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Abstract

Strong resonant dipole-dipole interactions in �exible Rydberg aggregates enable the
formation of excitons, many-body states which collectively share excitation between
atoms. Exciting the most energetic exciton of a linear Rydberg chain whose outer
two atoms on one end are closely spaced causes the initiation of an exciton pulse for
which electronic excitation and diatomic proximity propagates directed through the
chain. The emerging transport of excitation is largely adiabatic and is enabled by the
interplay between atomic motion and dynamical variation of the exciton.

Here, we demonstrate the coherent splitting of such pulses into two modes, which
induce strongly di�erent atomic motion, leading to clear signatures of nonadiabatic
e�ects in atomic density pro�les. The mechanism exploits local nonadiabatic e�ects at
a conical intersection, turning them from a decoherence source into an asset. The con-
ical intersection is a consequence of the exciton pulses moving along a linear Rydberg
chain and approaching an additional linear, perpendicularly aligned Rydberg chain.
The intersection provides a sensitive knob controlling the propagation direction and
coherence properties of exciton pulses.

We demonstrate that this scenario can be exploited as an exciton switch, controlling
direction and coherence properties of the joint pulse on the second of the chains. Ini-
tially, we demonstrate the pulse splitting on planar aggregates with atomic motion
one-dimensionally constrained and employing isotropic interactions. Subsequently,
we con�rm the splitting mechanism for a fully realistic scenario in which all spatial
restrictions are removed and the full anisotropy of the dipole-dipole interactions is
taken into account. Our results enable the experimental observation of non-adiabatic
electronic dynamics and entanglement transport with Rydberg atoms. The conical in-
tersection crossings are clearly evident, both in atomic mean position information and
excited state spectra of the Rydberg system. This suggests �exible Rydberg aggregates
as a test-bench for quantum chemical e�ects in experiments on much in�ated length
scales. The fundamental ideas discussed here have general implications for excitons
on a dynamic network.
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Introduction

At all times humans were seeking for a deeper understanding of nature. Already Greek
philosophers during the classical age had a big debate about the nature of reality, with
two opposing theories. Leucippus and his disciple Democritus proposed that all mat-
ter consists of smallest, indivisible particles — atoms — and established eventually the
natural philosophy of atomism1. In contrast, many intellectuals believed in matter as
being a continuum and hence unendingly divisible. The question about what “[b]inds
the world’s innermost core together”† concerned philosophers and later on physicists
for centuries. It was not before the nineteenth and early twentieth century that theo-
retical models could satisfy empirical data from spectroscopic measurements. In par-
ticular, for a theoretical understanding of observed spectral lines in Hydrogen2,3 and
subsequently other chemical elements, the development of quantum mechanics4,5 was
essential. The atomism of ancient times appeared to be right after all. Consequently,
atomic physics was established with the theoretical calculation of atomic energy spec-
tra and spectroscopicmeasurements. A breakthrough for the further progress of atomic
physics was the development of the laser6 in 1960, following a proposal of Schawlow
and Townes7. It opened the way of high precision spectroscopy8, notably by the de-
velopment of narrow-linewidth tunable lasers9. This, in turn, led to the development
driving laser cooling10–13 of atomic ensembles to the nK regime. Since then, experi-
ments with atoms in the ultracold temperature regime had massive impact on quantum
optics, condensed matter and quantum statistical physics. Particularly worth mention-
ing is the experimental observation of Bose-Einstein condensation14,15 and the renais-
sance of Rydberg atoms16 in the early noughties. Finally, the development of optical
lattices17–22 allowed the realization of condensedmatter many-bodyHamiltonians23–25
with ultracold atoms by spatially ordering and trapping themwith counterpropagating
laser beams. Although already intensively studied in the early days of spectroscopy,
a new era began for highly excited atoms — Rydberg atoms — with the possibility
to cool10–13,26–30, trap17–22,31–33 and coherently excite them, both as mesoscopic en-
sembles34,35 and individually36, within the ultracold temperature regime. Although
Rydberg atoms were intensively studied since the very beginning of atomic physics,
the discovery of the dipole blockade 37–39, which inhibits the excitation of more than
one atom to a Rydberg state within a small volume, drew the attention of many ultra-
cold atom physicists towards them. The dipole blockade is a consequence of extremely
large, long-range interactions, such that Rydberg atoms a�ect each other on distances
of several micrometers. Based on this blockade, there were proposals for quantum in-
formation processing37,39–42, the simulation of spin systems43–46 and quantum optical

† from Goethe’s Faust: The First Part of the Tragedy. Dr. Faust studied his whole life long, anyhow he
is dissatis�ed and expresses that mankind can know nothing. Despite this, he feels the urge to continue
questioning about nature and eventually emphasizes his impulse with the phrase cited above.
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nonlinear e�ects, such as electromagnetically induced transparency (EIT)47–52. The lat-
ter e�ectively leads to a strong photon-photon interaction and remarkably, saturation
of probe �eld transmission with few photons. The strong interactions yield spatially
ordered structures of Rydberg excitations53,54 and other exotic phases of matter in Ry-
dberg dressed ground-state atoms, such as supersolidity55–58. Besides these features
concerning the Rydberg excitation, new forms of matter, particularly bound states of
ground-state and Rydberg atoms forming Rydberg molecules were theoretically pre-
dicted59–62 and experimentally observed63–68.

Although Rydberg atoms mutually perpetrate strong forces, most of the aforemen-
tioned processes can occur on a much smaller time-scale than the initiation of atomic
motion, allowing to consider the atomic ensemble as a frozen Rydberg gas69. The un-
avoidable (thermal) motion of the atoms constitutes then a limiting source of noise and
decoherence70,71. This situation changes by doping the Rydberg gas with an additional
angular momentum excitation, which results in dominant resonant dipole-dipole in-
teractions, in contrast to dominant van-der-Waals (vdW) interactions for non-doped
Rydberg gases. Such doped Rydberg systems are called �exible Rydberg aggregates 72,
where aggregation refers to the formation of excitons, many-body states which collec-
tively share excitation between atoms due to strong resonant interactions, and �exi-
bility refers to the signi�cance of atomic motion for the transfer of excitation. In fact,
spatial migration of the doping occurs on the same time-scale as atomic motion. In
contrast to other systems featuring resonant energy transfer (RET), where spatial mo-
tion of constituents perturbs migration of electronic excitation, the strong interactions
of Rydberg atoms link electronic and spatial degrees of freedom to allow for directed
transport and ultimately generate combined pulses of doping migration and diatomic
proximity, called exciton pulses 72,73. These pulses provide an e�cient way to transfer
entanglement, which is a purely quantummechanical quantity, with high �delity. This
result is remarkable, since the spatial degrees of freedom can be thought of as a bath
to the electronic system, and typically, couplings to a bath are a source of decoherence
and destroy entanglement.

Previous studies of �exible Rydberg aggregates revealed combined transport of elec-
tronic coherence alongwith atomicmechanical momentum in reduced dimensional ge-
ometries72–82, in particular one-dimensional linear72–74,76–82 and ring con�gurations75.
The exciton pulse is initiated by preparing the aggregate in a localized exciton state for
which excitation resides on a single atom-pair by chosing their interatomic distance to
be small compared to all other spatial atomic spacings. Directing the pulse requires to
position the diatomic proximity at one end of an otherwise equidistant linear Rydberg
chain.

Flexible Rydberg aggregates are also useful to study controlled nonadiabatic dynamics,
which allow transitions to other excitons. The rich structure of the dipole-dipole in-
teractions together with the possibility to tune them with the atomic con�guration of
the aggregates allows to engineer conical intersections (CI)s75,83–88, which are genuine
energy surface crossings of two or more electronic states and provide radiationless
transitions allowing for instance isomerization of molecules or the transformation of
excitons. A previous study of a �exible Rydberg trimer with atoms con�ned on a ring
showed nonadiabatic dynamics due to a CI75.



3

Both RET and CI-dynamics are important features of chemical and biological processes.
RET is essential for molecular aggregates89–92, assemblies of molecules with strong
near-�eld interactions between electronic excitations in the individual subunits and
thereby featuring coherent energy transport. Prominent examples of a molecular ag-
gregates in nature are light-harvesting complexes (LHC)s93–95. They are functional
units in photosynthesis with an optimized self-assembled structure to maximally ab-
sorb solar photons in order to subsequently transport photoinduced energy to a certain
reaction center, enabled by resonant dipole-dipole interactions between chlorophylls,
which are important biomolecules. The transport mechanism was �rst described by
Förster96 and is called Förster resonance energy transfer (FRET). Many theoretical and
experimental investigations were and still are carried out with LHCs. Under debate
is the root of high e�ciency of transport, which is remarkably performed at ambient
temperatures. Also the role of quantum e�ects for the transport89–91 is ambiguous. Dis-
tinguishing between quantum and classical transport is challenging for experiments,
since a controlled decoupling of the aggregate from the environment would be neces-
sary or even isolation of aggregate subunits, which is very di�cult.

The role of CIs was under-estimated for a long time, when they were considered to be
rather mathematical artifacts than features with physical impact. During the last two
decades studies revealed that they appearmore frequently than initially thought. More-
over, there is experimental evidence for their signi�cance in chemical and biological
processes. For example, CIs appear as functional junctions in vision, where they pro-
vide ultrafast relaxation and thereby enable photoisomerization of rhodopsin97–101. In
general it is today widely accepted that CIs serve as radiationless decay channel102,103
in organic photochemistry.

Rydberg aggregates di�er in many aspects from molecular aggregates and the usage of
the term aggregation in connection with Rydberg systems is limited to the ability of the
atoms to collectively share excitation due to resonant dipole-dipole interactions. In the
following we discuss the di�erences between both types of aggregates. Molecular ag-
gregates have spatial dimensions⇠ nm. The internal structure of them, even of individ-
ual monomers†, is very complex and they are often embedded in an structured environ-
ment, which stabilizes a particular con�guration of the aggregate and also makes them
resistant against heat. This complexity demands many approximations and e�cient
methods105–111 to theoretically describe them. On the other hand, Rydberg aggregates
show RET on much in�ated length, ⇠ µm, and time scales, ⇠ µs72,73,112, due to the
strong interactions. However, they do not appear naturally and are therefore arti�cial
aggregates which have to be synthetically prepared in an ultracold experimental setup.
The experimental progress in ultracold atomic physics provides highly tunable model
systems regarding the adjustability of interaction strengths, spatial arrangements and
also the degree of coupling with environmental degrees of freedom. This allows the
study of coherent transport without decoherence sources, in contrast to molecular ag-
gregates. However, in�uences from an environment can naturally be added by em-
bedding Rydberg aggregates in a background gas of ground-state atoms113, which is
experimentally automatically realized. The huge spatial dimensions facilitate a direct

† A molecule or a compound of molecules which can undergo polymerization, thereby contributing
constitutional units to the essential structure of a macromolecule104.
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experimental observation of nonadiabatic and exciton dynamics, with several novel ob-
servation techniques, based on optical monitoring113–117, microwave spectroscopy118

and position sensitive �eld ionization119. This indicates their eligibility as quantum
simulators for biological and chemical processes, e.g. to identify key elements of energy
transfer in LHCs. Speci�cally, our aim is to clarify the impact of constituent motion on
excitation transfer in higher-dimensional systems. Exciton pulses in �exible Rydberg
aggregates represent a transport mechanism that essentially relies on atomic motion
for adiabatic transport. The studied aggregates were one-dimensional for which com-
bined pulse propagation could be be theoretically con�rmed. However, the spatial con-
�gurations of molecular aggregates are higher-dimensional and excitation transfer can
be a�ected by sources of nonadiabaticity, for instance CIs. It is a priori unclear how
exciton pulses are a�ected by CIs and if they at all can be sustained after traversing
such an intersection region.

In this thesis we study �exible Rydberg aggregates with higher-dimensional con�gura-
tions to investigate exciton pulses under the in�uence of CIs. We aim for demonstrating
the suitability of �exible Rydberg aggregates as test bench for quantum transport. The
geometry of the aggregates is T-shaped, which is realized by perpendicularly aligning
linear Rydberg chains. The exciton pulse is initiated on one of the two linear Rydberg
chains and hits a CI when approaching the adjacent Rydberg chain. We demonstrate
the coherent splitting of a single exciton mediated by a CI which results in the cre-
ation of a coherent superposition of two states of the excitons. This process is enabled
through strong couplings between spatial and electronic degrees of freedom and ulti-
mately results in entanglement between both. The CI prevents exciton pulse propaga-
tion on the adjacent chain, however, choosing a slightly asymmetric T-shape con�g-
uration allows for redirecting the exciton pulse on the adjacent chain. Moreover, we
demonstrate the control of directionality for pulse propagation on the adjacent chain
by tuning a single internal dimension of the aggregate.

