultrashort pulses": Supplemental material.

A. Adiabatic time-dependent perturbation theory

Here, we sketch an adiabatic time-dependent perturbation theory (aTDPT) for $H = H_0(t) + U(x, t)$, split into an unperturbed Hamiltonian

$$H_0(t) = -\frac{1}{2}\nabla^2 + V_0(\mathbf{x}, t), \qquad (1)$$

which is itself parametrically time-dependent and a time-dependent perturbation U(x, t). Let $|\mathbf{j}(t)\rangle$ and $|\mathbf{k}, t\rangle$ be an eigenstate of the Hamiltonian $H_0(t)$ for fixed time t from the discrete and continuos part of the spectrum, respectively

$$H_0(t)|\mathbf{j}(t)\rangle = |\mathbf{j}(t)\rangle\,\varepsilon_{\mathbf{j}}(t) \tag{2a}$$

$$H_0(t)|\mathbf{k},t\rangle = |\mathbf{k},t\rangle \varepsilon_{\mathbf{k}} \quad \text{with} \quad \varepsilon_{\mathbf{k}} = \frac{\mathbf{k}^2}{2}.$$
 (2b)

Together the $|\mathbf{j}(t)\rangle$ and $|\mathbf{k},t\rangle$ form a complete orthonormal basis set

$$\langle \mathbf{j}(t)|\mathbf{j}'(t)\rangle = \delta_{jj'}, \quad \langle \mathbf{j}(t)|\mathbf{k},t\rangle = 0, \quad \langle \mathbf{k},t|\mathbf{k}',t\rangle = (2\pi)^3 \delta(\mathbf{k}-\mathbf{k}'),$$
(3)

which we label in the following for simplicity with greek letters. Consequently $\sum |\beta(t)\rangle\langle\beta(t)| = 1$ holds. Note that the eigenenergies $\varepsilon_{j}(t)$ as well as all basis functions are time-dependent but the continuum energies $\varepsilon_{\mathbf{k}} = \mathbf{k}^{2}/2$ of course not.

We expand the solution $\psi(t)$ of the Schrödinger equation

$$\left[H_0(t) + Q(x,t)\right] |\psi(t)\rangle = 0 \quad \text{with} \quad Q(x,t) \equiv U(x,t) - i\partial/\partial t \tag{4}$$

as

$$\left|\psi(t)\right\rangle = e^{-i\chi(t)} \sum \left|\beta(t)\right\rangle c_{\beta}(t) e^{-itE_{\beta}(t)}, \qquad (5)$$

where $\chi(t)$ is the usual phase freedom which is in our case time-dependent and will be chosen later to obtain a simple form of the differential equations for the coefficients c_{β} . For continuum states $\beta = \mathbf{k}$ we have $E_{\mathbf{k}}(t) \equiv \varepsilon_{\mathbf{k}}$ as usual, but for the bound states $\beta = \mathbf{j}$ the energies for the phase factor are given by $E_{\mathbf{j}}(t) \equiv t^{-1} \int^{t} dt' \varepsilon_{\mathbf{j}}(t')$. If we insert the ansatz (5) into Eq. (4) and project from the left onto $|\beta\rangle$ we obtain

$$i \dot{c}_{\beta}(t) = -c_{\beta}(t) \dot{\chi}(t) + \sum Q^{\beta\beta'}(t) c_{\beta'}(t) e^{-it[E_{\beta'}(t) - E_{\beta}(t)]}, \qquad (6a)$$

where

$$Q^{\beta\beta'}(t) \equiv \langle \beta(t) | Q(x,t) | \beta'(t) \rangle \tag{6b}$$

with Q from Eq. (4).

The coupled Eqs. (6a) provide a full solution to Eq. (4). However, if U(x,t) is only a weak perturbation, we can solve Eq. (4) to a good approximation by a single iteration, where we assume that only first order transitions (linear in U or in Q, respectively) occur. With an initial occupation of a bound state $|b\rangle$ and all other states unoccupied it is

$$c_{\rm b}^{(0)}(t) = 1, \qquad c_{\beta \neq \rm b}^{(0)}(t) = 0,$$
(7)

and we obtain by a single iteration of Eq. (6a)

$$i \dot{c}_{b}^{(1)}(t) = \left[Q^{bb}(t) - \dot{\chi}(t)\right] c_{b}^{(0)}(t) + \sum_{\beta \neq b} Q^{b\beta}(t) c_{\beta}^{(0)}(t) e^{-it[E_{\beta}(t) - E_{b}(t)]}$$
(8a)

$$i \dot{c}_{\beta}^{(1)}(t) = -\dot{\chi}(t) c_{\beta}^{(0)}(t) + Q^{\beta b}(t) c_{b}^{(0)}(t) e^{-it[E_{b}(t) - E_{\beta}(t)]} + \sum_{\beta' \neq b} Q^{\beta\beta'}(t) c_{\beta'}^{(0)}(t) e^{-it[E_{\beta'}(t) - E_{\beta}(t)]} .$$
(8b)

If we choose $\dot{\chi} = Q^{bb}$ we obtain from Eq. (8a) $\dot{c}_{b}^{(1)}(t) = 0$ implying $c_{b}^{(1)}(t) = c_{b}^{(0)}(t) = 1$ and from Eq. (8b) for $\beta \neq b$

$$c_{\beta}^{(1)}(t) = -i \int_{-\infty}^{t} dt' \ Q^{\beta b}(t') e^{-it' [E_{b}(t') - E_{\beta}(t')]}.$$
(9)

The result (9) of this aTDPT agrees formally with that of the standard TDPT except for two (subtle) differences: (i) the basis states entering the matrix element $Q^{\beta\beta'}$, cf. Eq. (6b), are explicitly time-dependent and (ii) so are the energies $E_{\beta}(t)$ for the bound states, e.g., $\beta = b$.

