List of Publications
Holger Kantz
March 3, 2022
Articles in journals and peer-reviewed book chapters
[1] H. Kantz and P. Grassberger, Repellers, Semi-Attractors and Long-Lived Chaotic Transients, Physica 17D, 75-86 (1985).

[2] P. Grassberger and H. Kantz, Universal Scaling of Long-Time Tails in Hamiltonian Systems?, Phys. Lett. A 113, 167-171 (1985).

[3] P. Grassberger and H. Kantz, Generating Partitions for the Dissipative Hénon Map, Phys. Lett. A 113, 235-238 (1985).

[4] H. Kantz and P. Grassberger, Chaos in Low Dimensional Hamiltonian Maps,
Phys. Lett. A 123, 437-443 (1987).

[5] H. Kantz and P. Grassberger, Internal Arnold Diffusion and Chaos Thresholds in Coupled Symplectic Maps, J. Phys. A 21, L127-133 (1988).

[6] H. Kantz, Vanishing Stability Thresholds in the Thermodynamic Limit of Nonintegrable Conservative Systems, Physica D 39, 322-335 (1989).

[7] P. Grassberger, H. Kantz, and U. Moenig, On the Symbolic Dynamics of the Hénon Map, J. Phys. A 22 5217-5230 (1989).

[8] P. Grassberger und H. Kantz, On a Forest Fire Model with Supposed Self-Organized Criticallity, J. Stat. Phys. 63, 685-700 (1991).

[9] S. Isola, H. Kantz, and R. Livi, On the Quantization of the Three-Particle Toda Lattice, J. Phys A 24, 3061-3076 (1991).

[10] P. Grassberger, R. Hegger, H. Kantz, C. Schaffrath, and T. Schreiber, On Noise Reduction Methods for Chaotic Data, CHAOS 3, 127-141 (1993),
reprinted in: E. Ott, T. Sauer, and J. A. Yorke, eds., COPING WITH CHAOS, Wiley, New York (1994).

[11] H. Kantz, Noise Reduction by Local Reconstruction of the Dynamics, in Time Series Prediction: Forecasting the Future and Understanding the Past, Eds. A.S. Weigend and N.A. Gershenfeld, SFI Studies in the Science of Complexity, Proc. Vol. XVII, Addison-Wesley, 1993.

[12] H. Kantz, T. Schreiber, I. Hoffmann, T. Buzug, G. Pfister, L.G. Flepp, J. Simonet, R. Badii, and E. Brun, Nonlinear Noise Reduction: A Case Study on Experimental Data, Phys. Rev. E 48, 1529 (1993).

[13] H. Kantz, A Robust Method to Estimate the Maximal Liapunov Exponent of a Time Series, Phys. Lett. A 185, 77-87 (1994).

[14] D. Escande, H. Kantz, R. Livi, and S. Ruffo, Gibbsian Check of the Validity of Gibbsian Calculation Through Dynamical Observables, in: HAMILTONIAN MECHANICS: INTEGRABILITY AND CHAOTIC BEHAVIOUR, J. Seimenis, ed., Plenum, New York, 1994.

[15] D. Escande, H. Kantz, R. Livi, and S. Ruffo, Self-Consistent Check of the Validity of Gibbs Calculus Using Dynamical Variables, J. Stat. Phys. 76, 605-626 (1994).

[16] H. Kantz, R. Livi und S. Ruffo, Equipartition Thresholds in Chains of Anharmonic Oscillators, J. Stat. Phys. 76, 627-643 (1994).

[17] H. Kantz, Quantifying the closeness of fractal measures, Phys. Rev. E 49 5091-5097 (1994).

[18] T. Schreiber and H. Kantz, Noise in Chaotic Data: Diagnosis and treatment, CHAOS 5, 133-142 (1995).
reprinted in: J. Bélair, L. Glass, U. an der Heiden, and J. Milton, eds., DYNAMICAL DISEASE, AIP Press (1995).

[19] H. Kantz and T. Schreiber, Dimension Estimates and Physiological Data, CHAOS 5, 143-154 (1995).
reprinted in: J. Bélair, L. Glass, U. an der Heiden, and J. Milton, eds., DYNAMICAL DISEASE, AIP Press (1995).

[20] P. Poggi, S. Ruffo, and H. Kantz, Shock waves and time scales to reach equipartition in the Fermi-Pasta-Ulam model, Phys. Rev. E 52, 307-315 (1995).

[21] T. Schreiber and H. Kantz, Observing and Predicting chaotic signals: Is 2% noise too much?, in: PREDICTABILITY OF COMPLEX DYNAMICAL SYSTEMS, Y. Kravtsov & J. Kadtke eds., Springer Series in Synergetics No. 69, Springer, New York, 1996.

[22] H. Kantz and T. Schürmann, Enlarged scaling ranges in entropy and dimension estimates, CHAOS 6, 167-171 (1996).

[23] L. Jaeger and H. Kantz, Unbiased reconstruction of the dynamics underlying a noisy chaotic time series, CHAOS 6, 440 (1996).

[24] L. Jaeger and H. Kantz, Homoclinic tangencies and non-normal Jacobians - effects of noise in non-hyperbolic systems, Physica D 105 (1997) 79-96.

[25] L. Jaeger and H. Kantz, Effective deterministic models for chaotic motion perturbed by interactive noise, Phys. Rev. E 55 5234-5247 (1997).

[26] R. Hegger and H. Kantz, Embedding of sequences of time intervals, Europhys. Lett. 38 267-272 (1997).

[27] R. Hegger, H. Kantz, and E. Olbrich, Dimension estimates for intermittent signals, Phys. Rev. E 56 199-203 (1997).