Organization of the thesis

A review of Rydberg atoms is given in Chapter 1, where we �rst recall the Hydrogen
energy levels and quantum states to get an intuition of energy spacings and properties
of the wave function. Furthermore it sets the basic notation, which we use hencefor-
ward. This chapter introduces the essential interactions between alkali Rydberg atoms
— dipole-dipole interactions — and contains formulae for transition matrix elements
describing the resonant swap of a Rydberg p and Rydberg s state of two atoms. We
also discuss the treatment of vdW interactions and compare them to their resonant
counterpart.

In Chapter 2 we introduce the process of RET in both frozen and unfrozen systems. In
frozen systems excitation is transferred via Rabi-Oscillations. However, excitons are
time-independent since they are eigenstates of the electronic Hamiltonian therefore
transport is only possible with localized excited states. In contrast to this, in unfrozen
systems, excitons can be tuned from localizing to delocalizing excitation since the �ex-
ibility of the spatial arrangement varies the interaction between the constituents. This
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opens the way to transport excitationwith excitons, which is called adiabatic transport.
Using the example of a Rydberg trimer, we illustrate this dependency of the excitons on
the spatial con�guration and show that an equilateral triangle con�guration features a
CI. Finally, we motivate the use of T-shape aggregates to study combined exciton pulse
propagation and CI dynamics. The T-shape con�guration arises as a combination of
two perpendicularly aligned linear Rydberg chains, referred to as horizontal and verti-
cal chain, respectively, whereas the exciton pulse is always initiated on the horizontal
chain.

Chapter 3 is dedicated to the investigation of planar �exible Rydberg aggregates and
employs a simple model of interactions, which we assume to be isotropic. The aggre-
gate atoms are all excited to the same Rydberg s state and additionally doped with a
Rydberg p excitation of the same principal quantum numbermanifold, which due to the
interactions is collectively shared between atoms, dependent on the atomic con�gura-
tion. At the beginning we present the theoretical framework, including the treatment
of resonant and o�-resonant interactions, preparation of the initial state and a method
to obtain the quantum dynamics.

To understand how a CI a�ects the excitation transfer, we �rst study aminimal T-shape
aggregate with four atoms, two atoms on each chain. The con�guration is symmetric
with the horizontal dimer centered with respect to the vertical one. In order to investi-
gate whether excitation transfer can be sustained after the exciton pulse traversed the
vicinity of the CI, we then study an extended T-shape aggregate with four atoms on
the vertical and three atoms on the horizontal chain, again with the horizontal chain
centered relative to the vertical one. Finally, we demonstrate how high �delity exciton
pulse propagation can be obtained after redirection on the vertical chain by shifting
the horizontal chain in vertical direction and hence introducing an asymmetry. The
main result is that the pulse propagation direction can be controlled by varying a sin-
gle interatomic distance.

To reduce the experimental challenges in observing these features, in particular the CI
mediated exciton splitting, we remove in Chapter 4 all restrictions and simpli�cations
but keep the setup of transferring a single p excitation. Di�erent to Chapter 3, the
atomic motion is here completely unconstrained and the anisotropy of the interactions
is taken into account. The studied system is a four atom T-shape aggregate, similar to
the planar four atom aggregate. We will demonstrate that if initiated in a low dimen-
sional space, entangled atomic motion in the continuum will remain con�ned to this
space despite the possibility for all particles (ions and electrons) to move in full space
and that the CI retains the function as an exciton splitter. Together with advances in
the newest generation experiments on Rydberg gases beyond the frozen gas regime,
involving microwave spectroscopy118 or position sensitive �eld ionization119, the re-
sults enable quantum simulation of chemical processes in �exible Rydberg aggregates
as an experimental science and render now the rich dynamics of Rydberg aggregates
fully observable120.

In the �nal Chapter 5 we illustrate how dipole-dipole interactions can be modi�ed by
applying an external magnetic �eld. The resonant interactions of the planar aggre-
gates in Chapter 3 are assumed to be isotropic with negative amplitudes. However,
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both these properties can only be easily realized for Rydberg aggregates. In Chapter 5,
we demonstrate how to approximately realize the simple interaction model by apply-
ing an external magnetic �eld. We use block-diagonalization techniques to derive a
formula describing e�ective interactions. Finally we compare isotropic and e�ective
interactions with the complete interaction model, which also takes spin-orbit coupling
into account.

Publications

In the context of this thesis, the following articles have been submitted and published:

• K. Leonhardt, S. Wüster, and J. M. Rost, “Switching Exciton Pulses Through Con-
ical Intersections,” Phys. Rev. Lett. 113, 223001 (2013).

• K. Leonhardt, S.Wüster, and J. M. Rost, “Orthogonal �exible Rydberg aggregates,”
Phys. Rev. A 93, 022708 (2016).

• K. Leonhardt, S. Wüster, and J. M. Rost, “Exciton induced directed motion of
unconstrained atoms in an ultracold gas,” submitted (2016).



1 Rydberg atoms

The name Rydberg is closely connected to the early days of spectroscopy. The swedish
physicist Ångström was able to identify hydrogen by performing a spectral analysis of
sunlight2. The swiss physicist Balmer found a formula3 to compute the wavelengths
of a series of hydrogen spectral lines, matching the experimentally found values of
Ångström. The series describes the transitions of the hydrogen electron from higher
excited states to the �rst excited state. Quantum mechanics in its early days gained a
lot of attention with the successful theoretical explanation of the experimentally found
discrete spectral lines. It was the Bohrmodel 4,5, introduced byNiels Bohr in 1913, which
reduced the classical options for the dynamics of the electron surrounding the proton
by allowing only speci�c orbits, such that the spectrum of orbital energy levels is dis-
crete. It was furthermore postulated that the atom is stable when the electron remains
on an orbit implying that no emission of radiation occurs. The spectral lines are the
result of a quantum jump, a transition of the electron between two orbitals with dif-
ferent energy. Besides Hydrogen, highly excited atoms of other species with a single
valence electron have spectral lines similar to the spectral lines of Hydrogen, when
the formula is readjusted with the individual atomic mass and atomic number. Since
Rydberg was the �rst to observe the spectral lines for Hydrogen, highly excited atoms
are called Rydberg atoms. Their inner structure is thus very similar to Hydrogen and
can be well described by the Bohr or the extended Bohr-Sommerfeld model 121. Since
these old quantum mechanical models do not account for all quantum features with
their quantization scheme, they are semiclassical models and were later corrected by
the new quantummechanics — wave122–125 and matrix126–128 mechanics. Based on this
consideration, Rydberg atoms can be thought of being on the edge between classical
and quantum mechanics. In fact, Rydberg atoms where the orbits are almost circular,
behave virtually as classical objects. Although Rydberg atoms were studied in detail
already one hundred years ago, they underwent a renaissance in the last twenty years,
which is closely connected to the physics of quantum computation and information.
The elementary units performing logical operation on a quantum level, quantum gates,
require highly coherent systems with large interactions between the constituents. This
brought the attention to Rydberg atoms which have both properties, allowing for fast
gate operations40,42. Intimately connected with the large interactions between Ryd-
berg atoms is the dipole-blockade, which inhibits transitions into all but singly excited
states37. Our studies utilize both properties of Rydberg atoms as well but to create en-
tanglement between atomic motion and dynamics of electronic excitation. A detailed
analysis of Rydberg atoms can be found in Ref. 16,42,129,130.

This chapter starts with the Hydrogen problem in Section 1.1, to review the solution
for the energy levels and stationary wave functions for Hydrogen-like atoms and to set
basic notations. Since the Rydberg aggregates are based on lithium atoms, we present
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the treatment of alkali Rydberg atoms in Section 1.2 with the de�nition of dipole matrix
elements and a discussion of how to calculate them. Based on this, Section 1.3 �nally
contains the derivation of the dipole-dipole interaction formula, the evaluation of their
transitionmatrix elements and vdW interactions as a result of couplings to o�-resonant
states.

1.1 Hydrogen

Hydrogen is the most important reference element in Rydberg physics, since its wave
function and spectra can be calculated analytically and a lot of properties only slightly
change for alkali Rydberg atoms. We introduce the vector r, pointing from the core
to the position of the electron and denote with r = |r| the distance between both
charges. The relevant properties of Hydrogen are described through wave functions,
� (r), which depend only on the relative coordinate vector r and are solutions of the
time-independent Schrödinger equation

Ĥ (r)� (r) = E� (r). (1.1)

According to the statistical interpretation of quantum mechanics, the absolute square
value of the wave function is interpreted as spatial probability density. This requires
for bound states where E < 0 the normalization condition

⌅

R3
|� (r) |2 d3r = 1. (1.2)

Due to boundary conditions and the normalization condition in Eq. (1.2), each wave
function of the bound states solutions of Eq. (1.1) is uniquely de�ned by a set of quan-
tum numbers, � = {�1, . . . ,�N}, N � 1. We denote each of these functions with
|�i, which is a so called ket - the function not expanded in a basis. For each ket
|�i, there is a “bra” h� | - the corresponding function from the dual space, such that
h� | · |�i = h� |�i = k�k2. Projecting the ket to an eigenstate of the position operator,
we get the wave function in position representation, �� (r) := hr|�i. Furthermore we
denote for an operator Â with

hÂi�
0

� := h� | Â |�0i , (1.3)

the matrix element for a transition |�i ! |�0i and abbreviate hÂi� := hÂi
�
� for expecta-

tion values. If a position-representation ÂPR for the operator Â exists, the calculation
of the matrix elements can explicitly be perfomed with

hÂi�
0

� =

⌅

R3
�⇤� (r)ÂPR��0 (r)d3r . (1.4)

We continue to denote the operators without speci�cation of the representation, un-
less it is needed. If an operator acts on pure ket or “bra” vectors, the operator is also
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not expanded in a basis. Otherwise, if the operator is followed by a state in a certain
representation, the operator has to be in the same representation.

The wave functions in Eq. (1.1) are eigenstates of the Hamiltonian Ĥ (r), which for
Hydrogen is given by

Ĥ (r) =
1
2µ

✓
�~2�r + r

�2L̂2
◆
+V (r ). (1.5)

The Hamiltonian in Eq. (1.5) is the result of reducing the two-body problem of a pro-
ton and an electron to an e�ective one-body problem, with the reduced mass µ :=
mcme/(mc +me), whereme is the electron mass andmc is the mass of the core, which
is for Hydrogen the proton mass mp. Since the eigenvalues of the Hamiltonian are
the possible total energies, it has to consist of an operator for the kinetic energy, T̂ :=
(2µ )�1p̂2 and a potential V (r ). For Hydrogen the potential is spherically-symmetric
and thus the orbital angular momentum is a conserved quantity. This makes it conve-
nient to use for the squared momentum operator the position-representation identity
p̂2 := �~2�r + r

�2L̂2, where �r is the purely radially dependent part of the Laplace op-
erator and L̂2 the squared orbital angular momentum operator, which is related to the
angularly dependent part of the Laplace operator, �� ,� = �L̂2/(~r )2. Both parts of the
Laplace operator have the speci�c form

�r :=
1
r 2
@

@r

 
r 2
@

@r

!
, (1.6)

�� ,� :=
1

r 2 sin2 �

"
sin�

@

@�

 
sin�

@

@�

!
+
@2

@�2

#
. (1.7)

The angles (� ,�) are the azimuthal and polar angle of the vector r, whose azimuthal
axis is chosen to be the quantization axis, which we denote with qa. Since Hydrogen is
a system of two elementary charges e, the core positive and the electron negative, its
potential is purely coulombic,

V (r ) =
�Ze2
4��0

1
r
, (1.8)

with the atomic number Z = 1, the number of protons in the core. By chosing this
number higher, Hydrogen-like atoms can be described. This is helpful to get rough
analytical approximations for the wave functions of alkali Rydberg states. The product
ansatz of the wave function

� (r) = r�1R (r )Y (� ,�), (1.9)

with a radial part R (r ) and an angular part Y (� ,�) leads to a successful separation
of variables in Eq. (1.1), by choosing for the angular part the spherical harmonics
Y`,m (� ,�), which are eigenstates of L̂2 and L̂z , the z-component of the angular mo-
mentum operator:

L̂2Y`,m (� ,�) = ~2`(` + 1)Y`,m (� ,�), (1.10)
L̂zY`,m (� ,�) = ~mY`,m (� ,�). (1.11)



10 1 Rydberg atoms

r (7m)
0 0.2 0.4 0.6 0.8

jR
8
;`
(r

)j
2

0

2

4

6

8 (a)

r (7m)
0 0.05 0.1 0.15 0.2

jR
8
;`
(r

)j
2

0

10

20

30 (b)

r (7m)
0 0.2 0.4 0.6 0.8

jR
8
;`
(r

)j
2

0

2

4

6

8 (a)

r (7m)
0 0.05 0.1 0.15 0.2

jR
8
;`
(r

)j
2

0

10

20

30 (b)

Figure 1.1: Absolute square of selected Hydrogen radial wave functions with ` = 0 (solid lines)
and ` = 1 (dashed lines) according to Eq. (1.14) for (a) � = 80 and (b) � = 40. The blue lines
mark the mean value hr̂ i�,` .

