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Outline

1. Introduction — chiral particles in graphene, Berry’s
phase T, absence of backscattering, antilocalisation (?)

2. Weak localisation in graphene - trigonal warping and
“hidden” valley symmetry [high density €,T >>1]

3. Weak localisation in bilayer graphene



Electronic dispersion of a monolayer Tight binding model of a monolayer

Saito et al, "Physical Properties of Carbon Nanotubes" ~ Saito et al, "Physical Properties of Garbon Nanotubes®
(Imperial College Press Eondon 1998) (Imperial College Press, London, 1998): Chapter 2.
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Two bands: no energy gap at the K-points




Dirac Hamiltonian of a monolayer
written in a 2 component basis of A and B sites

B to A hopping
given by n* = p, - ip,

H=v¢ ( 2 g+) = ve(op, + o,p,)
~.

< A to B hopping

given by © = p, +ip,
E ~

Two bands: no energy gap at the K-points
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Dirac-like equation

For one K point (e.g. E=+1) we have a 2 component wave function,

o

with the following effective Hamiltonian:

Bloch function amplitudes on
the AB sites (‘pseudospin’)
mimic spin components of

a relativistic Dirac fermion.




Dirac-like equation

0
H=v

7 0

E=vp

p S Ps

Chiral electrons
pseudospin direction
is linked to an axis
determined by
electronic momentum.

for conduction band

electrons,
o-n=1
o-n=-—1

valence band (‘holes’)



Absence of backscattering

O 7Z.+ O e—i¢ e—i¢/2
i _ 5 — — 1

angular scattering probability:

/\ W(Plwlp=0)f =cos’(p/2)

> ¢=0 under pseudospin conservation,
———___ chirality suppresses

backscattering in a monolayer




Absence of backscattering [carbon nanotubes]

Journal of the Physical Society of Japan
Vol. 67, No. 8, August, 1998, pp. 28572862

Berry’s Phase and Absence of Back Scattering
in Carbon Nanotubes

Tsuneya ANDO, Takeshi NAKANISHI,! and Riichiro SAITO?

The absence of back scattering in carbon nanotubes is shown to be ascribed to Berry’s phase
which corresponds to a sign change of the wave function under a spin rotation of a neutrino-like
particle in a two-dimensional graphite. Effects of trigonal warping of the bands appearing in a
higher order k-p approximation are shown to give rise to a small probability of back scattering.



Absence of backscattering [carbon nanotubes]

VOLUME 83, NUMBER 24 PHYSICAL REVIEW LETTERS 13 DECEMBER 1999

age 5098 .
pag Disorder, Pseudospins, and Backscattering in Carbon Nanotubes

Paul L. McEuen. Marc Bockrath, David H. Cobden.* Young-Gui Yoon. and Steven G. Louie
Departiment of Physics, University of California, and Materials Science Division, Lawrence Berkeley National Laboratory,
Berkeley, California 94720
(Received 7 June 1999)

We address the effects of disorder on the conducting properties of metal and semiconducting carbon
nanotubes. Experimentally, the mean free path is found to be much larger in metallic tubes than in
doped semiconducting tubes. We show that this result can be understood theoretically if the disorder
potential is long ranged. The effects of a pseudospin index that describes the internal sublattice structure
of the states lead to a suppression of scattering in metallic tubes, but not in semiconducting tubes. This
conclusion is supported by tight-binding calculations.



Weak localisation in graphene

VOLUME 89, NUMBER 26 PHYSICAL REVIEW LETTERS 23 DECEMBER 2002

article 266603
Crossover from Symplectic to Orthogonal Class in a Two-Dimensional Honeycomb Lattice

Hidekatsu Suzuura® and Tsuneya Ando™

Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8581, Japan
(Received 29 March 2002; published 12 December 2002)

We have calculated the weak-localization correction to the conductivity for disordered electrons in a
two-dimensional honeycomb lattice and shown that it can be either positive or negative depending on
the interaction range of impurity potentials. From symmetry consid ons, the syyplectic class turns
out to be realized at nonzero temperatures and crossover to th ogonal clﬂﬁs predicted with
decreasing temperature.

long-range potential:

short-range potential:
weak anti-localisation gep |

weak localisation



Weak localisation in graphene 2006

Experiment

“Strong suppression of weak localization in graphene”
SV Morozov, KS Novoselov, Ml Katsnelson, F Schedin, LA Ponomarenko, D Jiang, and AK Geim,
Phys Rev Lett. 97, 016801 (2006)