[28] H. Kantz and L. Jaeger, Improved cost functions for modelling noisy chaotic time series, Physica D 109 (1997) 59-69.

[29] H. Kantz and E. Olbrich, Scalar observations from a class of high-dimensional chaotic systems: Limitations of the time delay embedding, CHAOS 7 423-429 (1997).

[30] E. Olbrich and H. Kantz, Inferring chaotic dynamics from time series: On which length scale determinism becomes visible, Phys. Lett. A 232 (1997) 63-69.

[31] L. Jaeger and H. Kantz, The structure of generating paritions for two-dimensional maps, J. Phys. A 30 L567-L576 (1997).

[32] H. Kantz and E. Olbrich, The transition from deterministic chaos to a stochastic process, Physica A 253, 105-117 (1998).

[33] E. Olbrich, R. Hegger and H. Kantz, Analysing local observations of weakly coupled maps, Phys. Lett. A 244, 538-544 (1998).

[34] R. Hegger, H. Kantz, F. Schmüser, M. Diestelhorst, R.P. Kapsch, H. Beige, Dynamical properties of a ferroelectric capacitor observed through nonlinear time series analysis, CHAOS 8, 727-736 (1998).

[35] R. Hegger, M. Bünner, H. Kantz, A. Giaquinta, Identifying and modelling delay feedback systems, Phys. Rev. Lett. 81, 558 (1998).

[36] H. Kantz and T. Schreiber, Human ECG: nonlinear deterministic versus stochastic aspects, IEE Proc. Sci. Measurement Technol. 145, 279 (1998).

[37] M. Bär, R. Hegger, and H. Kantz, Fitting partial differential equations to space-time dynamics, Phys. Rev. E 59, 337 (1999).

[38] R. Hegger, H. Kantz, and T. Schreiber, Practical implementation of nonlinear time series methods: The TISEAN package, CHAOS 9, 413-435 (1999).

[39] M. Diestelhorst, R. Hegger, L. Jaeger, H. Kantz, R.-P. Kapsch, Experimental verification of noise induced attractor deformation, Phys. Rev. Lett. 82, 2274 (1999).

[40] R. Hegger and H. Kantz, Improved false nearest neighbour method to detect determinism in time series data, Phys. Rev. E 60, 4970 (1999).

[41] H. Kantz and T. Letz, Characterization of sensitivity to finite perturbations, Phys. Rev E 61, 2533-2538 (2000).

[42] S. Güttler and H. Kantz, Induction motor failure detection using geometric signal separation, Electric Machines and Power Systems, 28 : (6), 515-536 (2000).

[43] W. Just and H. Kantz, Some considerations on Poincaré maps for chaotic flows, J. Phys. A 33, 163-170 (2000).

[44] E. Olbrich, R. Hegger, H. Kantz, Local estimates for entropy densities in coupled map lattices, Phys. Rev. Lett. 84, 2132 (2000).

[45] F. Schmüser, W. Just and H. Kantz, On the relation between coupled map lattices and kinetic Ising models, Phys. Rev. E. 61 3675 (2000).

[46] H. Kantz and E. Olbrich, Coarse grained dynamical entropies - investigation of high-entropic dynamical systems, Physica A 280, 34-48 (2000).

[47] M.J. Bünner, M. Ciofini, A. Giaquinta, R. Hegger, H. Kantz, R. Meucci and A. Politi, Identification and characterization of systems with delayed feedback: (I) Theory, Eur. Phys. J. D 10 (2000) 165-176.

[48] M.J. Bünner, M. Ciofini, A. Giaquinta, R. Hegger, H. Kantz, R. Meucci and A. Politi, Identification and characterization of systems with delayed feedback: (II) Application, Eur. Phys. J. D 10 (2000) 177-187.

[49] R. Hegger, H. Kantz, and L. Matassini, Denoising human speech signals using chaoslike features, Phys. Rev. Lett. 84, 3197 (2000).

[50] R. Hegger, H. Kantz, L. Matassini, T. Schreiber, Coping with non-stationarity by overembedding, Phys. Rev. Lett. 84, 4092 (2000).

[51] M. Cencini, M. Falcioni, H. Kantz, E. Olbrich and A. Vulpiani Chaos or Noise - Difficulties of a Distinction, Phys. Rev. E 62, 427-437 (2000).

[52] M. Ragwitz and H. Kantz, Detecting nonlinear structure and predicting turbulent gusts in surface wind velocities, Europhys. Lett. 51 595-601 (2000).

[53] R.P. Kapsch, H. Kantz, R. Hegger and M. Diestelhorst, Determination of the Dynamical Properties of Ferroelectrics using Nonlinear Time Series Analysis, Intl. J. Bifurc. Chaos 11 1019-1034 (2001).

[54] L. Matassini, C. Manfredi, R. Hegger, and H. Kantz, Analysis of vocal disorder in feature spaces, Medical Engineering and Physics 22, 413-418 (2000).

[55] S. Güttler and H. Kantz, The auto-synchronized wavelet transform analysis for automatic accoustic quality control, Journal of Sound and Vibration, 243(1), 3-22 (2001).

[56] E.F. Manffra, H. Kantz, W. Just, Periodic orbits and topological entropy of delayed maps, Phys. Rev. E 63 046203 (2001).

[57] H. Kantz, Time series analysis in reconstructed phase spaces, Stochastics and Dynamics 1, 85-111 (2001).

[58] S. Güttler, H. Kantz, E. Olbrich, Reconstruction of the parameter spaces of dynamical systems, Phys. Rev. E 63 056215 (2001).

[59] W. Just, H. Kantz, C. Rödenbeck, M. Helm, Stochastic Modelling: Replacing fast degrees of freedom by stochastic processes, J. Phys. A: Math. Gen. 34, 3199 (2001).