The two indices of the spherical harmonics are the azimuthal quantum number ` =
0, 1, 2, 3, . . . , which we also denote with s, p, d, f in ascending order, and the magnetic
quantum number m 2 [�`, `] \ Z. Each azimuthal quantum number gives the wave
function a characteristic angular dependency, known as orbital. Themagnetic quantum
number speci�es the orientation of the orbital relativ to the chosen quantization axis.
The ket of each spherical harmonic, |`,mi, has the relationY`,m (� ,�) = her |`,mi, where
er = r/r denotes the unit vector along r in spherical coordinates.

With the product ansatz and the use of spherical harmonics for the angular depen-
dency of the wave function, Eq. (1.1) reduces to the following one-dimensional time-
independent Schrödinger equation:

Ĥrad(r )R (r ) = ER (r ), (1.12)

where the Hamiltonian here is the purely radially dependent part, de�ned by

Ĥrad(r ) :=
�~2
2µ
@2

@r 2
+
~2`(` + 1)

2µr 2
+V (r ). (1.13)

For Hydrogen and Hydrogen-like atoms, with the potential given in Eq. (1.8), Eq. (1.12)
has the following analytical solutions for bound states:

R� ,` (r ) = D� ,` re�Zr/(� ·aB)
 
2Zr
� · aB

!`
L2`+1�+`

 
2Zr
� · aB

!
, (1.14)

E� = �Z 2 µ

me

Ry

�2
⇡ �Z 2

 
1 � me

mc

! Ry

�2
. (1.15)

Both, the radial wave functions and the energy levels are additionally quantized by the
principal quantum number � 2 N+. The bound states in Eq. (1.14) require an addi-
tional limitation by the azimuthal quantum number to ` 2 [0,� � 1] \ Z. The radial
wave functions scale intrinsically with the Bohr radius, aB = 0.529 Å, and contain the
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associated Laguerre polynomials L�
k
(x ) and a normalization constant, given by

D� ,` =

 
Z

aB

!3/2 2
�2(� + `)!

s
(� � ` � 1)!
(� + l )!

. (1.16)

We denote the corresponding ket with |� , `i, with the property R� ,` (r ) = hr |� , `i. In
Fig. 1.1 the absolute square of Hydrogen radial wave functions are shown for highly
excited states. For these Rydberg states the electron is far separated from the nucleus,
which is apparent from the micrometer scaling.

The energy levels in Eq. (1.15) scale with the Rydberg constant, 1 Ry =mee4/(8�20h
2) ⇡

13.606 eV and are not dependent on the quantum numbers (`,m). If an atom is excited
to a state with large principal quantum number, it is called a Rydberg atom. For them,
the relative spacing between neighbouring states is �E/E� ⇡ 2��1.

1.1.1 Spin-orbit coupling

The treatment of the Hydrogen problem is not complete so far, since relativistic e�ects
(RE) were not taken into account. A relativistic treatment results in the so called
spin-orbit coupling, which couples the orbital angular momentum, already introduced
and the spin of the electron. The spin is an additional property of the electron, which
can be described by an operator, which we denote with Ŝ. This operator ful�lls all
conditions to be an angular momentum operator with azimuthal quantum number s =
1/2 and magnetic quantum number mS 2 {�1/2, 1/2}. However, in contrast to the
orbital angular momentum, the spin has no classical analog and thus has to be treated
as an additonal independent quantity. We abbreviate the ket of the spin-eigenstates
with |msi := |s = 1/2,msi. A complete description of a quantum system including spin
is given by

|�(r)i =
X

ms=±1/2
�ms (r) |msi , (1.17)

which is called a spinor, a two-component entity. The functions �ms (r) describe the
system conditioned to be in the speci�c spin-eigenstate.

The spin-orbit coupling leads to an additional contribution to the Hamiltonian, given
by

Ĥso(r ) = Vso(r ) L̂ · Ŝ, (1.18)

with the potential

Vso(r ) =
1

2µ2c2
1
r

dV (r )

dr
, (1.19)

where V (r ) is the non-relativistic potential, used in (1.12). Finding the bound state
solutions of Hydrogen including spin-orbit coupling, we have to replace the Hamilto-
nian in Eq. (1.5), Ĥ (r ) ! Ĥ (r ) + Ĥso(r ), and solve the eigenproblem. The Hamiltonian
including spin-orbit coupling is no longer diagonal in eigenstates of L̂, instead it is in
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eigenstates of the total angular momentum, de�ned by

Ĵ := L̂ + Ŝ. (1.20)

We denote the corresponding ket eigenstates with |j,mji, where j is the azimuthal
andmj the magnetic quantum number of Ĵ. For electrons, the value of the azimuthal
quantum number is restricted to be j = l ± 1/2. The spin-orbit coupling operator can
be expressed as

L̂ · Ŝ = 1
2

⇣
Ĵ2 � L̂2 � Ŝ2

⌘
, (1.21)

and its eigenstates are then given by the generalized spherical harmonics, which are
spinors de�ned by

|Ỳ ,j,mj (� ,�)i :=
X

ms=±1/2
Cj,mj
`,mj�ms ;s,ms

Y`,mj�ms (� ,�) |msi . (1.22)

The prefactor is given by131

Cj,mj
`,mj�ms ;s,ms

=
1p

2` + 1
·

8>>>>><>>>>>:

r
` +

1
2
±mj , j � ` = 1

2

⌥
r
` +

1
2
⌥mj , j � ` = �1

2

, ms = ±
1
2
, |mj �ms |  `,

(1.23)
which is a so called Clebsch-Gordan coe�cient, which arises in a transformation from
an uncoupled product basis of two angular momenta to a basis of a coupled angular
momentum. The de�nition of the Clebsch-Gordan coe�cient is given via

Cj,mj
`,m;s,ms

:= h`,m; s,ms |j,mji := (h`,m | ⌦ hs,ms |) |j,mji . (1.24)

The symbol ⌦ denotes the tensor product. If we string together kets or bras without
this symbol, we actually mean the tensor product between these states.

The eigenequation of the spin-orbit coupled operator is then given by

L̂ · Ŝ |Ỳ ,j,mj (� ,�)i =
~2

2
[j (j + 1) � `(` + 1) � 3/4] |Ỳ ,j,mj (� ,�)i . (1.25)

A separation of the wave functions into radial and angular part to solve the full eigen-
problem is successful by modifying the product ansatz in Eq. (1.9) and choosing for
the angular dependent the generalized spherical harmonics, de�ned in Eq. (1.22). The
bound state radial functions are again solutions of Eq. (1.12), but with a modi�ed radial
Hamiltonian, Ĥrad ! Ĥrad + hỲ ,j,mj (� ,�) | L̂ · Ŝ |Ỳ ,j,mj (� ,�)iVso(r ). This makes them
additionally dependent on j, R� ,` (r ) ! R� ,j,` (r ).

Next to the spin-orbit coupling, there is an additional correction from the relativistic
consideration, called the Darwin term. Combining these two relativistiv corrections,
we get small energy shifts compared to the non-relativistic energy levels. Up to �rst
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order, they are given by

�E (RE)
� ,j

E�
=

(Z · �fs)2
�

 
1

j + 1/2
� 3
4�

!
. (1.26)

These relativistic corrections scalewith the second power of the dimensionless�nestruc-
ture constant, �2

fs ⇡ 137�2, which makes them a very small e�ect for Hydrogen.

1.2 Alkali atoms

Alkali atoms consist of more than two elementary particles, but have a single valence
electron only, similar to Hydrogen. Their Rydberg level structure and as well the shape
of their Rydberg wave functions is not much di�erent from Hydrogen. This is due to
the fact, that only a small part of the Rydberg electron orbit is close to the other elec-
trons and the nucleus, which form an e�ectiv singly charged positive-ion core. Alkali
Rydberg atoms can thus approximately be treated as an e�ective two-body problem,
but with a potential which is not purely coulombic, since the charge of the ion core
is radially dependently screened. The di�culty in the two-body treatment of Alkali
Rydberg atoms is that there is no rigorous derivation of the e�ective potential for the
Rydberg electron. However, a model potential was found, which describes observed
phenomena well132. The form of this potenial is

V` (r ) = �
Z` (r )

r
� �c
2r 4

[1 � e�(r/rc)6], (1.27)

where �c is the static dipole polarizability and Z` (r ) the radial charge, given by

Z` (r ) = 1 + (Z � 1)e�a1r � r (a3 + a4r )e�a2r . (1.28)

The values of the �ve parameters (a1,a2,a3,a4, rc) are the result from a nonlinear �t,
such that the eigenenergies of Eq. (1.12) with the model potential in Eq. (1.27) match
to the experimental values of the Rydberg energies, which were successfully measured
extremely precisely133–139. The parameters have to be �tted for each speci�c alkali
atom and for each azimuthal quantum number `.

1.2.1 �antum defects

The determination of the alkali eigenenergies from Eq. (1.12) is only possible numer-
ically. This makes it useful to write Eq. (1.12) in atomic units, where the values of
~, e,me and furthermore 4��0 are set to unity. Distances are then measured in units of
the Bohr radius, aB, and energies in units of the Hartree energy, Eh = �2

fsmec
2. Note

that Eq. (1.27) and Eq. (1.28) are already formulated in atomic units. The energy levels
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for the alkali Rydberg states can be written in the form

E� ,`,j = �
Ry

(alk)

(� � �� ,`,j )2
, (1.29)

where �� ,`,j are called the quantum defects and Ry
(alk) is the Rydberg constant for the

speci�c alkali atom. The quantum defects can be expanded in the series

�� ,`,j = � (0)
`,j +

� (2)
`,j

(� � � (0)
`,j )

2
+

� (4)
`,j

(� � � (0)
`,j )

4
+ . . . . (1.30)

Since we use lithum atoms in this work, we present the values of the s, p-states quan-
tum defects in Table 1.1 for this element. Furthermore, the Rydberg constant for 6Li
is Ry(6Li) = 3.289541926(2) ⇥ 109 MHz and for for 7Li is Ry(7Li) = 3.289584728(2) ⇥
109 MHz. Having the eigenenergies at hand, the wave functions of the Rydberg states

mass number of isotope (A) state (`j) � (0)
`,j � (2)

`,j

6,7 s1/2 0.3995101(10) 0.0290(5)
6 p1/2 0.0471835(20) �0.024(1)
6 p3/2 0.0471720(20) �0.024(1)
7 p1/2 0.0471780(20) �0.024(1)
7 p3/2 0.0471665(20) �0.024(1)

Table 1.1: Some quantum defect parameters for 6Li and 7Li, see Ref. 133.

can be determined numerically from Eq. (1.12) via Numerov’s method140,141. Analytic
expressions are provided by quantum defect theory142,143. Besides the principal quan-
tum number, the energy level structure of alkali atoms is essentially dependent on the
azimuthal quantum number of the orbital angular momentum, `. This is the main dif-
ference to Hydrogen. There also is a dependency on the azimuthal quantum number
of the total angular momentum, j. Since this dependency is weak, we neglect it in the
description of the bound state radial wave functions.

1.2.2 Calculation of dipole matrix elements

The interactions between Rydberg atoms used later are dipole-dipole interactions, where
every atom is treated as a dipole in a simpli�ed picture. Therefore, it is useful to eval-
uate the dipole matrix elements beforehand. Classically, in the simplest case of two
point charges are a dipole, de�ned as

d := |q |r (1.31)

where one particle carries a charge +q and the other one �q. The vector r is the sep-
arating distance between both charges. In quantum mechanics, the distance has to be
replaced by the corresponding operator, r ! r̂. If the evaluation of matrix elements
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is performed in the position-representation, than the operator consists of the classical
vector, r̂ = r. Using the de�nition of a dipole in Eq. (1.31) for a Rydberg atom, we
have to use the distance vector r between Rydberg electron and nucleus as the charge
separating distance and set |q | = e. Since the distance between both charges is large,
treating the Rydberg atom as a dipole is a good approximation. The evaluation of ma-
trix elements becomes simple by expanding the dipole in a spherical basis:

d̂ =
X

µ2{±1,0}
d̂µbµ . (1.32)

The spherical components and basis vectors are given by

d̂µ :=
8><>:
�

⇣
µd̂x + id̂�

⌘
, µ = ±1

d̂z, µ = 0
, (1.33)

bµ :=
8><>:
⇣
�µex + ie�

⌘
/2, µ = ±1

ez, µ = 0
, (1.34)

where d̂� = e · �̂ is the cartesian dipole component and e� the cartesian unit vector in � -
direction, where for both quantities � 2 {x ,�, z}. We evaluate �rst the matrix elements
of the single spherical components, neglecting the �nestructure. For an evaluation of
the dipole matrix elements accounting for �nestructure, see Appendix A.1. We calcu-
late the matrix elements hd̂µi

�0

� = h� | d̂µ |�0i, between two bound states, |�i = |� , `,mi
and |�0i = |� 0, `0,m0i. In position-representation, the kets become |�i ! �� (r) =
r�1R� ,` (r )Y`,m (� ,�) and the spherical components of the dipole dµ = e

q
4�
3 rY1,µ (� ,�).