The lowest-order (time-dependent) correction to the bound states is $\mathcal{O}(\alpha_0^2)$, where α_0 is the effective quiver amplitude, see Eq. (12) below. Taking only terms up to order α_0 we get

$$\tilde{c}_{\beta}(t) = -i \int_{-\infty}^{t} dt' \langle \beta | U(x,t') | b \rangle e^{-i(E_{b} - \varepsilon_{\beta})t'},$$
(10)

which coincides with the result of standard time-dependent perturbation theory in textbooks. In general, the population of a state $|\beta(t)\rangle$ at any time t is given in aTDPT by Eq. (9), provided that the system was initially in state $|b\rangle$.

B. Expansion of the envelope hamiltonian in terms of the number of photons exchanged

In the manuscript, we are interested to split the transition operator Q of the envelope Hamiltonian [Eq. (6) of the main manuscript] into contributions according to the number of photons emitted or absorbed. Hence, we write

$$-i \int_{-\infty}^{t} dt' Q^{\beta b}(t') e^{-it'[E_{b}(t') - E_{\beta}(t')]} = \sum_{n=-n_{\max}}^{+n_{\max}} M_{n}(\mathbf{k}, t)$$
(11)

with the $M_n(\mathbf{k}, t)$ given in Eq.(9) of the main manuscript. For the dynamics discussed there, it has been sufficient to include a maximal exchange of $n_{\text{max}} = 2$ photons. This is also the minimal number required to have a consistent limit for very weak pulses $\alpha_0 \ll 1$. Through the relation [Eq. (5) of the main manuscript]

$$\alpha_0 = \frac{F_0}{\omega^2} \frac{1}{1 + 8\ln 2/(T\omega)^2} \tag{12}$$

small α_0 is realized through a short pulse $T \to 0$ or high frequency $\omega \to \infty$.

In this limit the time-dependent Schrödinger equation formulated with the envelope hamiltonian agrees for small effective quiver amplitudes α_0 with the exact dynamics in the Kramers-Henneberger frame. To see this we expand the single-period-averaged potentials $V_n(\mathbf{x}, t)$ to second order in α_0 :

$$V_0(\mathbf{x},t) \approx V(x) + \frac{1}{4} \frac{\partial^2 V}{\partial x^2} \alpha^2(t), \tag{13a}$$

$$V_{\pm 1}(\mathbf{x},t) \approx \frac{\partial V}{\partial x} \alpha(t) \mathrm{e}^{\pm i\delta},$$
 (13b)

$$V_{\pm 2}(\mathbf{x},t) \approx \frac{1}{8} \frac{\partial^2 V}{\partial x^2} \alpha^2(t) \mathrm{e}^{\pm 2i\delta} \,. \tag{13c}$$

With the interactions from Eq.(6) of the main manuscript the full potential without singlecycle averaging is recovered to order α_0^2 :

$$\sum_{n=-2}^{+2} V_n(\mathbf{x},t) e^{-in\omega t} \approx V(\mathbf{x}) + \frac{\partial V}{\partial x} \alpha(t) \cos(\omega t + \delta) + \frac{1}{2} \frac{\partial^2 V}{\partial x^2} \alpha^2(t) \cos(\omega t + \delta)^2$$
$$\approx V(\mathbf{x} + \mathbf{e}_x \alpha(t) \cos(\omega t + \delta)) \,. \tag{14}$$

Since already the non-adiabatic term Eq. (13a) with zero-photon exchange contains the same interaction potential as the term Eq. (13c) with two-photon exchange, it is necessary to have a minimum expansion length of $n_{\text{max}} = 2$ in Eq. (11) to obtain the correct asymptotic limit for small α_0 .

C. Pulse-dependent photo-ionization rates

The adiabatic perturbation theory for parametrically time-dependent perturbations allow one easily to formulate photo-ionization rates (involving true photon absorption) during the laser pulse as photo-ionization rates per optical cycle. To this end we simply define the probability for single-photon ionization (here for clarity in the 1D case as in the main paper) at time t by integrating the single photon transition matrix element $M_n(k,t)$ over energy and a laser period T_{ω} ,

$$P_n(t) = \int \frac{dk}{2\pi} \left| \int_0^{T_\omega} dt' \langle k, t | V_n(x, t) | \mathbf{b}(t) \rangle \mathrm{e}^{\mathrm{i}t'(\mathbf{k}^2/2 - \mathbf{n}\omega - \varepsilon_\beta(t))} \right|^2, \tag{15}$$

where we have fixed all pulse-envelope related time dependencies including that of the bound state energy $\varepsilon_{\rm b}$ as a parameter. Then $E_{\rm b}(t) = \varepsilon_{\rm b}(t)$, since $E_{\rm b}(t') \approx 1/t' \int_0^{t'} dt'' \varepsilon_{\rm b}(t) = \varepsilon_{\rm b}(t)$. The residual time dependence t' in the phase of the integral in Eq. (15) produces a δ -function $2\pi\delta(k^2/2 - n\omega - \varepsilon_{\rm b}(t))$ while the second (complex conjugate) integral gives then trivially T_{ω} . The final result for the single-photon ionization rate is then

$$\Gamma_n(t) = \frac{P_n(t)}{T_{\omega}} = \frac{1}{k} \left(|\langle +k(t)|V_n(x,t)|\mathbf{b}(t)\rangle|^2 + |\langle -k(t)|V_n(x,t)|\mathbf{b}(t)\rangle|^2 \right)$$
(16)

with $k(t) = [2n\omega + 2\varepsilon_{\rm b}(t)]^{1/2}$.