[60] H. Kantz. R. Hegger, L. Matassini, Noise reduction for human voice by local projections in reconstructed phase spaces, IEEE Transactions on Circuits and Systems I, 48, 1454 (2001).

[61] M. Ragwitz and H. Kantz, Indispensible finite time corrections for Fokker-Planck equations from time series data, Phys. Rev. Lett. 87 254501 (2001).

[62] E. Ferretti-Manffra, W. Just, H. Kantz, Invariant densities of delayed maps with large delay, Phys. Rev. E 65 016211 (2002).

[63] H. Kantz, C. Grebogi, A. Prasad, Ying-Cheng Lai, E. Sinde, Unexpected robustness-against-noise of a class of nonhyperbolic chaotic attractors, Phys. Rev. E 65 026209 (2002).

[64] L. Matassini, H. Kantz, J. Holyst, R. Hegger, Optimizing of Recurrence Plots for Noise Reduction, Phys. Rev. E 65 021102 (2002).

[65] M. Ragwitz and H. Kantz, Markov models from data by simple nonlinear time series predictors in delay embedding spaces, Phys. Rev. E 65 056201 (2002).

[66] M. Kleiner, R. Göbel, H. Kantz, C. Klimmek, W. Homberg , Combined methods for the prediction of dynamic instabilities in sheet metal spinning, CIRP Annals 51, 209-214 (2002).

[67] H. Kantz and M. Ragwitz, Phase space reconstruction and nonlinear predictions for stationary and nonstationary Markovian processes, Int. J. Bifurcation and Chaos 14, 1935 (2004).

[68] M. Ragwitz and H. Kantz, Comment on: Indispensable finite time corrections for Fokker-Planck equations from time series data, Reply, Phys. Rev. Lett. 89, 149402-1 (2002).

[69] R. Marschinski and H. Kantz, Analysing the information flow between financial time series - an improved estimator for transfer entropy, European Physical Journal B 30, 275 - 281 (2002).

[70] J.W. Kim and H. Kantz,Effects of random noise on a simple class of growing network models, Phys. Rev. E 68, 026110 (2003).

[71] G. Hernández-Cruz, H. Kantz, T. Letz, M. Ragwitz, E. Ramos, R. Rechtman, Noise induced fluctuations of period lengths of stable periodic orbits, Phys. Rev. E 67 036210 (2003).

[72] W. Just, H. Kantz, M. Ragwitz, F. Schmüser, Nonequilibrium physics meets time series analysis: measuring probability currents from data series, Europhys. Lett. 62 28-34 (2003).

[73] W. Just, K. Gelfert, N. Baba, A. Riegert, and Holger Kantz, Elimination of fast chaotic degrees of freedom: On the accuracy of the Born approximation, J. Stat. Phys. 112, 277-292 (2003).

[74] H. Kantz, Robustness versus sensitivity - can biological systems behave chaotically?, in: NONLINEAR DYNAMICS AND THE SPATIOTEMPORAL PRINCIPLES OF BIOLOGY, F. Beck, M.T. Hütt, U. Lüttge eds., Acta Nova Leopoldina 88, No.332, 245-253 (2003).

[75] E. Ferretti Manffra, H. Kantz, M. Ragwitz, Genetic distance in sequence space of evolving populations, Complexity 8, 51-56 (2003).

[76] M. Wächter, F. Riess, H. Kantz, J. Peinke, Stochastic analysis of surface roughness, Europhys. Lett. 64 579 (2003).

[77] H. Kantz, W. Just, N. Baba, K. Gelfert, A. Riegert, Fast chaos versus white noise - entropy analysis and Fokker Planck model for the slow dynamics, Physica D 187, 200-213 (2004).

[78] Holger Kantz, Detlef Holstein, Mario Ragwitz, Nikolay K. Vitanov, Markov chain model for turbulent wind speed data, Physica A 342 (2004) 315.

[79] M.S. Santhanam and H. Kantz, Random matrix approach to multivariate correlations: Some limiting cases, Phys. Rev. E 69, 056102 (2004).

[80] V. Reitmann and H. Kantz, Frequency domain conditions for the existence of almost periodic solutions in evolutionary variational inequalities, Stochastics and Dynamics 4, 483 - 499 (2004).

[81] L.H. Juárez, H. Kantz, O. Martínez, E. Ramos, R. Rechtman, Complex dynamics in simple systems with periodic parameter oscillations Phys. Rev. E 70, 056202 (2004).

[82] R. B. Govindan and H. Kantz, Long-term correlations and multifractality in surface wind speed, Eurohys. Lett. 68, 184 (2004).

[83] M.S. Santhanam and H. Kantz, Long range correlations and rare events in boundary layer wind fields, Physica A 345, 713-721 (2005).

[84] K. Urbanovicz, H. Kantz, J.A. Holyst, Anti-deterministic behaviour in discrete systems that are less predictable than noise, Physica A 350, 189-198 (2005).

[85] Anja Riegert, Nilüfer Baba, Katrin Gelfert, Wolfram Just, Holger Kantz, Hamiltonian chaos acts like a finite energy reservoir: Accuracy of the Fokker-Planck approximation, Phys. Rev. Lett. 94 054103 (2005).

[86] A.E. Motter, A.P.S. de Moura, C. Grebogi, H. Kantz, Effective dynamics in Hamiltonian systems with mixed phase space, Phys. Rev. E 71, 036215 (2005)

[87] Eduardo G. Altmann, Holger Kantz, Recurrence time analysis, long-term correlations, and extreme events Phys. Rev. E 71, 056106 (2005).

