COQUSY06, Dresden

Z₂ Structure of the Quantum Spin Hall Effect

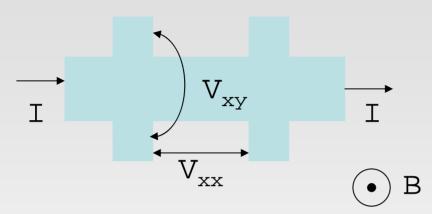
Leon Balents, UCSB Joel Moore, UCB

The David and Lucile Packard Foundation

Summary

- There are robust and distinct topological classes of time-reversal invariant *band insulators* in two and *three* dimensions, when spin-orbit interactions are taken into account.
- The important distinction between these classes has a Z₂ character.
- One physical consequence is the existence of protected *edge/surface states*.
- There are many open questions, including some localization problems

Quantum Hall Effect



2DEG's in GaAs, Si, graphene (!) In large B field.

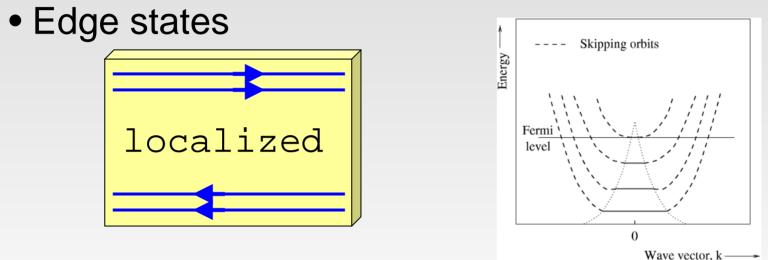
• Low temperature, observe plateaus:

$$\sigma_{xx} = 0 \quad \sigma_{xy} = n \frac{e^2}{h}$$

• QHE (especially integer) is robust

- Hall resistance R_{xy} is quantized even in very messy samples with dirty edges, not so high mobility.

Why is QHE so stable?



- No backscattering:
 - Edge states cannot localize
- Question: why are the edge states there at all?
 - We are *lucky* that for some simple models we can calculate the edge spectrum
 - c.f. FQHE: no simple non-interacting picture.

Topology of IQHE

• TKKN: Kubo formula for Hall conductivity gives integer topological invariant (Chern number):

- w/o time-reversal, bands are generally non-degenerate.

$$n = \sum_{bands} \frac{i}{2\pi} \int d^2k \, \left(\left\langle \frac{\partial u}{\partial k_1} \middle| \frac{\partial u}{\partial k_2} \right\rangle - \left\langle \frac{\partial u}{\partial k_2} \middle| \frac{\partial u}{\partial k_1} \right\rangle \right)$$

- How to understand/interpret this?
 - Adiabatic Berry phase

$$\Phi = \int_{k_0}^{k_1} d\vec{k} \cdot \vec{A}(k) \qquad \vec{A}(k) = i \langle u | \vec{\nabla}_k | u \rangle$$

- Gauge "symmetry" $|u
angle
ightarrow e^{i\chi(k)}|u
angle$

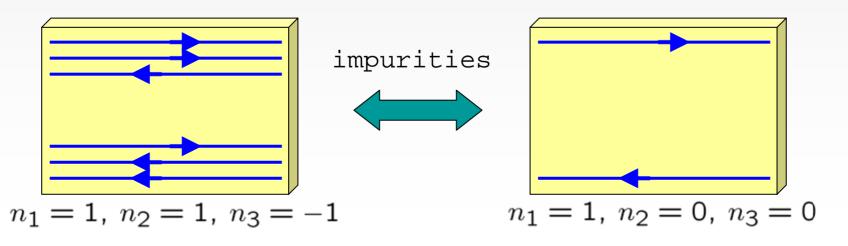
flux
$$\int d^2k \operatorname{curl} \vec{A} = \oint d\vec{k} \cdot \vec{A} = 2\pi n$$

Not zero because phase is multivalued

ΒZ

How many topological classes?