Theory

“Electron Localization Properties in Graphene”
DV Khveshchenko, Phys Rev Lett. 97, 036802 (2006)

“Intervalley scattering, long-range disorder, and effective time reversal symmetry breaking in graphene”
AF Morpurgo and F Guinea, cond-mat/0603789

“Weak localisation magnetoresistance and valley symmetry in graphene”
E McCann, K Kechedzhi, VI Fal'ko, H Suzuura, T Ando, and BL Altshuler, Phys Rev Lett. 97, 146805 (2006)

“Effect of disorder on transport in graphene”
IL Aleiner and KB Efetov, cond-mat/0607200

“Low energy theory of disordered graphene”
A Altland, cond-mat/0607247



Berry phase &
0O « suppressed backscattering

T 0 weak anti-localisation?

Berry phase romantics

role of different types of disorder?
.... of trigonal warping?



Trigonal warping

Journal of the Physical Society of Japan
Vol. 67, No. 8, August, 1998, pp. 28572862

Berry’s Phase and Absence of Back Scattering
in Carbon Nanotubes

Tsuneya ANDO, Takeshi NAKANISHI,! and Riichiro SAITO?

The absence of back scattering in carbon nanotubes is shown to be ascribed to Berry’s phase
which corresponds to a sign change of the wave function under a spin rotation of a neutrino-like

higher order k-p approximation are shown to give rise to a small probability of back scattering.



Trigonal warping

E A
Low energy bands
of graphene
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valley index E=+1,-1 trigonal warping

Z=p, +ip, = pe’
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n"=p,~ip,=pe’



Trigonal warping
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Trigonal warping

Trigonal warping leads to an additional phase
difference between electrons travelling in
opposite directions around closed loop:

5=;[e(13,-)—e(— )

Produces dephasing when

(6%) ~ <Trhj(13)>¢m/h2 ~1

After time # >> 7 there
are t/7T segments of
length [, ~v,7

Trigonal warping relaxation rate:

ot~ o(Tr 2 (p))/n* ~ 2ele* i |



Trigonal warping
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Model of disorder

1 0 0 0
A 01 0 0 symmetry
V(r) = u(r) + breaking
U disorder
0 0 0 1,
charges lying a distance [e.9. due to
from the sheet atomically sharp
(u(Fu(r"))=u 57 —7) defects or edges]

N\

we assume that elastic scattering is
dominated by ‘diagonal’ disorder, rate T,



Usually write 4 by 4 matrix using two sets of Pauli matrices:

valley:

lattice:
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‘Hidden’ valley symmetry

Instead, we introduce two sets of 4 by 4 Hermitian matrices:

0O 0 1 O 0O 0 —-i O 1 0 0 O

0O 0 0 -1 0O 0 0 1 01 0 O
Ax: ’ A = ’ AZ:

I 0 0 O 1i 0 0 0 0 0 -1 O

0O -1 0 O 0 -i 0 O 0O 0 0 -1

01 0 O 0 -i 0 O 1 0 0 O

I 0 0 O i 0 0 O 0O -1 0 O
7 = .Y = .Y =

0 0 0 -1 10 0 0 i 10 0 1 0

0 0 -1 O 0O 0 —-i O 0 0 0 -1

" _ AN
valley ‘pseudospin’ _Az1 ) A12 |=2ie™ 3Al3

lattice ‘1sospin’ DI R Taat)
- - S3

two sets commute [Z g9 A ] ] =0



‘Hidden’ valley symmetry

We introduce two sets of 4 by 4 Hermitian matrices:

A,=T1,®0; A, =01 ®c; A =II_®c,

2 =l ®oc,; X =II.®c,; X =I[®c

valley ‘pseudospin’ _Az1 ’A12 |

lattice ‘isospin’ )
s 28,

<

. Ll
=2ie" A,

— D7 515253
=20

two sets commute [Z g9 A ] ] =0



‘Hidden’ valley symmetry
Why?