[88] A. Facchini, H. Kantz, E. Tiezzi, Recurrence plot analysis of nonstationary data: the understanding of curved patterns, Phys. Rev. E 72 021915 (2005).
and September 1, 2005 issue of Virtual Journal of Biological Physics Research http://www.vjbio.org

[89] E.G. Altmann, A.E. Motter, H. Kantz Stickiness in mushroom billiards, Chaos 15 (3), 033105 (2005).

[90] N.K. Vitanov, Z.I. Dimitrova, H. Kantz, On the trap of extinction and its elimination, Phys. Lett. A 349, 350-355 (2006).

[91] E.G. Altmann, A.E. Motter, H. Kantz, Stickiness in Hamiltonian systems: From sharply divided to hierarchical phase space, Phys. Rev. E 73, 026207 (2006)

[92] Nilüfer Baba, Wolfram Just, Holger Kantz, Anja Riegert, Accuracy and efficiency of reduced stochastic models for chaotic Hamiltonian systems with time scale separation, Phys. Rev. E 73 066228, 2006.

[93] E.G. Altmann, S. Hallerberg, H. Kantz, Reactions to extreme events: Moving threshold model Physica A 364 435-444, 2006.

[94] H. Kantz, Extreme events in nature - a challenge to the understanding of complex dynamics, Intl. J. Ecodynamics 1, 173-185 (2006).

[95] N.K. Vitanov, K. Tarnev, H. Kantz, Hölder-exponent-based test for long-range correlations in pseudorandom sequences, J. Theo. Appl. Mech. (Sofia) 36, 47-64 (2006).

[96] Sarah Hallerberg, E.G. Altmann, D. Holstein, H. Kantz, Precursors of extreme increments, Phys. Rev. E 75 016706 (2007).

[97] Astrid S. de Wijn and H. Kantz, Vertical chaos and horizontal diffusion in the bouncing-ball billiard, Phys. Rev. E. 75 046214 (2007).

[98] Angelo Facchini and H. Kantz, Curved structures in recurrence plots: The role of the sampling time, Phys. Rev. E 75, 036215 (2007) (DOI: 10.1103/PhysRevE.75.036215).

[99] Eduardo G. Altmann and H. Kantz, Hypothesis of strong chaos and anomalous diffusion in coupled symplectic maps, Europhys. Lett. 78, 10008 (2007).

[100] K. Urbanowicz and H. Kantz, Improvement of speech recognition by nonlinear noise reduction, Chaos 17, 023121 (2007).

[101] Katrin Gelfert and H. Kantz, Dynamical quantities and their numerical analysis by saddle periodic orbits, Physica D 232, 166 (2007).

[102] Anja Riegert, Wolfram Just, Nilüfer Baba, and Holger Kantz, Fast Hamiltonian chaos: Heat bath without thermodynamic limit, Phys. Rev. E 76, 066211 (2007).

[103] Sarah Hallerberg and Holger Kantz, Influence of the event magnitude on the predictability of an extreme event, Phys. Rev. E 77, 011108 (2008). Erratum: Phys. Rev. E 78, 029902(E) (2008).

[104] Markus Niemann, Thomas Laubrich, Eckehard Olbrich, Holger Kantz, Usage of the Mori-Zwanzig method in time series analysis, Phys. Rev. E 77, 011117 (2008).

[105] E.G. Altmann, T. Friedrich, A.E. Motter, H. Kantz, and A. Richter, Prevalence of marginally unstable periodic orbits in chaotic billiards, Phys. Rev. E 77, 016205 (2008).

[106] A. Bahraminasab, F. Ghasemi, A. Stefanovska, P.V.E. McClintock, H. Kantz, Direction of coupling from phases of interacting oscillators: A permutation information approach, Phys. Rev. Lett. 100, 084101 (2008).

[107] S. Hallerberg and H. Kantz, How Does the Quality of a Prediction Depend on the Magnitude of the Events under Study?, Nonlinear Processes in Geophysics 15, 321-331 (2008).
Open access: http://www.nonlin-processes-geophys.net/15/321/2008/

[108] Ekkehard Ullner, Aneta Koseska, Jürgen Kurths, Evgenii Volkov, Holger Kantz, Jordi García-Ojalvo Multistability of synthetic genetic networks with repressive cell-to-cell communication, PRE 78, 031904 (2008).

[109] Markus Niemann and Holger Kantz, Joint probability distributions and multipoint correlations of the continuous-time random walk, PRE 78, 051104 (2008).

[110] M.S. Santhanam and Holger Kantz, Return interval distribution of extreme events and long-term memory, PRE 78 051113 (2008).

[111] D. Helbing, J. Jost and H. Kantz Nonlinear Physics Everywhere: From Molecules to Cities, EPJ-B 63, 283 (2008) (Editorial notes of a special issue).

[112] Anja Garber and Holger Kantz, Finite size effects on the statistics of extreme events in the BTW model, Eur. Phys. J. B 67 437-443 (2009).

[113] Stanislav I. Denisov, Peter Hänggi and Holger Kantz, Parameters of the fractional Fokker-Planck equation, EPL 85, 40007 (2009).

[114] Thomas Laubrich and Holger Kantz, Statistical analysis and stochastic modelling of boundary layer wind speed, EPJ-ST 174 197 (2009).

[115] S.I. Denisov, T.V. Lyutyy, E.S. Denisova, P. Hänggi, H. Kantz, Directed transport in periodically rocked random sawtooth potentials, PRE 79 051102 (2009).

[116] Detlef Holstein and Holger Kantz, Optimal Markov approximations and generalized embeddings, PRE 79, 056202 (2009).

[117] Thomas Laubrich and Holger Kantz, A first order geometric auto regressive process for boundary layer wind speed simulation, EPJ-B 70 575 (2009).