The calculation of the dipole matrix elements results in

hd̂µi
�0

� = d� ,`;� 0,`0S
(µ )
`,m;`0,m0, (1.35)

with d� ,`;� 0,`0 the radial dipole matrix element, de�ned by

d� ,`;� 0,`0 := e
⌅ 1

0
R� ,` (r )rR� 0,`0 (r )dr = e hr̂ i� 0,`0� ,` (1.36)

andS(µ )
`,m;`0,m0 the spherical dipole matrix,

S
(µ )
`,m;`0,m0 :=

r
4�
3

⌅
Y ⇤`,m (� ,�)Y1,µ (� ,�)Y`0,m0 (� ,�)d�. (1.37)

Note that the integration is over the entire unit sphere,
⇤
d� =

⇤ �
0
⇤ 2�
0 sin� d� d�.

The spherical dipole matrix elements can be related to Clebsch-Gordan coe�cients by
applying the Wigner-Eckart Theorem144,145 to it:

S
(µ )
`,m;`0,m0 =

r
2`0 + 1
2` + 1

C`,0`0,0;1,0C
`,m
`0,m0;1,µ . (1.38)
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The matrix elements of the entire dipole are then given by

hd̂i�
0

� = D
� 0,`0

� ,` D`
0,m0

`,m , (1.39)

with D� 0,`0

� ,` the reduced matrix element,

D� 0,`0

� ,` :=
r

2`0 + 1
2` + 1

C`,0`0,0;1,0 d� ,`;� 0,`0, (1.40)

which is not dependent on the orientation of the dipole, andD`
0,m0

`,m the vector containing
the Clebsch-Gordan coe�cients in each basis direction:

D`
0,m0

`,m :=
X

µ=±1,0
C`,m`0,m0;1,µbµ . (1.41)

The Clebsch-Gordan coe�cients enforce the selection rules �m 2 {0,±1} with �m :=
m0 �m and �` ⌘ `0 � ` = ±1. The only element speci�c quantity is the radial dipole
matrix element, which depend on the radial wave functions. The relevant transitions in
this work are s! p of 7Li, which we list in Table 1.2. These transition matrix elements
scale in good approximation quadratically with the principal quantum number.

� d� ,1;� ,0[a.u.]

35 1579
44 2498
60 4649
80 8265

Table 1.2: Radial dipole matrix elements of s! p transitions for 7Li146

1.3 Dipole-dipole interactions

Atoms can interact in many ways, giving rise to possibly very complex systems such
as large biomolecules. Rydberg atoms open the way to more clearly study fundamental
properties of interacting systems, since their long-range interactions allow many body
systems with large interatomic separations. This allows a description of interactions in
the lowest non-vanishing order, the dipole-dipole form. We present here the derivation
of the dipole-dipole Hamiltonian and start with a classical picture of how dipole-dipole
interactions arise. Detailed considerations can be found in Ref. 147,148.

In general, there is a charge distribution �el(r), which yields an electric potential

�(r) =
1

4��0

⌅
d3r 0

�el(r0)
|r � r0| . (1.42)
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We are interested in the interaction of this potential with another, far separated, charge
distribution. This allows to use the far �eld approximation (F F ) of the potential,
where |r � r0|�1 is small, such that

1
|r � r0| = exp (�r0r) 1

r
⇡ 1
r
+
r · r0
r 3

(1.43)

Inserting Eq. (1.43) in Eq. (1.42), we get

�F F (r) ⇡
1

4��0

 
qel
r
+
d · r
r 3

!
, (1.44)

with the total charge, qtot, and the dipole moment d, de�ned by

qtot :=
⌅

d3r �tot(r), (1.45)

d :=
⌅

d3r �el(r)r. (1.46)

The dipole moment is equivalent to the de�nition in Eq. (1.31) for two pure point
charges. Having a single atom as a source for the electric potential, we haveqtot = 0 and
thus, the far �eld approximation of an atom leads in lowest order to a dipole potential
�d(r), and �eld Ed(r) := �r�d(r):

�d(r) :=
1

4��0
d · r
r 3
, (1.47)

Ed(r) :=
1

4��0

 
� d
r 3
+ 3

(r · d) r
r 5

!
. (1.48)

We denotewith�(k ) (r) the potential andwith � (k )el (r) the charge distribution of atomk =

1, 2, furthermore the dipole moment with d(k ) and the interatomic distance with R12,
pointing from atom 1 to atom 2. The interaction energy is then given by

WI =

⌅
d3r� (2)el (r)�

(1)
d (r), (1.49)

assuming a large interatomic distance, which justi�es the use of the dipole potential.
The spread, where the charge distribution of the second atom is non-vanishing, is small
compared to the interatomic distance. This allows for an additional approximation,
namely that the variation of the dipole potential of atom 1 is small inside the relevant
interaction volume. Setting the coordinate origin to the center of atom 1, this second
approximation is a taylor expansion of �(1)

d (r) at R12 up to �rst order, which gives

WI ⇡ �E(1)
d (R12) · d(2), (1.50)

=
1

4��0

2666664
d(1) · d(2)

R3
12

� 3
⇣
R12 · d(1)

⌘ ⇣
R12 · d(2)

⌘

R5
12

3777775
, (1.51)
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for two far separated charge distributions, with total charge vanishing for both. The
interaction in Eq. (1.51) is called dipole-dipole interaction. For a quantum mechanical
expression, we replace the dipole moments, with their corresponding operators, d(k ) !
d̂(k ) . Furthermore we use Eq. (1.31) with |q | = e, such that we have d̂(k ) := e · r̂(k ) , with
r̂(k ) the Rydberg electron position operator of atom k = 1, 2, relative to its nucleus. The
distance between the two dipoles, R12, remains parameterized classically. The dipole-
dipole interaction Hamiltonian of two Rydberg atoms is then given by

V̂dd(R12) :=
1

4��0

2666664
d̂(1) · d̂(2)

R3
12

� 3
⇣
R12 · d̂(1)

⌘ ⇣
R12 · d̂(2)

⌘

R5
12

3777775
. (1.52)

This formula can be simpli�ed by expanding the dipoles and the distance vector in
their spherical basis, which results in (see Appendix A.3)

V̂dd(R12) = �
1

4��0

p
24�
R3
12

X

µ,µ 0=±1,0

 
1 1 2
µ µ0 �(µ + µ0)

!
Y2,�(µ+µ 0) (�12,�12)d̂

(1)
µ d̂ (2)

µ 0 , (1.53)

with polar angle �12 and azimuthal angle �12 of the distance vector. The six numbers in
parantheses denote theWigner 3-j symbol, which appears equivalently to the Clebsch-
Gordan coe�cients due to coupling angular momenta.

1.3.1 Transition matrix elements

We calculate now transition matrix elements of the dipole-dipole interactions between
the states |�1; �2i and |�01; �02i, where |�ki = |�k , `k ,mki and |�0ki = |� 0k , `0k ,m0ki are alkali
bound states of atom k = 1, 2. The notation |X ;Y i := |X i1 ⌦ |Y i2 is an abbreviation,
with |X i1 a state of dipole 1 and |Y i2 a state of dipole 2. The matrix elements are given
by

h�1; �2 | V̂dd(R12) |�01; �02i = �
p
24�
hd̂ (1)
��m1
i�
0
1

�1
hd̂ (2)
��m2
i�
0
2

�2

4��0R3
12

⇥
 

1 1 2
��m1 ��m2 �m1 + �m2

!
Y2,�m1+�m2 (�12,�12). (1.54)

The selection rules of the Clebsch-Gordan coe�cients yield contributions only in the
spherical components ��mk for atom k , where �mk := m0

k
� mk . In particular we

are interested in the transition matrix elements between the resonant two atom states
|ps,mi := |� , p,m;� , s, 0i and |sp,m0i := |� , s, 0;� , p,m0i of the same species. We abbre-
viate Vm,m0 (R12) := hps,m | V̂dd(R12) |sp,m0i, which have the explicit expression149 (see
Appendix A.3.1):

Vm,m0 (R12) = �
r

8�
3
d2� ,0;� ,1

4��0R3
12
(�1)m0

 
1 1 2
m �m0 m0 �m

!
Y2,m0�m (�12,�12). (1.55)
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Figure 1.2: Angular dependence of transition dipole strengths for resonant |psi , |spi
states, measured in units of the global maximum, de�ned by globalmax :=
maxm,m0,�1,2 |R3

1,2Vm,m0 (R1,2) |2. There are 4 di�erent strengths: ( |�m |,m) = (0,±1) (blue
line), ( |�m |,m) = (0, 0) (red line), |�m | = 1 (yellow line) and |�m | = 2 (violet line), with
�m :=m0 �m.

Since the principal quantum number enters only in the radial matrix elements, the tran-
sition between states with di�erent principal quantum numbers can be easily adjusted
by replacing the radial matrix elements. The derived resonant dipole-dipole interac-
tion between the energetically resonant states |ps,mi and |sp,m0i in Eq. (1.55) is the
fundamental interaction in �exible Rydberg aggregates for the transport of a single
p-excitation. We show the angular dependence of the corresponding dipole strengths
in Fig. 1.2 and �nd that for values �1,2 2 {0,�/2, arccos(1/

p
3),�}, individual matrix

elements can vanish which simpli�es the description of interactions.

1.3.2 Resonant and van-der-Waals interactions

The transition matrix elements would give the direct interactions between two cou-
pled pair states in the absence of other states. Since the dipole-dipole interaction
couples many available pair states, a diagonalization of the interaction matrix has
to be performed to get the molecular/di-atomic interaction potentials. We can dis-
tinguish two types of states: The �rst are energetically resonant pair states, which
have non-vanishing transition matrix elements. An example is the resonant mani-
fold {|sp,mi , |ps,mi}m={�1,0,1}, where each transition matrix element can be evaluated
with Eq. (1.55). This type of interaction is called resonant dipole-dipole interaction and
scales with the third inverse power of the interatomic distance. However, the dipole-
dipole interaction couples as well to states which are o�-resonant. A diagonalization of
the interaction matrix yields leading terms, that are proportional to the sixth inverse
power of the interatomic distance. This is the so called van-der-Waals interaction.
When between two resonant pair-states the transition dipole matrix element vanishes,
the leading term of interaction is then in most cases the van-der-Waals interaction.
However, if couplings to (quasi)-resonant states appear, the dominant interaction can
again scale more or less as the resonant interactions with the third inverse power of
the interatomic distance. The appearance of quasi-resonances is often connected to a
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certain choice of principal quantum number58.

To understand the di�erent scaling between resonant and van-der-Waals interactions,
we present here a minimal example consisting of two pair states which we label with
|0i , |1i. We set the energy level of |0i as the zero point energy and assume the state |1i
is energetically detuned by � > 0. The two states are dipole coupled and we denote
the dipole transition matrix element with V , which we assume to be real valued. The
Hamiltonian describing this two level system is then given by

Ĥ =

"
0 V
V �

#
(1.56)

Diagonalizing this simple Hamiltonian leads to the eigenenergies

E± =
1
2

⇣
� ±
p
4V 2 + �2

⌘
(1.57)

We can now distinguish two limiting cases: When the detuning is much larger than
the resonant interaction, � � V , the eigenenergies are approximately

E±/� ⇡ (1 ± 1) /2 ± (V /�)2 ⌥ O
⇣
(V /�)4

⌘
, (1.58)

For small interactions between the states, E� is asymptotically connected to the state
|0i and E+ to the state |1i. The absolute value of e�ective interactions for both states is
according to Eq. (1.58) given byV 2/�. SinceV scales with the third inverse power of the
interatomic distance, ⇠ R�3, the interaction to o�-resonant states with large detuning
is ⇠ R�6. The sign of the interaction is dependent on the sign of the detuning. State |0i
is coupled to another state with positive detuning which yields positive interactions.
For state |1i it is the opposite case.
The other limiting case is for small detunings compared to the dipole transition ele-
ment, � ⌧ V . In this case, the eigenenergies are approximately

E±/� ⇡ 1/2 ± |V |/� + O (�/|V |) , (1.59)

When we treat the transition dipole interaction with the right dependency on the in-
teratomic distance R, such that explicitly we have V (R) = �(R/Rvdw)�3, we see from
Fig. 1.3 (b,d) that for R � Rvdw, the interaction scales as �(R/Rvdw)�6. The other lim-
iting case, R ⌧ Rvdw, lets the interactions get more and more of resonant type, such
that it scales as �(R/Rvdw)�3.

