Intrinsic Superconductivity in graphene ?

Electron-phonon mechanisms (Raman scattering) Pure Coulomb mechanisms

Antonio H. Castro Neto

"Dynamics and Relaxation in Complex Quantum and Classical Systems and Nanostructures" – Max Planck Institute, Dresden, September 2006

Collaborators:

Francisco Guinea (ICMM, Spain) Johan Nilsson (BU, USA) Vitor Pereira (Univ. Porto, Portugal) Nuno Peres (Univ. Minho, Portugal) Bruno Uchoa (BU, USA)

Novoselov et al, Science 306, 666 (2004)

Joao L. dos Santos (Univ. Porto, Portugal)

cond-mat/0608543 cond-mat/0608515 cond-mat/0607343 Phys. Rev. B 73, 245426 (2006) cond-mat/0604106 Phys. Rev. B 73, 241403 (2006) Phys. Rev. B 73, 195411 (2006) Phys. Rev. B 73, 214418 (2006) Phys. Rev. B 73, 125411 (2006) Phys. Rev. Lett. 96, 036801 (2006) Phys. Rev. B 72, 174406 (2005) Annals of Physics 321, 1559 (2006). "The theoretical oriented scientist cannot be envied, because nature, i.e. the experiment, is a relentless and not very friendly judge of his work. In the best case scenario it only says "maybe" to a theory, but never "yes" and in most cases "no". If an experiment agrees with theory it means "perhaps" for the latter. If it does not agree it means "no". Almost any theory will experience a "no" at one point in time — most theories very soon after they have been developed."

— Albert Einstein, Theoretische Bemerkungen zur Supraleitung der Metalle [Einstein, 1922].

A Personal Note

Free non-relativistic electrons in a box

$H = \frac{p^2}{2m}$

Paul Drude

Arnold Sommerfeld

Ignorance is dumped here !

LATTICE

Felix Bloch

INTERACTIONS

Lev Landau

Novoselov et al, Science 306, 666 (2004)

Paul Dirac

What would be the effective theory for superconductivity in graphene ?

$$\begin{split} H_{ef}^{g} &= -t \sum_{\sigma} \sum_{\langle ij \rangle} a_{i\sigma}^{\dagger} b_{j\sigma} + h.c. - \mu \sum_{i\sigma} \left[a_{i\sigma}^{\dagger} a_{i\sigma} + b_{i\sigma}^{\dagger} b_{i\sigma} \right] \\ &+ \frac{g_{0}}{2} \sum_{i\sigma} \left[a_{i\sigma}^{\dagger} a_{i\sigma} a_{i\sigma}^{\dagger} a_{i-\sigma} a_{i-\sigma} + b_{i\sigma}^{\dagger} b_{i\sigma} b_{i-\sigma}^{\dagger} b_{i-\sigma} \right] \\ &+ g_{1} \sum_{\langle ij \rangle} \sum_{\sigma c'} a_{i\sigma}^{\dagger} a_{i\sigma} b_{j\sigma'}^{\dagger} b_{j\sigma'}, \\ \Delta_{1,ij} &= \langle a_{i\downarrow} b_{j\uparrow} - a_{i\uparrow} b_{j\downarrow} \rangle \\ & \mathbf{p}\text{-wipveave} \\ \Psi &= \Psi_{S=0} \otimes \Psi_{L=1} \otimes \Psi_{A-B} \end{split}$$

Dirac Fermion pairing

AHCN, Phys. Rev. Lett. 86, 4382 (2001)B.Uchoa, AHCN, G. Cabrera, Phys.Rev.B 69, 144512 (2004)B.Uchoa, G. Cabrera, AHCN, Phys.Rev.B 71, 184509 (2005)

$$H_D = \sum_{i,\mathbf{k},\sigma} \Psi_{i,\sigma}^{\dagger}(\mathbf{k}) \left[\boldsymbol{v}_F \boldsymbol{k}_{\perp,i} \sigma^z + \boldsymbol{v}_0 \boldsymbol{k}_{\parallel,i} \sigma^x \right] \Psi_{i,\sigma}(\mathbf{k})$$

$$H_P = \sum_{\mathbf{k},a,b} \left[\sigma_{a,b}^{y} \Delta_s \psi_{a,\uparrow}^{\dagger}(\mathbf{k}) \psi_{b,\downarrow}^{\dagger}(-\mathbf{k}) + \text{H.c.} \right]$$

$$\Delta_{s} = -g \sum_{\mathbf{k},a,b} \sigma_{a,b}^{y} \langle \psi_{a,\uparrow}(\mathbf{k}) \psi_{b,\downarrow}(-\mathbf{k}) \rangle$$

$$|\Delta_s(T,g)| = 2T \cosh^{-1} [\cosh[2\pi v_F v_0/(Tg_c)] \times e^{-(2\pi v_F v_0/Tg)}]$$

and
$$g_c = 4\pi^{3/2} \sqrt{v_F v_0} / \Lambda$$
. At $T = 0$ we have
 $|\Delta_s(0,g)| = 4\pi v_F v_0 (1/g_c - 1/g)$,