[118] Anja Garber, Sarah Hallerberg, Holger Kantz, Predicting extreme avalanches in self-organized critical sandpiles, Phys. Rev. E 80, 026124 (2009)

[119] F. Lenz, D. Herde, A. Riegert, Holger Kantz, Bivariate time-periodic Fokker-Planck model for freeway traffic, EPJ-B 72 467 (2009).

[120] S. I. Denisov and H. Kantz, Anomalous biased diffusion in a randomly layered medium Phys. Rev. E 81, 021117 (2010).

[121] Nikolay K. Vitanov, Z.I. Dimitrova, H. Kantz, Modified method of simplest equation and its application to nonlinear PDEs, Appl. Math. Comput. 216, 2587-2595 (2010).

[122] S.I. Denisov, H. Kantz, P. Hänggi, Langevin equation with super-heavy-tailed noise J. Phys. A 43 285004 (2010).

[123] Léo Granger, Markus Niemann and Holger Kantz, Crooks' fluctuation theorem for the fluctuating lattice-Boltzmann model, J. Stat. Mechanics P06029 (2010) (doi: 10.1088/1742-5468/2010/06/P06029).

[124] Markus Niemann, Ivan G. Szendro, Holger Kantz, $1/f^\beta$ noise in a model for weak ergodicity breaking, Chem. Phys. 375, 370 (2010).

[125] S.I. Denisov, E.S. Denisova, and H. Kantz, Biased diffusion in a piecewise linear random potential, Eur. Phys. J. B 76, 1-11 (2010).

[126] S.I. Denisov and H. Kantz, Continuous-time random walk theory of superslow diffusion, Europhys. Lett. 92, 30001 (2010).

[127] F. Caruso and H. Kantz, Prediction of extreme events in the OFC model on a small world network, Eur. Phys. J. B 79 7-11 (2011).

[128] J. Bröcker and H. Kantz, The concept of exchangeability in ensemble forecasting, Nonlin. Processes Geophys., 18, 1-5, doi:10.5194/npg-18-1-2011, (2011).

[129] A. Garber, N.R. Moloney, H. Kantz, Hopping over a heat barrier, Phys. Rev. E 83 031134 (2011).

[130] Jochen Bröcker, Stefan Siegert, and Holger Kantz, Comment on “Conditional Exceedance Probabilities” Monthly Weather Review 139, 3322-3324 (2011) doi: 10.1175/2011MWR3658.1.

[131] S.I. Denisov and H. Kantz, Probability distribution function for systems driven by superheavy-tailed noise, Eur. Phys. J. B 80, 167-175 (2011).

[132] S.I. Denisov and H. Kantz, Continuous-time random walk with a superheavy-tailed distribution of waiting times, Phys. Rev. E 83 041132 (2011).

[133] S. Siegert, J. Bröcker, H. Kantz, Predicting outliers in ensemble forecasts, Quarterly Journal of the Royal Meteorological Society 137, 1887-1897 (2011).

[134] L. Granger & H. Kantz, Thermodynamic cost of measurements, Phys. Rev. E 84, 061110 (2011).

[135] S. I. Denisov, S. B. Yuste, Yu. S. Bystrik, H. Kantz, and K. Lindenberg, Asymptotic solutions of decoupled continuous-time random walks with superheavy-tailed waiting time and heavy-tailed jump length distributions Phys. Rev. E 84 061143 (2011).

[136] J. Serra, H. Kantz, X. Serra, R.G. Andrzejak, Predictability of Music Descriptor Time Series and its Application to Cover Song Detection, IEEE Transactions on Audio, Speech, and Language Processing 20, 514-525 (2012).

[137] S. Siegert, J. Bröcker, and H. Kantz, On the predictability of outliers in ensemble forecasts, Adv. Sci. Res., 8, 53-57 (2012), www.adv-sci-res.net/8/53/2012/.

[138] Stefan Siegert, Jochen Bröcker, Holger Kantz, Rank histograms of stratified Monte-Carlo ensembles, Monthly Weather Review, in press (2012).

[139] Alexandra Kruscha, Roland Ketzmerick, and Holger Kantz, Biased diffusion inside regular islands under random symplectic perturbations, Phys. Rev. E 85, 066210 (2012).

[140] Hong-liu Yang, G. Radons, H. Kantz, Covariant Lyapunov Vectors from Reconstructed Dynamics: The Geometry behind True and Spurious Lyapunov Exponents, Phys. Rev. Lett. 109 244101 (2012).

[141] S. I. Denisov, Yu. S. Bystrik, and H. Kantz, Limiting distributions of continuous-time random walks with superheavy-tailed waiting times, Phys. Rev. E. 87 022117 (2013).

[142] N.K. Vitanov, Z.I. Dimitrova, H. Kantz, Application of the method of simplest equation for obtaining exact traveling-wave solutions for the extended Korteweg–de Vries equation and generalized Camassa–Holm equation, Applied Mathematics and Computation 219 (2013) 7480-7492.

[143] Holger Kantz, Günter Radons, and Hongliu Yang, The problem of spurious Lyapunov exponentes in time series analysis and its solution by covariant Lyapunov vectors, J. Phys. A: Math. Theor. 46 254009 (2013).

[144] Markus Niemann, Holger Kantz, and Eli Barkai, Fluctuations of 1/f noise and the low-frequency cutoff paradox, Phys. Rev. Lett. 110 140603 (2013).

[145] Léo Granger and Holger Kantz, Differential Landauer's principle, EPL 101 50004 (2013).

[146] Julia Gundermann, Holger Kantz, and Jochen Bröcker, Crooks' fluctuation theorem for a process on a two dimensional fluid field, Phys. Rev. Lett. 110, 234502 (2013).

[147]Julia Gundermann, Stefan Siegert, and Holger Kantz, Improved predictions of rare events using the Crooks fluctuation theorem, Phys. Rev. E 89, 032112 (2014).