In reality, the dipole-dipole interaction couples to in�nitely many o�-resonant states.
Calculating the van-der-Waals interactions is then the sum over all e�ective inter-
actions, transition dipole strength squared divided by the detuning, from each o�-
resonant coupled state. Often, it is su�cient to consider the coupling to only a few
more states, such that the series converges. Since the van-der-Waals interaction scales
with ⇠ R�6, it can be written as

Vvdw(R) = �C6/R
6, (1.60)
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Figure 1.3: Comparison of eigenenergy solutions corresponding to state |1i (a,b) and state |0i
(c,d). The exact solutions (black lines) from Eq. (1.57) are plotted together with the solutions
for large detuning (red dashed lines), given in Eq. (1.58), and small detuning (blue dashed lines),
given in Eq. (1.59), relative to the transition dipole interaction. (a,c) Plot over |V |/�, without
specifying the transition dipole interactionV . (b,d) Plot over R/Rvdw, whereV = �(R/Rvdw)�3.

where the C6 is the so called dispersion coe�ent, which for each state individually
characterizes the strength of the van-der-Waals interaction. A detailed analytical eval-
uation of dispersion coe�cients for alkali Rydberg atom pairs is given in Ref. 150 and
a numerical evaluation for Rubidium in Ref. 58. We present in Appendix A.4 a more
formal treatment and show how van-der-Waals interactions can be calculated with a
generalized formula of second order perturbation theory, which is a result of block-
diagonalization.

Overall already from the minimal examples presented above we see that for Rydberg
atoms, the van-der-Waals interactions can be extremely large even on micrometer scal-
ing. This is due to the fact that the principal quantum number scaling of the transition
dipole strength is V ⇠ �4 and for the detunings � ⇠ �3, which results for the van-der-
Waals interaction in a scaling of V 2/� ⇠ �11.

1.4 Properties of Rydberg atoms and their
interactions—an overview

After presenting the essential level structure of Rydberg atoms and discussing their
interactions, we list here important properties of them, which are useful for the in-
vestigation of Rydberg aggregates. The large transition dipole moments due to high
principal quantum numbers are re�ected in extreme values for both intrinsic and in-
teraction properties:
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• Strong long-range dipole-dipole interactions both resonant, / �4, and vdW in-
teractions, / �11. Of main importance are resonant interactions in this thesis.

• The radial transiton matrix elements between neighbouring states scales / �2.
• Mesoscopic scaling of the wave function ⇠ µm.

• Mesoscopic dipole blockade37,39 of radius

Rbl ⇡
 |C6 |
~�

!1/6
, (1.61)

which is the radius of a spherical volume in which one Rydberg excitation in-
hibits the excitation of a second one. The radius is ⇠ µm for Rydberg atoms and
sets the minimal spatial distances for initial con�gurations of Rydberg aggre-
gates. The de�nition of the blockade radius assumes dominant vdW interactions.
The preparation of Rydberg aggregates requires as a �rst step the excitation from
ground to equal Rydberg states, such that during the excitation process vdW in-
teractions are in fact dominant. The blockade is dependent on the collective Rabi
frequency �, which is typically a two-photon Rabi frequency necessary to excite
the Rydberg state.

• The lifetime151 is large and for zero temperature it can be parameterized by†

�� ,` = �
(0)
` ��`⇤ , (1.62)

with an almost constant exponent for alkalis, �` ' 3. However, the other scaling
parameter is dependent on the azimuthal quantum number `. For 7Li, which
we utilize in this thesis as constituents of the aggregates, it is given by � (0)s =

0.8431 ns for s states and � (0)p = 2.8807 ns for p states, respectively. This gives a
total lifetime of roughly 70 µs (232 µs) using � = 44, and 400 µs (1386 µs) using
� = 80 for s states (p states)152. For �nite temperatures the lifetime is decreased
by blackbody radiation (BBR) to an e�ective lifetime � e�� ,` . Since the experimental
preparation of Rydberg aggregates requires ultracold temperatures153,154 ⇠ µK
and the relative lifetime decrease due to BBR is given by

⇣
�� ,` � � e�� ,`

⌘
/�� ,` ⇡ 6.8⇥

10�8��2⇤ (T /µK)/(�� ,`/µs) 152, the BBR correction can be neglected. For relevant
principal quantum numbers � > 40 in the ultracold temperature regime this
correction is smaller than 10�12.

The features indicate that dynamics of interacting Rybderg atoms including atomicmo-
tion will occur on spatial distances of micrometers and time scales of microseconds.

† The scaling is with the e�ective principal quantum number, which is the principal quantum number
corrected by the quantum defect, �⇤ ⌘ � � �`



2 Resonant energy transfer: From
Rabi oscillations to directed
transport

Resonant energy transfer is well understood in frozen systems, where interacting con-
stituents, such as biological complexes, molecules or atoms, can not move spatially, but
still transport excitation through long range interactions. We review this in section 2.1.
However, when the interactions are strong enough, this frozen gas approximation is
not valid anymore since during the transport time-scale the constituents can signi�-
cantly move. Instead of Rabi oscillations, which transports the excitation between the
resonant states back and forth, unidirectional RET takes place, due to motion of the
constituents. We introduce in section 2.2 some basic concepts of unfrozen systems and
demonstrate special features with a trimer system in section 2.2.1. The end of this chap-
ter outlines how directed transport can be controlled, which is the basic motivation for
the results in Chapter 3 and Chapter 4.

2.1 Spatially frozen systems

Let us consider a system of interacting, but frozen constituents. We can always write
for the Hamiltonian

Ĥel = Ĥ0 + V̂, (2.1)

where Ĥ0 is the collection of the individual constituent Hamiltonians and V̂ the opera-
tor describing all the interactions between them, sketched in Fig. 2.1. We are interested
in how the interactions change eigenstates and -energies of the non-interacting system
and the time evolution of quantum states.

Resonant energy transfer can be thought of a process where two neighboring con-
stituents excite and de-excite simultaneously, such that over time some initially ex-
cited constituents transport their excitation radiationless by other constituents. The
excitation can thus be thought of hopping between the sites of the constituents. The
distribution of excitation among the constituents is a superposition of resonant states,
each of them localizes the entire excitation on an individual constituent. The collection
of these localized states is thus a basis, which we denote with Bel. We can restrict the
electronic Hamiltonian, Ĥel, to this resonant subspace:

Ĥel,0 ⌘ Ĥel
���Bel = 1̂elĤel1̂el, (2.2)
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E E E E E

Ĥ0

V̂

Figure 2.1: Sketch of a collection of individual systems (blue boxes), each of them with their
own energy level structure and eigenstates. All the couplings are collected in the interaction
operator (red), which creates a compound system with di�erent energy levels and eigenstates.

which includes the interactions within this manifold. The operator 1̂el is the projector
onto the subspace of resonant states, which acts inside this subspace as the identity
operator. Since all energy levels are degenerate, the diagonal of the Hamiltonian can
be set to zero.

If we can ensure that couplings to o�-resonant states are negligible, the description
with the Hamiltonian in Eq. (2.2) is su�cient and we can set

Ĥel = Ĥel,0 (2.3)

as �nal Hamiltonian. For the other case, we have to add an operator containing the
couplings to o�-resonant states and their detunings, which we denote with Ŵ

Ĥel = Ĥel,0 + Ŵ (2.4)

To say the energy transfer is resonant implies that the coupling to o�-resonant states
remains small during the time evolution, such that the dominant transfer is within
the resonant Hamiltonian. The coupling to o�-resonant states is given by the squared
interaction matrix elements between the resonant and the o�-resonant states divided
by the detuning. It is weak when it is much smaller then the interaction between
the resonant states. Since the Hamiltonian is not time-dependent, the time evolution
of an initial state |�0i is given by |� (t )i = exp(�iĤel · t/~) |�0i. Eigenstates of the
Hamiltonian can only gain a phase factor, such that they are the stationary states of
the time-independent Hamiltonian.

In the following we will demonstrate RET with a minimal example.
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2.1.1 Rabi oscillations as resonant energy transfer in a minimal
model system

Let us assume we have two resonant states, |1i and |2i, whose energy is set to zero.
We could think of these two states being resonant pair-states of a system with two
constituents, where each constituent is described by two states, |�i and |ei, where |�i
is the ground state and |ei is the excited state. The resonant pair-states are then the
single excited states, where only one constituent is excited. With this we could set
|1i = |�ei ⌘ |�i ⌦ |ei and |2i = |e�i, as sketched in the right half of Fig. 2.2. In fact,
the resonant states can be many-body states from a more complex systems with more
constituents.

Both states are coupled with the interaction matrix elementV , which we assume to be
real. The resonant Hamiltonian can then be written as

Ĥel,0 = V |1i h2| + H.c. =
 
0 V
V 0

!
, (2.5)

The eigenstates and -energies of this Hamiltonian are

E±,0 = ±V (2.6)

|�±, 0i = ( |1i ± |2i) /
p
2. (2.7)

The resonant states are additionally coupled to the �-detuned state |3i, where we de-
note with V13 the coupling between states |1i � |3i and with V23 the coupling between
states |2i � |3i. For simplicity, we assume the couplings to be real valued. With this we
can write the coupling operator to the o�-resont state as

Ŵ = V13 |1i h3| +V23 |2i h3| + H.c. + � |3i h3| = *.
,
0 0 V13
0 0 V23
V13 V23 �

+/
-
, (2.8)

such that the electronic Hamiltonian can be written as

Ĥel =
*.
,

Ĥel,0
V13
V23

V13 V23 �

+/
-
. (2.9)

Since we assume the coupling to the o�-resonant states to be weak, we can block-
diagonalize the Hamiltonian according to Eq. (E.36) of Chapter E.2. This yields a Hamil-
tonian, which is restricted to the resonant manifold:

Ĥ 0el = Ĥel,0 + Ŵ
0, (2.10)

Ŵ 0 = ��1
 
V 2
13 V13V23

V13V23 V 2
23

!
. (2.11)

We can again treat the new operator, Ŵ 0, as a perturbation, which allows us to use
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Figure 2.2: Energy level diagramm for a three state system. The resonant states |1i and |2i are
coupled with the interaction strength V and form the resonant subsystem, de�ned in Eq. (2.5).
An additional o�-resonant state, |3i, is assumed to beweakly coupled viaV13,V12 to the resonant
system. On the right side, we sketch the possibility of the resonant states to be realizations of
singly excited many body states, where only one of the two constituents is in the excited state
|ei, the other in the ground state |�i.

perturbation theory to get the eigenstates and -energies approximately:

E± ⇡ E±,0 +
(V13 ±V23)2

2�
(2.12)

|�±i ⇡
1p

1 +w2

� |�±,0i ±w |�⌥,0i
�
, w :=

V 2
13 �V 2

23
4�V

(2.13)

To get information about the RET, we set as an initial state |1i and calculate the prob-
ability that the system is at time t in state |1i, P |1i(t ) := | h1| exp(�iĤ 0el · t/~) |1i |2. The
probability that the system is in the other state is then P |2i(t ) = 1 � P |1i(t ). We get for
this probability

P |1i(t ) ⇡ cos2
⇣
�̃t/2

⌘
+ O

⇣
w2

⌘
, �̃ := 2

⇣
V + ��1V13V23

⌘
/~. (2.14)

The periodic behaviour of the state occupation probability is known as Rabi oscillation.
For small couplings to the detuned state, only the Rabi frequency, which is the angular
frequency of the Rabi oscillation, changes from � := 2V /~ to �̃, displayed in Fig. 2.3.
The excitation is transferred completely for �̃t = � which means the system is in state
|2i. This changes for stronger o�-resonant couplings. In this case the neglected terms
in Eq. (2.14), which are ⇠ O (w2), become important and prevent complete transfer of
excitation. Then, for �̃t ⇡ � , there is a non-negligible probability that the system re-
mains in state |1i. Only fully RET can thus drive the system entirely from one resonant
state to another.

To conclude, RET within spatially frozen systems causes periodic excitation exchange
between the constituents. However, eigenstates of the Hamiltonian are stationary due
to a time-independent Hamiltonian and can thus not transport excitation. We will see
that this changes when we allow the constituents to move, which makes the interac-
tions between them dependent on their spatial con�guration and due to motion also
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Figure 2.3: Probability to �nd the system in state |1i over time, when initiated with the same
state, according to Eq. (2.14). The Rabi oscillation of the system with negligible o�-resonant
couplings (black line) has the Rabi frequency � and is the reference system for two other sys-
tems with weak, but not negligible o�-resonant couplings, resulting in changed Rabi frequen-
cies, �̃ = 0.9� (red, dashed line) and �̃ = 1.1� (blue, dashed line).

implicitly time-dependent.

2.2 Unfrozen systems

For strongly interacting systems the transport time-scale can be of the order where
constituents start to move due to the interactions. The frozen gas approximation does
not hold any longer then. The motion of the constituent dynamically changes the spa-
tial con�guration and thus the eigenenergies and -states as well. The coupling to the
spatial degrees of freedom is often regarded as a decoherence source for the transport.
However, a strong coupling allows for a combined transport of excitation and mechan-
ical quantities, such as momentum, which we will see later. A fundamental feature of
unfrozen systems is the ability to tune the excitation distribution of eigenstates from
being spatially localized to delocalization. This makes it promising to transport exci-
tation directly with eigenstates, which is not possible in frozen systems.