- In ideal band theory, can define one TKKN integer per band
 - Are there really this many different types of insulators? Could be even though only total integer is related to σ_{xv}
- NO! Real insulator has impurities and interactions
 - Useful to consider edge states:



"Semiclassical" Spin Hall Effect

- Idea: "opposite" Hall effects for opposite spins
- In a metal: semiclassical dynamics

$$\mathcal{J}_y^z = \sigma_{yx}^{SH} E_x$$

More generally
$$\mathcal{J}^i_\mu = \sigma^i_{\mu\nu} E_\nu$$

- Spin non-conservation = trouble?
 - no unique definition of spin current
 - boundary effects may be subtle
- It does exist! At least spin accumulation.
 Theory complex: intrinsic/extrinsic...

Quantum Spin Hall Effect

Zhang, Nagaosa, Murakami, Bernevig

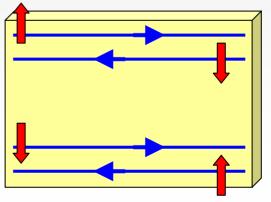
Kane, Mele, 2004

 A naïve view: same as before but in an *insulator* -If spin is conserved, clearly *need* edge states to transport spin current -Since spin is *not* conserved in general, the edge states

are more fundamental than spin Hall effect.

- Better name: Z_2 topological insulator
- Graphene (Kane/Mele)

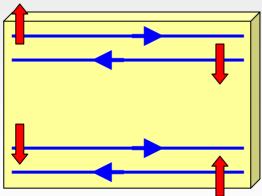
$$H_{0} = -t \sum_{\langle ij \rangle} c_{i\sigma}^{\dagger} c_{j\sigma} + \lambda_{v} \sum_{i} \xi_{i} c_{i\sigma}^{\dagger} c_{i\sigma}$$
$$H' = i\lambda_{SO} \sum_{\langle\langle ij \rangle\rangle} v_{ij} c_{i}^{\dagger} s^{z} c_{j} + i\lambda_{R} \sum_{\langle ij \rangle} c_{i}^{\dagger} (\mathbf{s} \times \hat{\mathbf{d}}_{ij})_{z} c_{j}$$



 $\lambda_{SO} > \lambda_R$

Edge State Stability

- Time-reversal symmetry is sufficient to prevent backscattering!
 - (Kane and Mele, 2004; Xu and Moore, 2006; Wu, Bernevig, and Zhang, 2006)



$$\Gamma: \begin{array}{c} \psi_R \to \psi_L \\ \psi_L \to -\psi_R \end{array}$$

Kramer's pair

More than 1 pair is not protected

- Strong enough interactions and/or impurities
 - Edge states gapped/localized
 - Time-reversal spontaneously broken at edge.

Bulk Topology

- Different starting points:
 - -Conserved S^z model: define "spin Chern number" -Inversion symmetric model: 2-fold degenerate bands -Only T-invariant model
- Chern numbers?
 - Time reversal: $u_{-k}(r,\sigma) = e^{i\chi(k)} \epsilon_{\sigma\sigma'} u_k^*(r,\sigma')$

$$\mathcal{B}_k \equiv (\operatorname{curl} \vec{A})_k = -\mathcal{B}_{-k}$$

Chern number vanishes for each band.

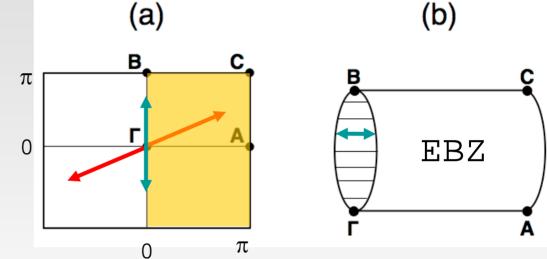
However, there is some Z₂ structure instead

 -Kane+Mele 2005: Pfaffian = zero counting
 -Roy 2005: band-touching picture
 -J.Moore+LB 2006: relation to Chern numbers+3d story

Avoiding T-reversal cancellation

• 2d BZ is a torus

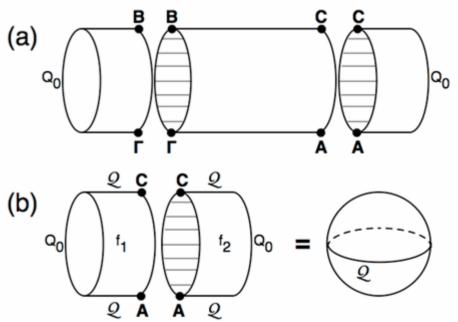
Coordinates along RLV directions:



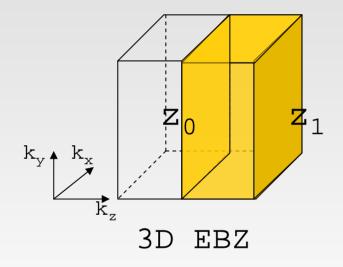
- Bloch states at k + -k are not indepdent
- Independent states of a band found in "Effective BZ" (EBZ)
- Cancellation comes from adding "flux" from EBZ and its T-conjugate
 - Why not just integrate Berry curvature in EBZ?