[148] Rene C. Batac and Holger Kantz, Observing spatio-temporal clustering and separation using interevent distributions of regional earthquakes, Nonlin. Processes Geophys., 21, 735-744 (2014).

[149] Aljaž Godec, Aleksei V. Chechkin, Eli Barkai, Holger Kantz, and Ralf Metzler, Localisation and universal fluctuations in ultraslow diffusion processes, J. Phys. A: Math. Theor. 47 (2014) 492002 (10pp).

[150]Colm Mulhern, Stephan Bialonski, and Holger Kantz, Extreme events due to localization of energy, Phys. Rev. E 91, 012918 (2015).

[151] S. Siegert and H. Kantz, Prediction of complex dynamics: who cares about chaos? in: CHAOS DETECTION AND PREDICTABILITY, C. Skokos, G.A. Gottwald, J. Laskar (Eds.), Lecture Notes in Physics Vol 915, 249-269, Springer Berlin Heidelberg, (2016).

[152] Trifce Sandev, Alexander Iomin, and Holger Kantz, Fractional diffusion on a fractal grid comb, Phys. Rev. E 91, 032108 (2015).

[153] M. Höll and H. Kantz, The fluctuation function of the detrended fluctuation analysis - Investigation on the AR(1) process, EPJ-B 88, 126 (2015).

[154] Stephan Siegert, Jochen Bröcker, H. Kantz, Skill of data based predictions versus dynamical models - case study on extreme temperature anomalies in: EXTREME EVENTS: OBSERVATIONS MODELING AND ECONOMICS, Chavez, M., M. Ghil and J. Urrutia Fucugauchi, Eds., AGU Monograph, Washington, DC, in press (2015).

[155]Elizabeth Bradley, Holger Kantz, Nonlinear time-series analysis revisited, CHAOS 25, 097610 (2015).

[156] T. Sandev, A. Chechkin, H. Kantz, R. Metzler. Diffusion and Fokker-Planck-Smoluchowski equations with generalised memory kernel, Fract. Calc. Appl. Anal. 18, 1006 – 1038 (2015).

[157]L. Granger, J. Mehlis, E. Roldan, S. Ciliberto, and H. Kantz, Fluctuation theorem between non-equilibrium states in an $RC$ circuit, New J. Phys. 17 065005 (2015).

[158] Ming Luo, Holger Kantz, Ngar-Cheung Lau, Wenwen Huang, and Yu Zhou, Questionable dynamical evidence for causality between galactic cosmic rays and interannual variation in global temperature, Proc Natl Acad Sci 112(34), E4638-9 (2015).

[159] Trifce Sandev, Aleksei V. Chechkin, Nikolay Korabel, Holger Kantz, Igor Sokolov, and Ralf Metzler, Distributed-order diffusion equations and multifractality: Models and solutions, Phys. Rev. E 92, 042117 (2015).

[160] S. Bialonski, G. Ansmann, H. Kantz, Data-driven prediction and prevention of extreme events in a spatially extended excitable system, Phys. Rev. E 92, 042910 (2015).

[161] Marc Höll & H. Kantz, The relationship between the detrendend fluctuation analysis and the autocorrelation function of a signal, Eur. Phys. J B 88, 327 (2015)

[162] S. Bialonski, D. Caron, J. Schloen, U. Feudel, H. Kantz, and S.D. Moorthi, Phytoplankton dynamics in the Southern California Bight indicate a complex mixture of transport and biology, Journal of Plankton Research, Volume 38, Issue 4, 1 August 2016, Pages 1077–1091.

[163] M. Niemann, E. Barkai, H. Kantz, Renewal theory for a system with internal states, Math. Model. Nat. Phenom. Vol. 11, No. 3, 2016, pp. 191–239

[164] Yu Zhou, Aleksei Chechkin, Igor M. Sokolov and Holger Kantz, A model of return intervals between earthquake events, EPL 114 (2016) 60003.

[165] T. Sandev, A. Iomin, H. Kantz, R. Metzler, A. Chechkin, Comb model with slow and ultraslow diffusion, Math. Model. Nat. Phenom., 11 3 (2016) 18-33.

[166] J. Schwabedal, H. Kantz, Optimal extraction of collective oscillations from unreliable measurements, Phys. Rev. Lett. 116, 104101 (2016).

[167] M. Höll, H. Kantz, Y. Zhou, Detrended fluctuation analysis and the difference between external drifts and intrinsic diffusionlike nonstationarity, Phys. Rev. E 94, 042201 (2016).

[168] S. Siegert, J. Bröcker, H. Kantz, Skill of Data‐based Predictions versus Dynamical Models - A Case Study on Extreme Temperature Anomalies, in: Mario Chavez, Michael Ghil and Jaime Urrutia-Fucugauchi, eds., EXTREME EVENTS: OBSERVATIONS, MODELING, AND ECONOMICS, John Wiley & Sons, Inc, Hoboken, NJ. doi: 10.1002/9781119157052.ch4, Print ISBN: 9781119157014, 35-49

[169] M Massah, H Kantz, Confidence intervals for time averages in the presence of long‐range correlations, a case study on Earth surface temperature anomalies, Geophysical Research Letters, Volume 43, Issue 17 16 September 2016, Pages 9243–9249.

[170] Falk Böttcher & H. Kantz, Die Niederschläge auf dem Fichtelberg, Annalen der Meteorologie 49 (2016) 90-99.

[171] H. Kantz, Rare and Extreme Events, in: REPRODUCIBILITY: PRINCIPLES, PROBLEMS, PRACTICES, AND PROSPECTS, H. Atmanspacher, S. Maasen eds., John Wiley & Sons, 2016, ISBN 1118864972, p.251-268

[172] André Liemert, Trifce Sandev, Holger Kantz Generalized Langevin equation with tempered memory kernel, Physica A, Volume 466, 15 January 2017, Pages 356-369.