A =1, ®c,; A =11 ®c,; A =II ®g,
2 =l ®0c,; X =II.®c,; 2 =I®0.

they all change sign ZyAyAlZyAy =—A,
under time inversion YATY A =—Y
yEEy syt y s

16 possible Hermitian matrices:

6 not time-reversal 10 time-reversal invariant
invariant 2
i LA Z A A,
9 9 9
8 Y < ZxAy’ZyAy’ZZAy’ basis for
Ax , A v AZ non-magnetic,

ZXAZ . ZyAz . ZZAZ static disorder



Model of disorder

V) = Tu(r) + > u, (FZA,
s,l=x,y,z
charges lying
a distance different A/B on- Z A
from the sheet site energies 2" %z
(u(Pu(r)) =ud(F ~7') valley
antisymmetric > A > A
vector potential =~ -~ 7 °
we assume that elastic inter-valley ZxAx , 2 yAx ’ ZzAx ’
scattering is scattering
dominated by ZxAy ’ZyAy ’Zsz

‘diagonal’ disorder,

rate ’CO-1 <usl (F)us'l'(?'» . uszl 5ss' é‘ll' 5(? o ?')



Diagonal disorder - Drude conductivity

under isospin conservation,
chirality suppresses
backscattering in a monolayer

Ty = 27,

Drude conductivity

N /’ N

v v _ (

O ( - _< T density of states diffusion
A

per spin coefficient
in one valley D = %vzftr

current operator is momentum-independent



Diagonal disorder — weak localisation

J
valley component & = K or K N . @ cxx %
R RLSR  RELIS IR
lattice component o. = A or B I: = o+ €
—- A A—A A-—>>LA




Diagonal disorder — weak localisation

group Cooperons into isospin (X) and pseudospin (A)
singlets (0) and triplets (x,y,z):

=1 Y Y Er A fcsisE A
aﬂaﬁfﬂfﬂ

16 diagonal ijcji; [=0,x,y,2;, s=0,x,y,2

modes
e & Ex r &
. o o o ' o'
pseudsospin I, = 0,x,y,z R—R RS> R
= 4+ 1 |C

iIsospin s, = 0,x,y,z




Diagonal disorder — weak localisation

plane waves

in terms of isospin up and down:

0 0
1 0

9. o =] 1 HYS
0 0

T) =

+1

oS O O =

plane waves in opposite directions along a ballistic segment:
W&ﬁwﬁ,—ﬁ ~|‘ T>§‘ \L>g _‘\L>§‘ T>§I —e” T>§‘ T>§ e \L>§‘ \L>§I

[
isospin singlet C; disappear after averaging wrt ¢




Diagonal disorder — weak localisation

4 isospin singlet modes C(l) are gapless Fé =0

- z z I _ 1l 1
8 isospin triplet modes C, and C, haveagapl, =1 =37
4 isospin triplet modes C i have a gap Fj =l
4 by 4 matrlx W|th
Isospin singlets are coupled to triplet modes: Cl C C C
, | the diagonal
(iv 79"+, —iw 7’vq 5 vq, O \ onthe iagona
i 1
24, 3% 0 0K
“Lyg 0 Lzt -
2 y 270
-1
. 0 0 0 oy

[
This coupling gives the correct diffusion operator for the gapless modes CO

with D=1v’7, =v’7,: (D¢’ —iw+T})Cl =1



Diagonal disorder — weak localisation

Relate gapless Cooperons Co to the correction to conductivity

dressing of Hikami boxes leads to a reduction by factor Y2

O\
<D< <k

% ~Ci+Cl+C;-C,

For dlagonal disorder, isospin singlet modes C are all
gapless F = (), leading to weak antilocalisation



Diagonal disorder — weak localisation

What happens to the four gapless modes C é when there is
trigonal warping and symmetry breaking disorder?

% ~Ci+Cl+C;-C,

For dlagonal disorder, isospin singlet modes C are all
gapless F = (), leading to weak antilocalisation



‘Hidden’ valley symmetry

warping term is invariant with respect to valley
transformation A_only I, =T; =0; Iy =Iy #0

leading terms do not contain valley operatofs A, so they remain
invariant with respect to valley transforpfations I, =T =TI =I7 =0

intravalley disorder T A =T, =T;=0; T, =TI, #0

intervalley disorder X A =T)=I;=0; I =I;=%0
YA, =) =T =0; I;=I;=#0



Weak localisation

same valley inter-valley

I
5g C +Cy+CZ

acquire gaps due to / \

trigonal warping and acquires a gap truly
symmetry breaking from gapless
disorder inter-valley mode
scattering

