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Matrix Product StatesMatrix Product States

Any pure state of a one-dimensional configuration of N d-dimensional 
system can be represented in terms of a matrix product state (MPS):

as long as the dimension D of the matrices can be chosen sufficiently large.

Thus, these states appear to be well suited to describe systems with short 
interactions, since a small dimension D may give a good approximation to 
the real state of the whole system.

MPS were firstly introduced as the ground state of the AKLT model, 
although an alternative derivation has been recently introduced 
independently by Guifré Vidal. This formalism has played a very important 
roll in the Density Matrix Renormalization Group (DMRG) method, providing 
it a coherent theoretical picture which underlies Quantum Information 
concepts.



Spin systems: basic propertiesSpin systems: basic properties

The dimension of the Hilbert space scales exponentially with number of 
spins in the system.

Universal ground state properties:

• The entropy of a block of spins is proportional to the surface of the 
block (holographic principle).

• Correlation functions typically decay with the distance between the 
spins (correlation length).

The N-particle states with these properties form a tiny subspace of the 
exponentially large Hilbert space.



DMRG in briefDMRG in brief

DMRG is a numerical technique for finding accurate approximations of 
the ground state and low-lying excited states of strongly interacting 
quantum lattice systems. Its accuracy, with a modest amount of 
computational effort, is remarkable for 1D systems and it is limited by 
the dimensionality or range of the interaction.

This method is based on the truncation of the Hilbert space used to 
represent the Hamiltonian in a controlled way, keeping the most probable 
eigenstates.

Formulated in terms of MPS, DMRG can be viewed as an iterative method
that for a fixed D determines the matrices whose state      minimizes the 
energy in a variational sense. 



MPS and EntanglementMPS and Entanglement

The physical understanding of quantum many-body systems is hindered 
by the fact that the number of parameters describing the physical states
grows exponentially with the number of particles. Thus, even for a 
relatively small number of particles, most of the problems become 
intractable.

In an MPS we reexpress the 2N coefficients of      in terms of about 2D2·N
parameters

where                           is a natural measure of entanglement. 

Therefore,  this leads to  an efficient description of        if        scales as
because in that case only               parameters are required. 



Matrix Product Density OperatorsMatrix Product Density Operators

After the success of the MPS representation, a similar representation for 
mixed states has been brought forth: the class of matrix product density 
operators (MPDO)

This can be done mathematically using the concept of purification. 
Through this procedure we obtain matrices with the following structure:

where di is the dimension of the reference system.



Characterization of the matricesCharacterization of the matrices

Any state written in the matrix-product formalism is only determined by a 
set of N matrices. Indeed, there is not only one set but an infinite number
of them, leading to the same state.

Therefore, we can choose gauge conditions at each site to fix any 
mathematical freedoms we have. For pure states they are:

This constitutes the normal form for MPS. For mixed states we generalize 
these conditions to:



These conditions are a must for MPDO, because they do converge to the 
MPS normal form in the case that we deal with a pure state and they also 
imply that the matrices that appear in a purification of the state fulfil the 
MPS conditions. But they are not enough to characterize these matrices.

Considering the conditions a density matrix has to obey and that our 
state must have a unique representation, we find that:

our matrices have to be Hermitian.

We would also like to find a condition for M[i] being, moreover, positive 
matrices, as appears when we work with purifications of the state.



PartialPartial--Transpose criterionTranspose criterion

An An easilyeasily computable criterion for entanglement in mixed states was computable criterion for entanglement in mixed states was 
introduced in 1997 by Asher Peres:introduced in 1997 by Asher Peres:

If ρ is separable, then

where the symbol ⊤i stands for the partial transpose 
(PT) of subsystem i.

This comes from the fact that the transposition is a positive, but not 
completely positive, map. A drawback of PT is that, in general, it is not a 
sufficient condition.



Entanglement in MPDOEntanglement in MPDO

As we have just seen, PT is an easily computable criteria for detecting 
entanglement in mixed states. It is considered easy because it consists 
of only two operations: transposition of one “part” of the system and 
diagonalization of the resultant matrix. But certainly, as the size of our 
system grows this becomes a difficult task.

On the other hand, this criterion might be applied to MPDO in an
efficient way. In this representation, we only have to make the following 
change

over all sites affected by the transposition.



If M[i] are positive matrices, we have that automatically ρ is positive, 
but the opposite does not have to be necessarily true. We expect
that the matrices we obtain from our normal form do fulfil this, i.e.

Altogether this would mean that, to apply the PT criterion to an
MPDO, we would only have to check the positivity of the M[i]
affected by the transposition. 

If D is fixed, the cost of this operation for every matrix is fixed and 
for ρ it would only mean a linear growth with the size of the system.



ConclusionsConclusions
This work is still in progress…

Our characterization of the matrices in MPDO is not finished yet. Once 
that is done, it would be desirable and convenient to be able to find 
these matrices from any other set of matrices defining the same state 
we are interested in, as it can be done with MPS.

It remains to be seen if such formulation can lead us to an 
entanglement-detection scheme.
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