[173] Aleksei V. Chechkin, Holger Kantz, and Ralf Metzler, Ageing effects in ultraslow continuous time random walks, Eur. Phys. J. B (2017) 90: 205, DOI: 10.1140/epjb/e2017-80270-9.

[174] T Sandev, A Schulz, H Kantz, A Iomin, Heterogeneous diffusion in comb and fractal grid structures, Chaos, Solitons & Fractals 114, 551-555 (2018).

[175] T Sandev, A Iomin, H Kantz, Anomalous diffusion on a fractal mesh, Phys. Rev. E 95, 052107 (2017).

[176] JM Miotto, H Kantz, EG Altmann, Stochastic dynamics and the predictability of big hits in online videos, Phys. Rev. E 95, 032311 (2017).

[177] Rajat Karnatak, Holger Kantz, and Stephan Bialonski, Early warning signal for interior crises in excitable systems, Phys. Rev. E 96 042211 (2017).

[178]P Meyer, H Kantz, Infinite invariant densities due to intermittency in a nonlinear oscillator, Phys. Rev. E 96, 022217 (2017).

[179] Philipp Meyer, Eli Barkai, and Holger Kantz, Scale-invariant Green-Kubo relation for time-averaged diffusivity, Phys. Rev. E 96, 062122 (2017).

[180] Benedict Lünsmann, and Holger Kantz An extended transfer operator approach to identify separatrices in open flows, Chaos 28, 053101 (2018); doi: 10.1063/1.5001667.

[181] Mozhdeh Massah, Matthew Nicol, and Holger Kantz, Large-deviation probabilities for correlated Gaussian processes and intermittent dynamical systems, Phys. Rev E97, 052147 (2018).

[182] Philipp Meyer, Marc Höll, Holger Kantz, Reproducing Long-Range Correlations in Global Mean Temperatures in Simple Energy Balance Models, Journal of Geophysical Research: Atmospheres, 123, 4413–4422 (2018).

[183] Philipp G Meyer, Vidushi Adlakha, Holger Kantz and Kevin E Bassler, Anomalous diffusion and the Moses effect in an aging deterministic model, New J. Phys. 20 113033 (2018).

[184] Trifce Sandev, Alexander Schulz, Holger Kantz, Alexander Iomin, Heterogeneous diffusion in comb and fractal grid structures, Chaos, Solitons & Fractals 114 551-555 (2018).

[185] J Gajda, A Wyłomańska, H Kantz, AV Chechkin, G. Sikora Large deviations of time-averaged statistics for Gaussian processes, Statistics & Probability Letters 143, 47-55 (2018).

[186] Marc Höll, Ken Kiyono, and Holger Kantz, Theoretical foundation of detrending methods for fluctuation analysis such as detrended fluctuation analysis and detrending moving average Phys. Rev. E 99, 033305 (2019).

[187]Philipp G Meyer and Holger Kantz, Inferring characteristic timescales from the effect of autoregressive dynamics on detrended fluctuation analysis, New Journal of Physics 21 033022 (2019).

[188]Jonathan Brisch and Holger Kantz, Power law error growth in multi-hierarchical chaotic systems - a dynamical mechanism for finite prediction horizon, New J. Phys. 21 (2019) 093002 (doi: 10.1088/1367-2630/ab3b4c).

[189]Philipp G. Meyer & Holger Kantz, A simple decomposition of European temperature variability capturing the variance from days to a decade, Clim Dyn 53, 6909 (2019), https://doi.org/10.1007/s00382-019-04965-0.

[190] Moupriya Das & Holger Kantz, Logical response induced by temperature asymmetry, Phys. Rev. E 100 032108 (2019).

[191] Matteo Valleriani, Florian Kräutli, Maryam Zamani, Alejandro Tejedor, Christoph Sander, Malte Vogl, Sabine Bertram, Gesa Funke, Holger Kantz, The Emergence of Epistemic Communities in the Sphaera Corpus: Mechanisms of Knowledge Evolution, Journal of Historical Network Research 3 50-91 (2019).

[192] Christoph Streißnig and Holger Kantz, Apparent Violations of the second law in two-level systems, Phys. Rev. E 100, 052116 (2019).

[193] Leonardo Rydin Gorjão, Mehrnaz Anvari, Holger Kantz, Christian Beck, Dirk Witthaut, Marc Timme, and Benjamin Schäfer, Data-driven model of the power-grid frequency dynamics, IEEE Access 8 43082-43097 (2020). doi: 10.1109/ACCESS.2020.2967834

[194] Mehrnaz Anvari, Leonardo Rydin Gorjão, Marc Timme, Dirk Witthaut, Benjamin Schäfer, Holger Kantz, Stochastic properties of the frequency dynamics in real and synthetic power grids, Phys. Rev. Research 2, 013339 (2020).

[195] P.G. Meyer, M. Anvari, H. Kantz, Identifying characteristic timescales in power grid frequency fluctuations with DFA, CHAOS 30, 013130 (2020).

[196] Grzegorz Sikora, Marc Höll, Janusz Gajda, Holger Kantz, Aleksei Checkin, Agnieszka Wylomanska, Probabilistic properties of detrended fluctuation analysis for Gaussian processes, Phys. Rev. E 101, 032114 (2020).

[197] Meagan Carney, Holger Kantz, Robust regional clustering and modeling of nonstationary summer temperature extremes across Germany, Advances in Statistical Climatology, Meteorology and Oceanography, Adv. Stat. Clim. Meteorol. Oceanogr. 6, 61–77 (2020) https://doi.org/10.5194/ascmo-6-61-2020

[198] Moupriya Das and Holger Kantz, Stochastic resonance and hysteresis in climate with state dependent fluctuations , Phys. Rev. E 101, 062145 (2020).