The quantum theory is critical

Electron-phonon coupling

$$\mathcal{H}_{\mathbf{Q}} \equiv \frac{3\alpha}{2} \sum_{\mathbf{k}} c^{\dagger}_{A\mathbf{K}} c_{B\mathbf{K}'+\mathbf{k}} \left(x_{A\mathbf{Q}} - x_{B\mathbf{Q}} + iy_{A\mathbf{Q}} + iy_{B\mathbf{Q}} \right) + \text{h.c.},$$

$$\mathbf{I}_{\mathbf{K}'+\mathbf{k}} = \mathbf{I}_{\mathbf{K}'+\mathbf{k}} = \mathbf{I}_{\mathbf{K}'+\mathbf{k$$

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, et al., cond-mat/0606284.

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, cond-mat/0606593.

D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, cond-mat/0607562.

The idea: start with the non-interacting problem

And add Coulomb interactions

$$H_{I} = \sum_{ij} V(\mathbf{x}_{i} - \mathbf{x}_{j}) \hat{n}_{f}(\mathbf{x}_{i}) \hat{n}_{f}(\mathbf{x}_{j}) + \sum_{ij} V(\mathbf{R}_{i} - \mathbf{R}_{j}) \hat{n}_{g,i} \hat{n}_{g,j} .$$

$$+ 2 \sum_{ij} V(\mathbf{x}_{i} - \mathbf{R}_{j}) \hat{n}_{f}(\mathbf{x}_{i}) \hat{n}_{g,j} .$$
plane distance d

All interactions are repulsive !

Graphene Effective Interaction (RPA)

$$V_{ef,\mathbf{k}}^{g}(\omega) = \frac{V_{0,\mathbf{k}}}{\epsilon_{T}(\mathbf{k},\omega)} \left[1 - (V_{\mathbf{k}} - V_{d,\mathbf{k}})\chi_{m}^{0}(\mathbf{k},\omega)\right]$$

The interaction can be strongly attractive close to the zeros of the dielectric function

$$\epsilon_T[\mathbf{q}, \Omega_p(q)] = 0$$
 plasmon

where electrons resonate with plasmons !

Fröhlich, H. J. Phys. C 1, 544-548 (1968)

Dielectric function

$$\epsilon_T(\mathbf{k},\omega) = 1 - V_{0,k} \left[\Pi_g^0(\mathbf{k},\omega) + \Pi_m^0(\mathbf{k},\omega) \right] + \left[V_{0,\mathbf{k}}^2 - V_{d,\mathbf{k}}^2 \right] \chi_m^0(\mathbf{k},\omega) \chi_g^0(\mathbf{k},\omega)$$

where

$$V_{d,q} = rac{2\pi e^2}{\epsilon_0 q} \mathrm{e}^{-qd}$$

2D Coulomb interaction

$$\Pi_g^0(q,\omega) = -(2\mu/\pi v_0^2) \left[1 - \omega/\sqrt{\omega^2 - v_0^2 q^2} \right]$$
$$V_{0,q} \Pi_m^0(q,\omega) = \Omega_m^2/\omega^2$$
$$\Omega_m(q) = e\sqrt{2E_F q/\epsilon_0}$$

The screened mode will exist if it is not overdamped by the electronic particle-hole continuum:

$$E_F \ll \frac{\epsilon_0 v_0}{4\alpha_g d} \sim 0.9 \text{ eV}$$

If x is the fraction of electrons per metallic atom that migrates to graphene in the compound, C_mA_n

this condition is equivalent to

$$x \ll 0.12(m/n)$$

Superconductivity is favored for a sufficiently diluted coverage of the metal (large n) !

Carbon Superconductivity

Fullerenes

C₆₀ is an insulator but C₆₀K₃ is a superconductor (18 K) Hebard *et al.*, Nature 352, 223 (1991)

C₆₀buckyball

but C₆₀K₄ is an insulator indicating that superconductivity happens with metal dilution

Intercalated Graphite

Graphite intercalated compounds (GIC) Yb Graphite

Graphite intercalated compounds (GIC) C₆Yb Yb Graphite

Graphite intercalated compounds (GIC)

Fermi surface

Mazin et al., cond-mat/0606404

Graphite intercalated compounds (GIC)

NFEB FS?NoNoYesSC?NoNoYes

Graphite intercalated compounds (GIC)

Conclusions

We showed that superconductivity is possible in graphene using a purely electronic mechanism

A reliable estimation of T_c requires the inclusion of retardation in the interaction (strong coupling theory)

Graphene has has a new superconducting phase with p+ip wave pairing in the singlet channel.