

C. Stampfer, A. Jungen, and C. Hierold, Micro and Nanosystems, ETH Zürich **L. Wirtz,** Institute for Electronics, Microelectronics, and Nanotechnology, Lille

Raman on graphene Spectral resolution Spatial resolution

Phonon spectrum of graphite

Ref.: Ludger Wirtz and Angel Rubio, Solid State Communications 131, 141 (2004)

- does the phonon spectrum depend on the number of layers ?

- does the phonon spectrum depend on the number of layers ?

Spatial resolution: AFM

Raman spectra of singleand double layer graphene

Raman mapping: intensity of G-line

two layers have higher G-line intensity, slightly different peak position

Raman mapping: intensity of G-line

Scanning confocal Raman spectroscopy: - Laser excitation of 532 nm/ 2.33 eV - Spot size:

Raman spectra of singleand double layer graphene

Raman mapping: FWHM of the D' line

- Laser excitation of 532 nm/

2.33 eV

- Spot size:

two layers have broader G-line, different peak position

Raman mapping: FWHM of the D' line

Raman: FWHM of D' line

Scanning confocal Raman spectroscopy: - Laser excitation of 532 nm/ 2.33 eV

- Spot size:

two layers have broader G-line, different peak position

D' line for single layer graphene

D' line for double layer graphene

Detecting single layer graphene

What about the D-line?

Raman mapping: intensity of the D line

Double-resonant

close to K, M point, k>0 Momentum restoring: elastic scattering \rightarrow **D**

- 1) Crystallite grain size, symmetry breaking [Tuinstra and Koenig, 1970]
- 2) Defects, disorder in general [Y. Wang et al, 1990]

Raman: Integrated D line intensity

Symmetry breaking and defects

at edges and boundaries,

not within the flake.

Raman mapping: position of D-line

Scanning confocal Raman spectroscopy: - Laser excitation of 532 nm/ 2.33 eV - Spot size:

Raman mapping: intensity of G-line # layers

Raman mapping: relative intensity of G/D'-line

Conclusions

 Raman spectroscopy: an alternative to scanning force microscopy

Eidgenössische Technische Hochschule Züric Swiss Federal Institute of Technology Zurich

- Monolayer sensitivity (single to double layer)
- Defects/symmetry breaking at the edge (not within the flakes)

Raman: Intensity D

D. Graf et al., cond-mat/0607562, submitted Related work: A.C. Ferrari *et al.*, cond-mat/0606284, A. Gupta *et al.*, cond-mat/0606593

Experiment:

Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland

Christoph Stampfer, Alain Jungen, and Christofer Hierold Micro and Nanosystems, ETH Zürich, Switzerland

Theory:

Ludger Wirtz Institute for Electronics, Microelectronics, and Nanotechnology (IEMN), 59652 Villeneuve d'Ascq, France