[199] Katja Polotzek, Holger Kantz, An ARFIMA-based model for daily precipitation amounts with direct access to fluctuations Stochastic Environmental Research and Risk Assessment 34, 1487-1505 (2020).

[200] Maryam Zamani, Alejandro Tejedor, Malte Vogl, Florian Kräutli, Matteo Valleriani, & Holger Kantz Evolution and Transformation of Scientific Knowledge over the Sphaera Corpus: A Network Study, Scientific Reports 10, 19822 (2020).

[201] M. Carney, H. Kantz, M. Nicol, Analysis and Simulation of Extremes and Rare Events in Complex Systems, in: O. Junge, O. Schütze, G. Froyland, S. Ober-Blbaum, K. Padberg-Gehle eds.: ADVANCES IN DYNAMICS, OPTIMIZATION AND COMPUTATION, Springer (2020), ISBN 978-3-030-51263-7.

[202] Q. Deng, Ph. Meyer, Z. Fu, H. Kantz, Spring onset forecast using harmonic analysis on daily mean temperature in Germany, Environmental Research Letters 15, 104069 (2020).

[203] Benedict Lünsmann & Holger Kantz, On star-convex volumes in 2-D hydrodynamical flows and their relevance for coherent transport, CHAOS 30, 123147 (2020).

[204] Nikolay K. Vitanov, Kaloyan N. Vitanov, Holger Kantz, On the Motion of Substance in a Channel of a Network: Extended Model and New Classes of Probability Distributions, Entropy 22, 1240 (2020).

[205] E. Aghion, P. Meyer, V. Adlakha, H. Kantz, K. Bassler Moses, Noah and Joseph Effects in Lévy Walks, New J. Phys. 23 023002 (2021).

[206] Samudrajit Thapa, Agnieszka Wylomanska, Gregor Sikora, Caroline Wagner,Diego Krapf, Holger Kantz, Alexei Chechkin, Ralf Metzler, Leveraging large-deviation statistics to decipher the stochastic properties of measured trajectories, New J. Phys. 23 013008 (2021)

[207] Christoph Streißnig, Holger Kantz, Work fluctuation theorem for a brownian particle in a non confining potential, Phys. Rev. Research 3, 013115 (2021).

[208] Philipp G. Meyer, Holger Kantz, Yu Zhou, Characterizing variability and predictability for air pollutants with stochastic models, Chaos 31, 033148 (2021).

[209] Moupriya Das and Holger Kantz Role of thermal fluctuations in biological copying mechanisms, Phys. Rev. E 103, 032110 (2021).

[210]Philipp Meyer & Holger Kantz, Time reversal symmetry and the difference between relaxations and building-up periods, Phys. Rev. E 104, 024208 (2021).

[211] Maryam Zamani, Erez Aghion, Peter Pollner, Tamas Vicsek, Holger Kantz, Anomalous diffusion in the citation time series of scientific publications, J. Phys. Complex. 2 035024 (2021).

[212] Xinjia Hu, Jan Eichner, Eberhard Faust, Holger Kantz, Benchmarking prediction skill in binary El Niño forecasts, Clim Dyn (2021). https://doi.org/10.1007/s00382-021-05950-2

[213] Xinjia Hu, Ming Wang, Kai Liu, Daoyi Gong & Holger Kantz, Using Climate Factors to Estimate Flood Economic Loss Risk, International Journal of Disaster Risk Science 12, 731–744 (2021).

[214] Wei Wang, Andrey G. Cherstvy, Holger Kantz, Ralf Metzler, and Igor M. Sokolov, Time averaging and emerging nonergodicity upon resetting of fractional Brownian motion and heterogeneous diffusion processes, Phys. Rev. E 104, 024105 (2021).

[215] Feng Chen, Philipp G. Meyer, Holger Kantz, Tung Fung, Yee Leung, Changlin Mei & Yu Zhou, Trends in auto-correlated temperature series, Theoretical and Applied Climatology 147, 1577 - 1588 (2022).

[216] Imre M. Jánosi, Amin Padash, Jason A.C. Gallas, and Holger Kantz, Passive tracer advection in the equatorial Pacific region: statistics, correlations, and a model of fractional Brownian motion https://doi.org/10.5194/os-2021-94 Ocean Sci. accepted for publication (Feb 2022).

[217] Johannes Kassel & Holger Kantz, Statistical inference of one-dimensional persistent nonlinear time series and application to predictions, accepted by Phys. Rev. E (2022).

Monograph
H. Kantz and T. Schreiber, NONLINEAR TIME SERIES ANALYSIS, Cambridge Nonlinear Science Series No. 7, Cambridge University Press, Cambridge UK, 1997.
Corrected second printing and paperback edition 1999.
third printing 2002.
Second revised edition 2004.



Editor of books and special issues
H. Kantz, J. Kurths and G. Mayer-Kress, editors, NONLINEAR ANALYSIS OF PHYSIOLOGICAL DATA, Proceedings of the workshop on nonlinear techniques in physiological time series analysis, held in Freital near Dresden in October 1995, Springer, Heidelberg 1998.

S. Albeverio, V. Jentsch, H. Kantz, EXTREME EVENTS IN NATURE AND SOCIETY, Springer, Heidelberg 2006.

Norbert Marwan, Angelo Facchini, Marco Thiel, Joseph P. Zbilut and Holger Kantz, 20 Years of Recurrence Plots: Perspectives for a Multi-purpose Tool of Nonlinear Data Analysis, The European Physical Journal Special Topics, Vol. 164 (2008).