Closing the EBZ

- Problem: the EBZ is "cylindrical": not closed -No quantization of Berry curvature
- Solution: "contract" the EBZ to a closed sphere (or torus)
- Arbitrary extension of H(k) (or Bloch states) preserving T-identifications -Chern number does depend on this "contraction" -But evenness/oddness of Chern number is preserved!
- Z_2 invariant: $x=(-1)^C$



3D bulk topology



2d "cylindrical" EBZs • 2 Z₂ invariants

Periodic 2-tori like 2d BZ

• 2 Z₂ invariants

• a more symmetric counting:

$$x_0=\pm$$
 1, $x_1=\pm$ 1 etc.

$$x_0 x_1 = y_0 y_1 = z_0 z_1$$

= 4 Z₂ invariants (16 "phases")

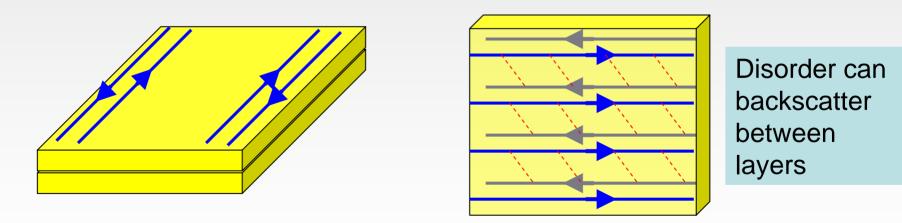
+

Robustness and Phases

• 8 of 16 "phases" are not robust

 $x_0 x_1 = y_0 y_1 = z_0 z_1 = +1$

- Can be realized by stacking 2d QSH systems



• Qualitatively distinct: $x_0x_1 = y_0y_1 = z_0z_1 = -1$

• Fu/Kane/Mele: x₀x₁=+1: "Weak Topological Insulators"

3D topological insulator

• Fu/Kane/Mele model (2006):

diamond lattice

cond-mat/0607699

(Our paper: cond-mat/0607314)

$$H = \sum_{\langle ij \rangle} t_{ij} c_i^{\dagger} c_j + i\lambda \sum_{\langle \langle ij \rangle \rangle} c_i^{\dagger} \vec{\sigma} \cdot (\vec{d_1} \times \vec{d_2}) c_j$$

e.g.
$$t_{i,i+d_1} = (1+\delta)t$$

 $t_{i,i+d_{\mu}} = t$ $\mu = 2, 3, 4$

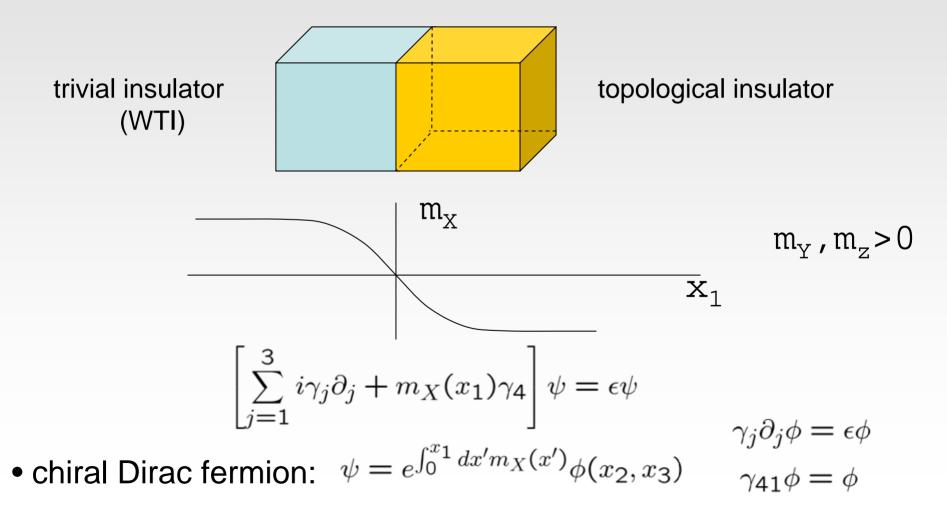
 δ =0: 3 3D Dirac points δ >0: topological insulator δ <0: "WTI"=trivial insulator