Expect to observe suppressed weak localisation with an increased
amplitude as the degree of inter-valley scattering increases
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%(B=0)~ 2T H

trigonal warping and

3

-
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Weak localisation

same valley inter-valley
| | |
( ) )
T. /T T
21n ¢T " —1n[L+2—fj>
1+ % g
A2y \

/

inter-valley

symmetry breaking disorder scattering
. = =T}

Expect to observe suppressed weak localisation with an increased
amplitude as the degree of inter-valley scattering increases



Weak localisation

same valley inter-valley

| L |
e / \ 3

2 T /T T
%&(B=0)~——2In| ——" |~In| 1+2-2 |}
27°h 1+T¢/ %,
LN T. \

trigonal warping and / inter-valley
symmetry breaking disorder scattering
r. =T =I}

We consider high density €.t >> 1. Logarithmic dependence of
parameters on energy discussed by Igor Aleiner this morning
[IL Aleiner and KB Efetov, cond-mat/0607200]



Bilayer | Bernal (AB) stacking]

per unit cell

4 atoms I = (




Bilayer | Bernal (AB) stacking]

BtoA)and BtoA)y & B A B

givenby H= VT
=P, - Ip}, vt
VT

o >0




Bilayer | Bernal (AB) stacking]

Bilayer
Hamiltonian H




with energy |E| = v,

Quadratic dispersion at low energy:

E. McCann and V.I. Fal’ko

PRL 96, 086805 (2006)

A B A B
Bilayer 0 0 0 vr'\ A
Hamiltonian H=| 0 0 vz 0 | B
O vit 0 71 | A
vt 0 Y1 0 / B




with energy |E| = vy,

Quadratic dispersion at low energy:

E. McCann and V.I. Fal’ko
PRL 96, 086805 (2006)

Bilayer Hamiltonian written in a 2 component basis of A and B sites

= -] ( 0 (ﬁ+)2) _
2 A to B hopping
2m ﬂ:ioﬂ) ® bottom layer A —=» B (factor w)
® switch layers via dimer BA (v+")

man . ® top layer A—> B (factor )
m=1y,/ Vv = '
I'r1 72- — px + lpy




Bilayer graphene
Berry phase 21t quasiparticles

H=—1(02 (’f)z]:—pz[o em’} E=? o ylp)-

2m\ 0 2ml\e* 0

No absence of backscattering

angular scattering probability:

m ‘<W(¢)| W((D = O)>‘2 — cos> (¢)
0

>(p=

S — o suppression of

backscattering in a bilayer




Bilayer - Diagonal disorder - Drude conductivity

under isospin conservation,
no suppression of
backscattering in a bilayer

Ttr = TO

Drude conductivity

current operator is momentum-dependent

density of states diffusion
per spin coefficient

' 2
in one valley D= %V 7,



e

Trigonal warping A B A B
N 0 vym O v'y A
(AtoB)hopping H= fv,t*0 v 0 | B

parameterised 0 vtr 0, ;{
by v, =[3ray./h vt 0 Y 0 B
“e R Y e E. McCann and V.1 Fal’ko
Y3 ﬁ{'g PRL 96, 086805 (2006)
A

oo
Yo%
[l
-

> o
(Yo%
[l
I



Trigonal warpingq - bilayer

2 2 3

e2=| | Vs P cos3@+v; p’
2m m
) A

0<e< %(%‘) by
0<N< 2(1'3)2 Nﬁ«fl()“cm/%

LV
B(% <e<n | <> =

2(1;)2 N* < N < 8N* |

\V &
N = I 4102 em ™
4rhv? -




Berry phase 7
0 7« suppressed backscattering
weak anti-localisation ?

