Multifractality of self-avoiding walks on percolation clusters


We consider self-avoiding walks (SAWs) on the backbone of percolation clusters in space dimensions d=2, 3, 4. Applying numerical simulations, we show that the whole multifractal spectrum of singularities emerges in exploring the peculiarities of the model. We obtain estimates for the set of critical exponents, that govern scaling laws of higher moments of the distribution of percolation cluster sites visited by SAWs, in a good correspondence with an appropriately summed field-theoretical \varepsilon=6-d-expansion (H.-K. Janssen and O. Stenull, Phys. Rev. E 75, 020801(R) (2007)).

Poster URL: http://au.arxiv.org/abs/0807.3749

Back