• with appropriate sign convention:

 $x_0 x_1 = \operatorname{sign}(m_X m_Y m_Z)$

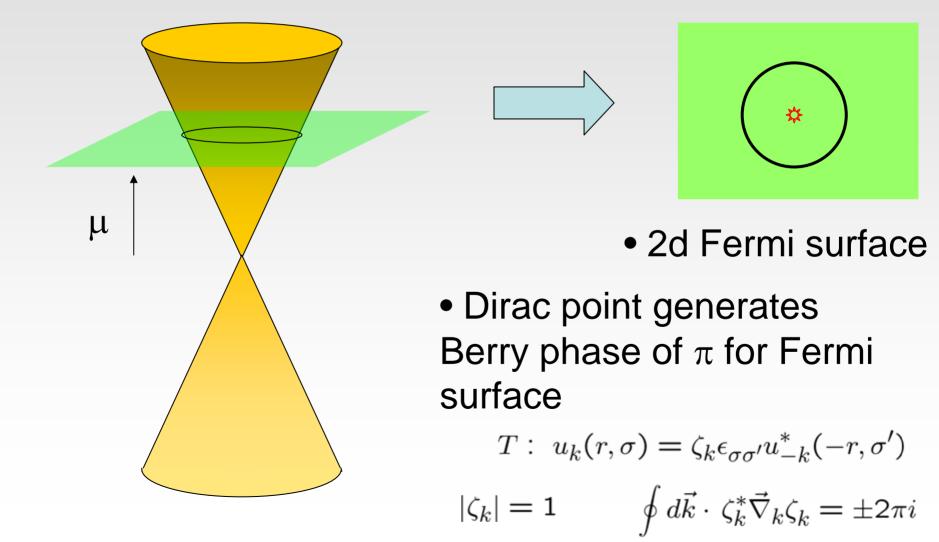
Surface States

• "Domain wall fermions" (c.f. Lattice gauge theory)



"Topological metal"

• The surface *must* be metallic



- What is a material????
 - No "exotic" requirements!
 - Can search amongst insulators with "substantial spin orbit"
 - n.b. even GaAs has 0.34eV=3400K "spin orbit" splitting (split-off band)
 - Understanding of bulk topological structure enables theoretical search by first principles techniques

– Perhaps elemental Bi is "close" to being a topological insulator (actually semi-metal)?

- What is a smoking gun?
 - Surface state could be accidental
 - Photoemission in principle can determine even/odd number of surface Dirac points (ugly)
 - Suggestion (vague): response to nonmagnetic impurities?
 - This is related to localization questions

- Localization transition at surface?
 - Weak disorder. symplectic class \Rightarrow antilocalization
 - Strong disorder: clearly can localize
 - But due to Kramer's structure, this *must* break Treversal: i.e. accompanied by spontaneous surface magnetism
 - Guess: strong non-magnetic impurity creates local moment?
 - Two scenarios:
 - Direct transition from metal to magnetic insulator
 - Universality class? Different from "usual" symplectic transition?
 - Intermediate magnetic metal phase?

- Bulk transition
 - For clean system, *direct* transition from topological to trivial insulator is described by a single massless 3+1-dimensional Dirac fermion
 - Two disorder scenarios
 - Direct transition. Strange insulator-insulator critical point?
 - Intermediate metallic phase. Two metal-insulator transitions. Are they the same?
 - N.B. in 2D QSH, numerical evidence (Nagaosa *et al*) for new universality class

Summary

- There are robust and distinct topological classes of time-reversal invariant *band insulators* in two and *three* dimensions, when spin-orbit interactions are taken into account.
- The important distinction between these classes has a Z₂ character.
- One physical consequence is the existence of protected *edge/surface states*.
- There are many open questions, including some localization problems