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I. Edge States for Graphene

A

B

Honeycomb lattice, two atoms
per unit cell

Lattice constant: 2.46Å
Nearest neighbor distance: 1.42Å

Simple tight-binding model for pz orbitals:
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t ≈ 2.5-3 eV



A and B sublattice sites in unit cell

• For each k there are eigenvalues at ±|ε| ⇒ particle-hole symmetry
• Fermi energy at ε=0

EF
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Wavefunctions in a magnetic field:

stateoscillatorharmonic=nφ
Energies:

ε

0 Particle-hole
conjugates

kx

With valley and spin indices, each
Landau level is 4-fold degenerate 



• Real samples in experiments are very narrow (.1-1µm) ⇒ edges
can have a major impact on transport

• Can get a full description of QHE within Dirac equation
• Edge structure can be probed directly via STM at very small

length scales.  Nothing comparable is possible in 
standard 2DEG’s (GaAs samples, Si MOSFET’s)

Tight-binding results, armchair edge
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II. Quantum Hall Ferromagnetism and  the Graphene Edge
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Interactions
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• Exchange tends to force electrons into the same level even when
bare splitting between levels is small

• Renormalizes gap to much larger value than expected from
non-interacting theory (even if bare gap is zero!)



This does happen in graphene
(Zhang et al., 2006).

• Plateaus at ν=0?,±1.
• System may be a quantum 

Hall ferromagnet.

cf. Alicea and Fisher, 2006
Nomura and Macdonald, 2006

Fuchs and Lederer, 2006



“Vacuum” state (undoped graphene):

n=0

n=-1
n=-2

n=1
n=2

EF
K,K’

K,K’

Low-lying excitations: 2 (+2) spin (+valley) waves

EF

Spin 
stiffness

⇒ Analogy with Heisenberg ferromagnet.



Consequences for edge states:

4 n=0 states
(Ez=0)

Electron-like
edge state.

Hole-like
edge state.

Spin polarized Spin unpolarized

Include Zeeman
coupling

Domain wall

∆(X0)

−∆(X0)



Description of the domain wall:
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Pseudospin stiffness
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Result of minimizing
energy.  Width of 
domain wall set by

strength of confinement.
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III. Properties of the Domain Wall

1. φ=0: Broken U(1) symmetry ⇒ linearly dispersing collective mode

= +,↑

= -,↓

φ ~ in-plane angle of  “spins”
m ~ position of domain wall



2. Spin-charge coupling ⇒ gapless charged excitations!

X0=kyl2

= weight in w/f

Twist phase once

X0=kyl2

Fermion operator:
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Graphene sheetDomain wall

3. Tunneling from STM
tip: power law IV

⇒ not a Fermi liquid!
Power law exponent a function

of confinement potential

STM tip
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⇒ Exponent sensitive to edge confinement!

tunneling
t

U(1) spin stiffness            Γ ~ confinement potential



Model lead as non-interacting
electrons in a magnetic field

⇒
x

y
Tunneling t 

Lead

4. Tunneling from a bulk lead: possibility of a quantum phase 
transition (into 3D metal).

2
2

)2( t
dl
dt

−−= κ

with

Perturbative
RG:

Shrinking t ⇒ DW a Luttinger liquid
Growing t ⇒ DW + lead = Fermi liquid?



IV. Inter-Landau Level Excitations (Magnetoplasmons)

Low-lying excited states = particle-hole pairs

Standard 2DEG: ql2
q

Hole in filled band

Electron in empty band

• Measurable in cyclotron resonance, inelastic light scattering.
• This picture is largely the same for graphene, just need
to be careful about spinor structure of particle and hole states.

Electron Hole

Two-Body Problem

(ħ=ωc=l=1)

cf. Kallin and
Halperin, 1984



To diagonalize (A= -Byx):
1. Adopt center and relative coordinate R=(r1+r2)/2, r= r1-r2
2. Apply unitary transformation H´0   = U+H0U with

ixYPzpi eeU −×⋅= )ˆ(
rr

with

Wavefunctions constructed from: 

with

= center of mass momentumP
r

z=x+iy



Wavefunctions are 4-vectors |n+,n-> constructed from with energies

Electron Hole

3. Apply unitary transformation to interaction H1:

4. Compute eigenvalues of 

⇒ two-body eigenenergies with fixed P
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Interaction scale: β=(e2/εl)/(ħvF/l ) ≈ (c/vFε)/137 = 0.73

Results:
γ0=4 γ1=4
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Comments:

1. Negative energies because we have not included loss of
exchange self-energy ⇒ many-body approach needed

2.  Landau level mixing relatively small
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Note however for β ≈ 1, LL mixing becomes much more pronounced
⇒ system on cusp between weakly and strongly interacting



Many-Body Particle-Hole Approach

• A generalization of spin-wave calculation

Almost, but
not quite.



Must watch out for degeneracies

n=0

n=-1

n=-2

n=1

n=2

EF

K,K’

1

2

• Excitations characterized
by ∆Sz and ∆τz

Also: Exchange energy with “infinite” number of filled hole levels
leads to (logarithmically) divergent self-energy.  Fix this with an
explicit cutoff in number of filled Landau levels.
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µ

γ=4
↑,↓=spin,  double arrows=pseudospin

(m,n)=(sz,tz)



Energy generically involves four terms:

Noninteracting

Direct   (Ladders)

Exchange  (Bubbles - RPA)

Exchange self-energy



Results: N=0

Comments:
1. Change in kinetic energy and 

Zeeman energy must be added in
2. Gapless excitations for ν=-1,1
3. Excitation spectra identical for 

ν=-1,1: particle-hole symmetry

Two-body result (up to constant)
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Very large many-body
correction!

Dashed lines equivalent to
two-body result.

• Minima/maxima may be visible in inelastic light scattering or
microwave absorption.



Summary

• Graphene: a new and interesting material both for fundamental
and applications reasons.

• Clean system is likely a quantum Hall ferromagnet.
•Armchair edges: oppositely dispersing spin up and down bands

⇒ domain wall
• Domain wall supports gapless collective excitations, and

gapless charged excitations through pseudospin texture.
• Domain wall supports power law IV (Luttinger liquid).
• Domain wall may undergo quantum phase transition when

coupled to a bulk lead.

• Collective inter-Landau level excitations = excitons
• Many-body corrections split and distort dispersions found in 

two-body problem