Technically, we have to account for the spatial con�guration of the constituents, which
we do by introducing the vector R, containing all positions of constituents. The in-
teractions are dependent on the con�guration, such that the electronic Hamiltonian
changes dependent on the spatial con�guration, Ĥel = Ĥel(R). The eigenproblem
of the electronic Hamiltonian is connected with the concept of excitons and Born-
Oppenheimer (BO) surfaces.

For a Hamiltonian Ĥ (R) we call the eigenstates, denoted with |� (R)i, excitons and
the eigenenergies BO surfaces which we denote with U (R). The eigenequation of the
Hamiltonian is then

Ĥ (R) |�k (R)i = Uk (R) |�k (R)i , (2.15)

for each exciton state |�k (R)i, with k = 1, ..., dim(Ĥ ). We are speci�cally interested in
the transport of single excitations. The excitons are then coherent superpositions of
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di�erent localized excitation states, which is the result of interactions.

The evolution of the full quantum mechanical system requires the introduction of a
wave function for the combined system of electronic Hamiltonian and spatial degrees
of freedom. We denote it with |�(R, t )i. The total Hamiltonian,

ĤT(R) := �
NX

�=1

~2

2M�
r2R� + Ĥel(R), (2.16)

describes an interacting system of N constituents and contains besides the electronic
Hamiltonian the operators corresponding to the kinetic energy, where R� denotes the
position of the constituent labeled with � = 1, . . . ,N . The evolution of the total wave
function is described by the time-dependent Schrödinger equation,

i~
@

@t
|�(R, t )i = ĤT(R) |�(R, t )i . (2.17)

Unfortunately, the numerical e�ort grows rapidly with increasing number of spatial
degrees of freedom, which makes it impossible to obtain the dynamics in reasonable
time. However, many quantum-classical schemes are available to approximately get
the quantum dynamics. In section 3.1.3, we outline a method called ’Fewest switching
surface hopping’155,156, which we use to solve the linked RET and atomic motion of the
investigated Rydberg aggregates in section 3 and section 4.

In the following we outline how adiabatic transport with exciton states is possible in
unfrozen systems using the example of a trimer.

2.2.1 Directed transport and conical intersections in unfrozen
trimers

We solve the eigenproblem of a trimer with di�erent geometries and vary selected
distances between the constituents to see how the excitons and BO surfaces depend on
the geometry. Each individual constituent is assumed to be described by a two level
system with the ground state |�i and excited state |ei. The combined system is excited
from the ground state, |Gi := |���i, to the single excitation manifold, which is spanned
by the states |1i := |e��i, |2i := |�e�i and |3i := |��ei and we are interested in how this
single excitation gets distributed among these resonant states due to interactions.

Linear trimer: We set the positions of the constituents to (x1,x2,x3) = (0,x2, 2d ), as
sketched in Fig. 2.4, where xk is the position of the kth constituent and d is a unit
of length. The only parameter to be varied is x2 2 (0, 2d ). Furthermore we denote
with Vkl ⌘ V (xkl ) the interaction between state |ki and |li, which is equivalent for
a transition of the excitation between constituent k and l . We denote the spacings
between the constituents with xkl ⌘ |xk � xl |. We assume the binary interactions to be



2.2 Unfrozen systems 29

1 2 3
0 x2 2·d

V12 V23

V13

2

Figure 2.4: Sketch of a linear trimer con�guration with �xed positions of constituent 1 and 3
and variable position of constituent 2.

real valued and can write for the electronic Hamiltonian of the resonant manifold:

Ĥel =

3X

k,l=1
k,l

Vkl |ki hl | = *.
,
0 V12 V13
V12 0 V23
V13 V23 0

+/
-

(2.18)

Let us assume the binary interactions to be proportional to a certain power of inverse
distances,Vkl ⇠ 1/|xk �xl |� , � > 1. Since the distance x13 is �xed and the largest in the
system,V13 is the smallest binary interaction. Our main interest lies in the study of res-
onant dipole-dipole interactions, which scale with � = 3. For this case, we can in good
approximation set the interactionV13 to zero. Introducing now a ratio of the remaining
two binary interactions, Ṽ = V23/V12, we can rewrite the electronic Hamiltonian as

Ĥel ⇡ V12
*..
,
0 1 0
1 0 Ṽ

0 Ṽ 0

+//
-
. (2.19)

The excitons and BO surfaces for the approximate electronic Hamiltonian have the
following analytic expressions

U±(Ṽ ) ⇡ ±V12
p
1 + Ṽ 2 |�±(Ṽ i ⇡

1p
2

*
,
|1i + Ṽ |3i
p
1 + Ṽ 2

± |2i+- (2.20)

U0 ⇡ 0 |�0(Ṽ )i ⇡ 1
p
1 + Ṽ 2

⇣
�Ṽ |1i + |3i

⌘
, (2.21)

We additionally perform a numerical diagonalization of the electronic Hamiltonian in
Eq. (2.18) with resonant dipole-dipole interactions and the dependency of the excitons
and the BO surfaces from the position of constituent 2 shown in Fig. 2.5. For a homo-
geneous con�guration with equidistant spacings between all constituents, x2 = d , the
excitons corresponding to the BO surfaces with highest (U+, red line) and lowest ener-
gies (U�, green line) have delocalized the single excitation over all constituents. When
the spatial symmetry is broken, the two BO surfaces mentioned before, increase their
absolute energy value, the more asymmetric the system gets. This happens for x2 ⌧ d
and (2d � x2) ⌧ d , respectively. Furthermore the excitation on the corresponding two
excitons gets localized between the two atoms with smaller spacing, signi�cant already
for x2 ⇡ 0.75d . A strong asymmetry is equivalent to values for the interaction ratio
Ṽ ⌧ 1 or Ṽ � 1, respectively, and we see that then the excitons |�±i converge to
the dimer eigenstates, |�±i = ( |1i ± |2i) /

p
2 for Ṽ ⌧ 1 and |�±i = ( |2i ± |3i) /

p
2 for
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Ṽ � 1.

If we vary the position of constituent 2 such that at the beginning it is close to con-
stituent 1 and ends near constituent 3, we can transport the excitation spatially in a
directed way. Since the energetically highest BO surface yields repulsive forces on
constituent 2 (F2 = �@U+/@x2), it can bring the trimer from one to the other asym-
metric con�guration and thus seems a promising tool for this purpose. In fact, the full
quantum dynamics is goverened by the time-dependent Schrödinger equation with a
total Hamiltonian consisting besides the electronic Hamiltonian of an operator for the
kinetic energy. Studies of this dynamics were performed with linear chains of dipole-
dipole interacting Rydberg atoms72–74, where an equidistantly spaced chain of Rydberg
atoms has an additional dislocated Rydberg atom on one side, with a smaller distance
a to its neighbor than other neighbor distances d . For a dislocation ratio of a/d = 0.4,
excitation gets almost perfectly localized on the two dislocated atoms for the exciton
connected with the BO surface yielding repulsive motion. Directed transport of exci-
tation, linked with a transport of diatomic proximity was con�rmed. The dynamics in
these linear chains remains perfectly adiabatic, which means mixing with other exci-
tons is insigni�cant.
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Figure 2.5: BO surfaces and excitons (bars in insets) for a linear trimer with varying position
of constituent 2, x2, and resonant dipole-dipole interactions of the form Vkl = �V0 (xkl/d )�3.
We obtain three BO surfaces, one leads to repulsive forces (red line) and another to attrac-
tive forces (orange line) on atom 2. The remaining BO surface is almost constant and yields
e�ectively no interactions (green line). The insets depict the geometry of the system for
x2/d = 0.75 (left side), x2/d = 1 (center) and x2/d = 1.25 (right side), with bars visualising
the excitation amplitude on each constituent, according to ���c±/0k

���2 with c±/0k := hk |�±/0i and “+”
for c±,0k > 0 and “minus” for c±,0k < 0. The red bars in the upper row represent the exciton cor-
responding to the BO surface with repulsive forces, the green bars in the middle row represent
the exciton to the BO surface which yields no forces and the lower row the exciton which is
connected with attractive forces due to the BO surface. The solutions are obtained by numerical
diagonalization of the Hamiltonian in Eq. (2.18) and a comparison with Eq. (2.20) and Eq. (2.21)
yields perfect agreement, such that the analytical solutions can be used as well.
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Figure 2.6: Sketch of an isosceles trimer con�gurationwith variable horizontal position of con-
stituent 1, x1.

Isosceles trimer: Systems with linear geometries and long range interactions can in
many cases be well approximated by two-body interactions of nearest neighbors. This
situtation changes already for two-dimensional geometries, where three bodies can si-
multaneously interact with the same strength. For isotropic interactions, this is realized
for an equilateral triangle con�guration.

Here we discuss the BO surfaces and excitons of an isosceles triangle con�guration
with resonant dipole-dipole interactions, depicted in Fig. 2.6, with (x1,�1) = (x1, 0),
(x2,�2) = (

p
3d/2,�d/2) and (x3,�3) = (

p
3d/2,d/2). The pair (xm,�m ) gives the coor-

dinates in the horizontal x-direction and vertical y-direction. We vary only the hori-
zontal position of constituent 1. For x1 ⌧ 0, constituent 1 is far separated from the two
others and the system is thus decomposable into a dimer, build by constituent 2 and 3,
and the remaining constituent 1, which is quasi-isolated. The excitation distribution of
the excitons for the case x1/d = �

p
3/2 in Fig. 2.7 re�ects this situation: The excitons of

the energetically highest and lowest BO surfaces are dimer states, where excitation is
shared between constituent 2 and 3. The remaining exciton corresponds to the isolated
constituent 1, such that the complete excitation is localized on it. For x1/d =

p
3/2, a

linear trimer with equispaced distances is realized, which we already discussed. Di�er-
ent to these two cases, which can be explained by linear arrangements, for x1 = 0, two
BO surfaces intersect (red and green line within the blue marked region) which is a
consequence of the fact that due to the equilateral triangle con�guration all binary in-
teractions have the same strength. This lets the two-body interaction of constituent 2
and 3 be equally strong as the three-body interaction. It is known that this type of
intersections — conical intersections — can change the dynamics drastically and is a
cause of non-adiabaticity since it is a junction of BO surfaces. Nonadiabatic dynamics
was studied in a Rydberg ring trimer75, where a wave packet initiated on a repulsive
BO surface hits a CI and as a consequence gets split on two BO surfaces.
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Figure 2.7: BO surfaces and excitons (bars in insets) for an isosceles trimer, illustrated in
Fig. 2.6, with varying position of constituent 1, x1. The results are for resonant dipole-dipole
interactions as in Fig. 2.5 and follows also its illustration scheme of BO surfaces, excitons and
sketches of trimer con�gurations. The insets on the left correspond to the trimer con�guration
with x1/d = �

p
3/2, the middle to x1/d = 0 and the right to x1/d =

p
3/2. For x1 = 0, the trimer

is in an equilateral triangle con�guration, where two surfaces (red and green line) conically
intersect (marked with blue circle, CI), allowing to study highly nonadiabatic dynamics.
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2.2.2 Combining directed transport with conical intersections:
An outline to guide exciton pulses

The trimers as minimal systems helped us to understand how directed transport could
work and to see the feature of conically intersecting BO surfaces in two-dimensional
arrangements. A requirement of having directed transport are strong and long range
interactions and lightweight constituents, such that they can move signi�cantly within
the Rydberg state lifetime. Highly excited Lithium atoms satisfy all these conditions
and directed transport of RET linked with diatomic proximity was demonstrated for
linear arrangements72–74 of Lithium Rydberg aggregates in simulations. The scheme is
as follows: The atoms get excited to Rydberg states with the same principal quantum
number and a microwave performs a transition from the Rydberg state |Si = |s . . . si,
where all atoms are in the |si ⌘ |�si state, to the energetically highest exciton state of a
single s ⌘ (� , s)-excitation. The initial con�guration of the Rydberg chain has a dislo-
cation on one end with smallest interatomic distance, such that the p-excitation of this
exciton gets localized on the spatially dislocated atoms. The BO surface yields repul-
sive forces such that directed motion of the atoms is induced which leads to combined
transport of diatomic proximity and electronic excitation, called an exciton pulse. The
excitation is transported from one to the other end of the linear Rydberg chain, per-
fectly adiabatic, staying on the same BO surface during the evolution with very high
probability. Directed transport of excitation is thus realized with this scheme.