Berry phase romantics

+\2
H. = 1 0 (7[ ) Berry phase 27
= ——

e
2m\ 1? 0 weak localisation ?



higher order expansion
0 n* p 0
7 0 (zH)* 0

\

‘trigonal warping’:
valley symmetry of wave vector K is lower
than the hexagonal symmetry

_1 O (7Z.+)2 O 7[ A
H,=— + +V(r
2 2m 72'2 O 5‘}3 7z_+ O ( )

off-diagonal AE
interlayer hopping

+V (F)

I

> o o o>

oo >

> T




Weak localisation correction

5g1 s CKK'—symm

A

can only be

suppressed
by

decoherence

v

582 - CKK'—symm

+ C

KK'—antisymm

may be
suppressed
by
intervalley
scattering
T, due
to atomically
sharp
scatterers
or edges

+ C

KK'—antisymm

High electron (hole)
E FT >> 1 density and remote

Coulomb scatterers

killed by
trigonal warping
reflecting
the asymmetry

H(-p)#H(p)

in each valley




Weak localisation magnetoresistance E.T>>1

E. McCann, K. Kechedzhi,

_ C C V.I. Falko, H. Suzuura,
@1 . KK'—Symm + KK '_antisymm T. AndO, B.L. AltShﬂler,

PRL 97, 146805 (2006)

R(B)—R(0)

‘slow’ inter-valley scattering:
I @ neither WL nor WAL
magnetoresistance

‘fast’ inter-valley scattering:

B ~ 48 7; < qu usual WL magnetoresistance
’ Dr, cutat B,
58 — C + C K. Kechedzhi, V.I. Falko,
2 KK'—symm KK'—antisymm E. McCann, B.L. Altshuler,

2006



Weak localisation magnetoresistance in graphene

“Strong suppression of weak localization in graphene”
SV Morozov, KS Novoselov, Ml Katsnelson, F Schedin, LA Ponomarenko, D Jiang, and AK Geim,

Phys Rev Lett. 97, 016801 (2006)

op ()

Low-field magnetoresistance is ubiquitous in low-dimensional metallic systems with high resistivity
and well understood as arising due to quantum interference on self-intersecting diffusive trajectories. We
have found that in graphene this weak-localization magnetoresistance is strongly suppressed and, in some
cases, completely absent. The unexpected observation is attributed to mesoscopic corrugations of
graphene sheets which can cause a dephasing effect similar to that of a random magnetic field.

10

op (kQ)

0.2

x10




Weak localisation magnetoresistance in graphene

“Strong suppression of weak localization in graphene”
SV Morozov, KS Novoselov, Ml Katsnelson, F Schedin, LA Ponomarenko, D Jiang, and AK Geim,
Phys Rev Lett. 97, 016801 (2006)

Curve shown for density 72 = 3Xx10"*cm™

and mean free path [ =80nm
0o T, T My estimates for parameters:
o e Fermi energy £, =200meV
S { “ee.._| Scattering time 7, = 0.04 ps
e || % & Perturbative parameter £z7,/h =12
€5 T J ;Hﬂ T Warping time 7, =1ps
- ‘Aﬁ\f U‘ M M Inelastic decoherence 7, = 50 ps
|
4\{‘ & h W \J H{ MJW& T, >>T, >>T,




Weak localisation magnetoresistance in graphene

“Strong suppression of weak localization in graphene”
SV Morozov, KS Novoselov, Ml Katsnelson, F Schedin, LA Ponomarenko, D Jiang, and AK Geim,
Phys Rev Lett. 97, 016801 (2006)

Note added in proofs.—Most recently, to improve the
quality of our graphene samples, we attempted to eliminate
the mesoscopic ripples discussed in this Letter. To this end,
we have changed our microfabrication procedure [1] by
nodiiine Hkcs (1 (he ity (leied Sil) N
(within 1 h). This technological change resulted in samples
with generally higher mobility (of about 15000 cm?/V s)
and no ripples visible in AFM. Moreover, such structures
exhibited the full, unsuppressed WL peak. The experimen-
tal curves look very similar to the one shown in Fig. 3 but
with a much larger negative MR peak so that no additional
fitting parameter is required to explain its amplitude. This
proves that the WL amplitude (but not its sign) is sensitive
to fabrication procedures and further supports the inferred
importance of ripples in the suppression of WL in
graphene.



Summary

Crossovers between
weak localisation/anti-localisation magnetoresistance
in graphene monolayers and bilayers

Trigonal warping suppresses the effect of chirality
[weak antilocalisation in a monolayer]
while intervalley scattering tends to restore
conventional negative magnetoresistance

E. McCann, K. Kechedzhi, V.I. Fal’ko, H. Suzuura, T. Ando, B.L. Altshuler,
Phys Rev Lett. 97, 146805 (2006)

K. Kechedzhi, V.I. Fal’ko, E. McCann, B.L. Altshuler (2006)