This thesis is dedicated to the investigation of directed transport in higher dimensions,
using �exible Rydberg aggregates. Next to their strong interactions, Rydberg atoms
can be isolated and trapped very well. Furthermore a precise positioning in arbitrary
geometries is possible157,158. As we saw from the isosceles trimer, conical intersec-
tions can already appear in two-dimensional arrangements and their occurrence is not
rare75. Since directed transport in linear con�gurations is conditioned to dynamics
taking place on BO surfaces with globally repulsive interactions, it is a priori not clear
if an exciton pulse survives when changing the BO surface due to a CI.

To adress the transport properties of exciton pulses undergoing a conical intersection
transition, we add to the isosceles trimer an additional atom on the horizontal axis, as
sketched in Fig. 2.8 (c). We call this a T-shape con�guration, after the ring trimer75
the simplest system where an exciton pulse can encounter a CI. Compared to circu-
lar arrangements, T-shape con�ned systems are experimentally more easily realizable,
since they require only linear con�nement in two orthogonal directions. Preparing the
initial distance between atom 1 and 2 to be the smallest such that an exciton gets local-
ized on them with repelling forces, atom 2 can approach the vertically placed atoms.
In this way an equilateral triangle between atom 2-4 is formed where the BO surface
of propagation conically intersects with another one, as seen in Fig. 2.7. The T-shape
system thus reaches the CI position. Studying exciton pulses in such aminimal T-shape
system is our �rst objective. Extending the T-shape system as sketched in Fig. 2.8 (d) is
intended to answer the question, whether exciton pulse propagation can be maintained
after a CI transition. Furthermore we will try to control and guide the exciton pulse by
modifying the arrangement with a vertical displacement of the horizontal chain and
tuning the distance between atom 5 and 6. With these modi�cations, a transition from
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a CI to an avoided crossing is possbible and the size of the energy gap can be tuned,
leading to di�erent transport scenarios.
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Figure 2.8: Di�erent geometries of aggregates and their speci�c features. (a) Exciton pulses can
be created with linear arrangements. (b) Higher dimensional con�gurations possess generically
CIs, a cause of highly nonadiabatic dynamics. Here we show an isosceles triangle con�guration
wheremoving atom 1 towards atom 2 and 3 generates an equilateral triangle con�guration such
that a CI can be encountered. (c) A minimal T-shape con�guration with smallest initial spacing
between atom 1 and 2, such that excitation gets localized on them. Initiating the system in the
repulsive BO surface lets atom 2 approach atom 3 and 4, such that the exciton pulse hits a CI
when atom 2-4 are in an equilateral triangle con�guration. (d) Extended T-shape con�guration
which allows for exciton pulse propagation on the horizontal chain, as in (c). The pulse hits
a CI approximately when atoms 3, 5 and 6 build an equilateral trimer and possibly continues
to propagate in orthogonal direction to the initial propagation direction after the intersection
region.



3 Planar aggregates with isotropic
interactions

The investigation of exciton pulses traversing a CI is ourmain interest. As elaborated in
section 2.2.2, aggregates in T-shape con�gurations satisfy the requirements for both,
exciton pulse propagation and the possibility to have conically intersecting BO sur-
faces. We intend to add complexity to the aggregates in several stages. This chapter
restricts the spatial dynamics to a plane, supressing the third dimension. Furthermore
we employ an isotropic interaction model for simplicity. Taking into account the full
anisotropy of the dipole-dipole interactions and releasing the dynamics from spatial
constrains, we aim in Chapter 4 to simulate the dynamics of a T-shape aggregate which
could soon be realized in an experiment.

The organization of the chapter is as follows: In section 3.1 we present the theoretical
framework, including a description of the spatial con�guration of T-shape aggregates,
the interaction model and methods to solve for the dynamics. Before we answer the
question, whether the presence of a CI can be utilized to guide the excitation transfer,
we analyze its e�ect on exciton pulse propagation in section 3.2. For a minimal ag-
gregate consisting of two perpendicular dimers, the essential mechanism of the CI is
analyzed in section 3.2.1. To investigate if exciton pulses can be sustained after under-
going a highly nonadiabatic transition region, we study its dynamics in an extended
T-shape aggregate with more atoms after traversing the CI in section 3.2.2. Finally we
demonstrate in section 3.3 how exciton pulses can be controlled while redirecting them
into an orthogonal direction.

3.1 Theoretical Framework

We study N Rydberg atoms of the species 7Li with mass M = 11000 a.u., all with the
same principal quantum number � . We restrict � for the sake of clarity to the two cases
� = 44 and � = 80. With Nx of the atoms constrained on the x axis, and N� on the �
axis, their total number is N = Nx + N� , as sketched in Figs. 2.8(c) and 2.8(d). We call
the sub-system of atoms 1 to Nx the horizontal chain and atoms Nx +1 to N the vertical
chain.

All atoms are constrained to move freely in only one-dimension, with their positions
described by the vector R = (R1, . . . ,RN )T. The restriction to a T-shape con�guration
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Figure 3.1: Illustration of localized, singly p excited states according to Eq. (3.2). Here we
demonstrate their construction for a three atom aggregate. They build the electronic basis and
allow a diabatic representation of the electronic Hamiltonian.

gives the following speci�c form of the individual atomic position vectors

R� =
8><>:
(x� , 0), �  Nx

(�xo�set,�� ), � > Nx ,
(3.1)

where the notation (x ,�) stands for the two-dimensional vector xex +�e� , with ex ,� the
unit vector in x , � direction. Note that �xo�set is a �xed horizontal o�set of the vertical
chain from the co-ordinate origin. Since the co-ordinate of each atom is �xed in one
dimension and variable in the other, the e�ective dimensionality of R is N .

The one-dimensional con�nement could for example be realized by running laser �elds
and optical trapping of alkali-metal Rydberg atoms159, or earth alkali-metal Rydberg
atoms through their second valence electron160.

For the investigation of RET in �exible Rydberg aggregates we also have to specify
resonant many-body states and their interactions. We use the simplest model, which
is the transport of a single Rydberg p excitation. The atoms have to be prepared such
that only one atom is in an angular momentum p ⌘ (� , p) state, all the other atoms are
in angular momentum s ⌘ (� , s) states. This allows us to expand the electronic wave
function in the single excitation basis Bel := {|�� i}, where

|�� i := |s . . . p . . . si (3.2)

denotes a state with the � th atom in the p state73,74. An illustration of these states is
shown in Fig. 3.1. Since we assume the interactions to be isotropic, we suppress the
magnetic quantum number of the p states. Using the basis Bel is only valid when no
signi�cant admixtures from o�-resonant states occur, which is approximately ensured
for interatomic distances larger than the dipole blockade radius for neighboring atoms
in Rydberg s states. In particular for the initial spatial con�guration of the aggregate
the interatomic distances have to be larger than the blockade radius to ensure that all
atoms can be excited to Rydberg s states before microwave excitation to an exciton
state spanned by the basis Bel can be performed. Small admixtures from o�-resonant
states during the dynamics can be treated perturbatively, which we will show later.
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3.1.1 Rydberg-Rydberg interactions and the electronic
Hamiltonian

Interaction potentials between Rydberg atoms can be determined by diagonalizing a
dimer Hamiltonian in a restricted electronic state space, using the dipole-dipole ap-
proximation16. We derive the electronic Hamiltonian, which in general can be written
according to Eq. (2.1) as a collection of individual constituent Hamiltonians,

Ĥ0 :=
X

k

Ĥ (k ), (3.3)

with Ĥ (k ) the single atom Hamiltonian of the kth atom, and an interaction operator,

V̂ :=
1
2

X

k,l :
k,l

V̂ (k,l )
dd , (3.4)

with V̂ (k,l )
dd the dipole-dipole operator for interactions between atoms (k ,l ). Matrix

elements of the electronic Hamiltonian, Ĥel = Ĥ0 + V̂ , within the single excitation
manifold evaluate to

h�� | Ĥel |��i =
8><>:
Eaggr := (N � 1)Es + Ep, � = �

V (R�� ), � , �
. (3.5)

We use for the interatomic distances the abbreviation R�� ⌘ |R� � R� |. The dipole-
dipole interactions are assumed to be isotropic and set to

V (r ) := �µ2/r 3, (3.6)

determined by the scaled radial matrix element µ = d� ,1;� ,0/
p
6. In Chapter 5 we discuss

how this simpli�cation can be realized using a magnetic �eld and isolating speci�c
azimuthal angular momentum states. Shifting the energy scale to have Eaggr as zero,
the Hamiltonian containing the resonant dipole-dipole interactions can be written in
the following way:

Ĥdd(R) := �µ2
NX

� ,�=1;
�,�

R�3�� |�� i h�� | . (3.7)

The resonant states are also coupled to o�-resonant states, yielding vdW interactions.
Ideally the interatomic distances are large enough such that o�-resonant couplings
can be neglected. For instance, this can be ensured for the propagation along a glob-
ally repulsive BO surface in one-dimensional con�gurations. However, since we are
speci�cally interested in nonadiabatic dynamics, evolution can involve BO surfaces
with interactions allowing atoms in the dynamics to approach each other close enough
for vdW interactions to become important. This occurs when almost no p excitation
resides on both atoms. Since any too close encounter of atoms would invalidate our
simple model and possibly lead to ionisation, these are problematic. To prevent them,
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principal quantum numbers can be chosen for which vdW interactions are repulsive
such that they e�ectively act as a stopping mechanism at small interatomic distances.
The formula for vdW interactions can be derived via block-diagonalization, outlined in
section E.1 and section E.2. For the aggregate’s basis states, given in Eq. (3.2), this pro-
cedure is equivalent to second-order Rayleigh-Schrödinger perturbation theory. The
vdW interaction for the state |�� i can thus be calculated by

h |�� ivdw =
X

|Y i:
EY,Eaggr

���h�� | V̂ |Y i���2
Eaggr � EY

, (3.8)

with a summation over allN -body states, denoted by |Y i, whose corresponding energy
EY is di�erent to the aggregate’s energy. The vdW interaction formula decomposes into
a sum over binary contributions (see appendix B.1):

h |�� ivdw =
X

k,�

X

|�i:
E�,Eps

| hps| V̂ (� ,k )
dd |�i |2

Eps � E�
+
1
2

X

k,�

X

l,k

X

|�i:
E�,Ess

| hss| V̂ (k,l )
dd |�i |2

Ess � E�
. (3.9)

The states |psi ⌘ |� , p;� , si , |spi ⌘ |� , s;� , pi and |�i are pair states with energy
Eps,Esp and E� , respectively. Using the de�nition of C6-dispersion coe�cients given
in Eq. (A.31), we �nally arrive at

h |�� ivdw (R) = �
X

k,l :
k,l

Css
6

2R6
kl

�
X

k,�

C
ps
6 �Css

6

R6
k�

, (3.10)

with Css
6 the dispersion coe�cient for the pair state |ssi ⌘ |� , s;� , si and Cps

6 for |psi,
respectively. Since the vdW interactions serve here the practical purpose discussed
above, we simplify their structure by setting the two di�erent dispersion coe�cients
equal, C6 ⌘ C

ps
6 = Css

6 . Their di�erence in reality can give rise to interesting e�ects
at shorter distances77, which are not relevant here. Using only a single dispersion
coe�cient, the vdW interactions get independent of the position of the p excitation,

hvdw(R) := �
X

k,l :
k,l

C6

2R6
kl

, (3.11)

and therefore the corresponding Hamiltonian is simply diagonal,

Ĥvdw(R) := hvdw(R) · 1̂, (3.12)

where 1̂ denotes the identity operator of the electronic space spanned by the single
excitation states. Adjusting C6 < 0 in (3.11) ensures vdW interactions to be repulsive.
The �nal electronic Hamiltonian combines resonant and o�-resonant interactions and
is given by

Ĥel(R) := Ĥdd(R) + Ĥvdw(R). (3.13)
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Figure 3.2: Dimer BO surfaces according to Eq. (3.15) with (solid lines) and without (dashed
lines) vdW interactions for � = 80, which corresponds to µ = 3374 a.u. and C6 = �7.6 ⇥
1020 a.u.. At small interatomic distances, the vdW interactions clearly changes the surfaces,
makingU+ (>0) more repulsive andU� (<0) less attractive.

We sketch, in Chapter 5, how this simple model of interactions arises from the full
molecular physics of interacting Rydberg atoms using a magnetic �eld and selected
total angular momentum states. Solving the eigenvalue problem of this Hamiltonian
for �xed atomic positions yields eigenstates that are called Frenkel excitons161, denoted
by |�k (R)i. The eigenenergies de�ne BO surfaces evaluated at �xed atomic positions,
which we denote withUk (R).

The excitons for a dimer are given by

|�±i = ( |�1i ⌥ |�2i) /
p
2, (3.14)

and the corresponding BO surfaces by

U±(R) = ±
µ2

R3 �
C6

R6 . (3.15)

The vdW interactions amplify the repulsive character of the repulsive BO surface, and,
it diminish the attractive character of the attractive surface, depicted in Fig. 3.2. Note
that the dimer excitons are not dependent on the distance between the atoms. How-
ever, they are entangled states where both atoms share the excitation equally. It was
theoretically demonstrated, that two clouds of ultracold atoms in the dipole-blockade
regime can eject a single Rydberg atom per cloud after excitation from ground to Ry-
dberg and from Rydberg to exciton state. Both ejected atoms are prepared in a dimer
exciton state and thus EPR correlated, violating Bell’s inequalities. The creation of
entangled, far separated single atom pairs is possible with this setup79. As demon-
strated in section 2.2.1, the excitation distribution of excitons becomes dependent on
the atomic con�guration for more than two atoms. Directed transport of excitation
linked with diatomic proximity, a so called exciton pulse, requires an initialization on a
repulsive BO surface. Only for negative resonant interaction amplitudes as in Eq. (3.6),
the repulsive surface in a T-shape con�guration conically intersects when a trimer sub-
unit decouples and its atoms form an equilateral triangle con�guration. We illustrate
this for a four atom T-shape aggregate [sketch depicted in Fig. 3.3(a)], and vary the
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Figure 3.3: (a) Sketch of a four atom T-shape aggregate with con�guration (x1,x2,�3,�4) =
(�x ,a1 + x ,�a2/2,a2/2) and vertical chain o�set by �xo�set = a1 + d . (b), (c) Energy spectra of
Ĥdd (R) (b) and �Ĥdd (R) (c), with a Hamiltonian according to Eq. (3.7). We vary the positions
of atoms (1,2) equally and plot the spectra over the distance between atom 2 and the vertical
dimer axis. The T-shape aggregates of interest with closer distance between atoms (1,2) than
between atom (3,4), then two speci�c states are localized on atoms (1,2), with surfaces shown
as red and violett line. Note that only for interactions with negative amplitude [(b)] the re-
pulsive surface (red line) features a CI (location marked with blue circle), di�erent to the case
of interactions with positive amplitude [(c)]. Since the exciton pulse requires an initiation on
the repulsive surface, negative interaction amplitudes are required to get access to a CI. The
parameters for the calculation of the energy spectra are set to a1 = 0.4211a2 and d = 2.1053a2
and correspond to the values used for the aggregate under investigation in section 3.2.1.

interatomic distance between atoms (1,2). The energy spectrum is shown for a reso-
nant dipole-dipole Hamiltonian with negative binary interactions in Fig. 3.3(b), where
the repulsive surface (red line) clearly intersects with the second most energetic sur-
face at the position marked with a blue circle. In contrast, the energy spectrum of the
same Hamiltonian with positive binary interactions, shown in Fig. 3.3(c), the repulsive
surface features no CI.
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3.1.2 Initial state

We assume initially no quantum correlations between spatial and electronic degree of
freedom, such that the total wave function can be written as a direct product,

|�0(R)i = �0(R) |�el,0(R)i (3.16)

where |�el,0(R)i is the initial electronic state and �0(R) the initial nuclearwave function.
The atoms are initially trapped in approximately harmonic potentials around the mean
atomic positions. Due to the ultracold environment the nuclear wave function is in
the ground state of the trapping potentials, which motivates to use for each atom a
Gaussian nuclear distribution and �nally yields a product of them for the total nuclear
wave function,

�0(R) =
⇣
2�� 2

0
⌘�N

4
NY

n=1
exp *

,�
|Rn � R(0)

n |2
4� 2

0

+
-. (3.17)

We denote the standard deviation with �0, which is controlled by the trapping width.
The vector R0 ⌘ (R(0)

1 . . . R
(0)
N )T denotes the initial mean atomic con�guration. Note

that each atom is constrained to move only along one direction. The initial electronic
state should approximately be a repulsive dimer state on atoms (1,2),

|�el,0i ⇡ |�repi = ( |�1i � |�2i) /
p
2, (3.18)

such that excitation is localized on them and initiates the exciton pulse due to repulsive
forces.

3.1.3 Dynamical methods

So far the dependency of excitons and BO surfaces on the atomic con�guration ap-
peared parametrically. Changing the spatial arrangement will change both quantities.
On the other hand, atomic motion is induced by forces due to the surfaces, such that the
spatial and electronic degrees of freedom are dynamically interlinked. In the following
we �rst show the exact equations of motion in section 3.1.3. Since the numerical e�ort
increases drastically for increasing number of atoms, we present a quantum-classical
method in section 3.1.3, which we use to approximately �nd the dynamics of the �ex-
ible Rydberg aggregates. The methods are presented using the example of aggregates
with isotropic interactions, but are straightforward to adjust for the use with general
binary interactions.

Exact method

The full quantum dynamics is governed by the Schrödinger equation of the total system
where all information is encoded in the total wave function. Its evolution is determined



44 3 Planar aggregates with isotropic interactions

by a Hamiltonian which includes the electronic Hamiltonian and kinetic terms, and is
given by

ĤT(R) := �
~2

2M
r2R + Ĥel(R), (3.19)

where r2R is the Laplacian of the coordinate vector R, containing all atomic positions
andM is the mass of the atomic species. The time evolution of the total wave function
is determined by the Hamiltonian in Eq. (3.19) and its equation of motion is the time-
dependent Schrödinger equation,

i~
@

@t
|�(R, t )i = ĤT(R) |�(R, t )i . (3.20)

To numerically solve the Schrödinger equation, it is helpful to expand the wave func-
tion in an appropriate basis of the electronic space. Using the localized p states, we get
the diabatic representation of the wave function,

|�(R, t )i =
NX

�=1
�� (R, t ) |�� i . (3.21)

The absolute square values of the functions �� (R, t ) describe the space and time-de-
pendent probability density for �nding the p excitation localized on the � th atom. The
expansion coe�cients, |�� (R, t ) |2, are the diabatic densities. Another common expan-
sion uses the excitons of the electronic Hamiltonian,

|�(R, t )i =
NX

k=1
�̃k (R, t ) |�k (R)i . (3.22)

which is called the adiabatic representation, also known as the Born-Oppenheimer ex-
pansion162, where | �̃k (R, t ) |2 are the adiabatic densities. Integrating out the spatial
degrees of freedom of the densities we get populations,

P� (t ) :=
⌅ ��� �� (R, t ) ���2 dNR, (3.23)

P̃k (t ) :=
⌅ ��� �̃k (R, t ) ���2 dNR, (3.24)

where P� (t ) are the diabatic and P̃k (t ) the adiabatic populations, respectively. Note
that

⇤
dNR denotes integration over all atomic coordinates. The larger the adiabatic

population of an exciton, the more prominent it is in the system and its dynamics.
The change of adiabatic populations over time measures the adiabaticity. We say a
process is nonadiabatic within a time interval, when the adiabatic populations change
signi�cantly therein.

Both expansions of the total wave function make the complexity of the Schrödinger
equation in Eq. (3.20) fully apparent. Using the diabatic representation leads to the
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following set of coupled partial di�erential equations:

i~
@

@t
�� (R, t ) =

 
� ~

2

2M
r2R + hvdw(R)

!
�� (R, t ) +

X

�,�

V (R�� )�� (R, t ). (3.25)

Using the adiabatic representation, we get the following set of di�erential equations:

i~
@

@t
�̃k (R, t ) =

 
� ~

2

2M
r2R +Uk (R)

!
�̃k (R, t ) �

NX

l=1
�k,l (R) �̃l (R, t ). (3.26)

Each adiabatic density is coupled to the others through the nonadiabatic couplings
�k,l (R), which are a result of the kinetic energy operator acting on the R-dependent
expansion coe�cients and excitons. They by themselves consist of two parts:

�k,l (R) :=
~2

2M
⇣
2Fk,l (R)rR +Gk,l (R)

⌘
, (3.27)

where the nonadiabatic derivative couplings are given by

Fk,l (R) := h�k (R) | rR |�l (R)i , (3.28)

and the nonadiabatic scalar couplings have the form

Gk,l (R) := h�k (R) | r2R |�l (R)i . (3.29)

Note that the derivative couplings are antihermitian, F†
k,l
(R) = �Fl ,k (R). Although the

determining equations for the adiabatic expansion coe�cients have a more di�cult
structure than those for the diabatic expansion coe�cients, they have the advantage
to decouple when the nonadiabatic couplings vanish. A big class of systems can be
well described by neglecting the nonadiabatic couplings, which is known as adiabatic
approximation163. Then, the dynamics is dictated by a single Schrödinger equationwith
a single BO surface taking over the role of the potential for the atoms. It was shown that
for exciton pulses in linear Rydberg chains, the dynamics stays largely adiabatic72,73
and the adiabatic approximation would be justi�ed. However, near CIs one can never
use the adiabatic approximation.

The framework presented so far does not contain any further approximations. The
adiabatic representation of the coupled Schrödinger equations in (3.26) appears equiv-
alently in the dynamics of molecules. In either case, solving the coupled Schrödinger
equations is a hard problem. For further reading about quantum chemical methods,
see Ref. 87.

�antum-classical method

The systems of our interest can practically not be studied with the exact equations,
since they have too many spatial degrees of freedom. Furthermore, the propagation
passes nonadiabatic regions, such that an adiabatic approximation is not possible. We
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therefore use a quantum-classical method, Tully’s surface hopping algorithm155 with
fewest-switches164,165 (FSSH). The algorithm is a trajectory based approach, where
classical trajectories for the atoms are propagated according to Newton’s equations,
with forces from individual BO surfaces. The BO surface of propagation can switch
over time for each individual trajectory, such that nonadiabatic couplings are accounted
for. Initial positions and velocities are chosen such that their statistics are according
to the Wigner distribution of the initial nuclear wave function. In the following we
brie�y sketch the method. Let �0(R) be the initial nuclear wave function. Then, the
probability to �nd the system at position R0 is |�0(R0) |2, while velocities Ṙ0 are dis-
tributed according to |F T [�0(R0)]|2, the Fourier transform of the position space wave
function. For each classical trajectory we thus randomly select a pair of initial posi-
tions and velocities, � = {R0, Ṙ0}, distributed according to the probability distributions
above, derived from the wave function. Furthermore an initial BO surface is selected
for the system. The propagation of a classical trajectory is then fully determined by
Newton’s equation,

MR̈ = �rRU� (t ) (R), (3.30)

where � (t ) is the index of the instantaneously propagated BO surface. Since we wish
to allow for trajectories following di�erent BO surfaces, the index is time-dependent
with stochastic modi�cations, which we explain later. Note that the position vector is
also time-dependent, R = R(t ).

Simultaneously to Eq. (3.30), the electronic Schrödinger equation is propagated,

i~
@

@t
|�el(R(t ))i = Ĥel(R(t )) |�el(R(t ))i . (3.31)

These two equations are coupled, since the electronic wave function and the electronic
Hamiltonian parametrically depend on the atomic positions, which vary according to
Eq. (3.30). To numerically solve both equations, Newton’s equation propagates the
atomic positions in each time step forward according to forces from a certain BO sur-
face, which was obtained by diagonalization of the electronic Hamiltonian in the previ-
ous time step. As for the exact method, the wave function can be expanded in di�erent
ways. The adiabatic expansion is in the basis of time-dependent excitons, with expan-
sion coe�cients c̃k (t ) := h�k (R(t )) |�el(R(t ))i. The diabatic expansion uses the local-
ized p states, leading to the expansion coe�cients c� (t ) := h�� |�el(R(t ))i. A diabatic
expansion of the electronic wave function is convenient, turning Eq. (3.31) into

i~ċ� (t ) = hvdw(R(t ))c� (t ) +
X

�,�

V (R�� (t ))c� (t ). (3.32)

To account for nonadiabatic dynamics, for each classical trajectory the BO surface of
propagation can change over time, which is realized by sudden transitions, also called
jumps. The jumps are not deterministic, but randomly occur according to a speci�c
probability distribution. The presciption for possible jumps and the linked probability
distribution distinguish di�erent surface hopping algorithms. We use the most com-
mon variant, the fewest-switches method, where a check for transitions is performed
in each time step. In FSSH, the probability for a transition between two surfaces is set
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to the relative change of population, which for a jump fromUm toUn is given by

�m,n = max
 
0,
bn,m�t

am,m

!
, (3.33)

with �t the current numerical time step of propagation and

an,m := cnc⇤m, (3.34)

bn,m := �2<
⇣
a⇤n,m hṘ, Fn,mi

⌘
. (3.35)

A transition is accepted, if two conditions are ful�lled. The �rst condition compares the
probability to a uniformly selected random number, x 2 [0, 1], and is satis�ed when

n�1X

p=1
�m,p < x <

nX

p=1
�m,p (3.36)

is ful�lled. Since the jump to another surface creates a di�erence in the potential en-
ergy, the velocities of the atoms have to be adjusted to achieve conservation of the
total energy. The velocity adjustment is chosen in the direction of the nonadiabatic
derivative coupling vector corresponding to the transition between the two surfaces,
Fm,n, such that we have the ansatz for the velocities

Ṙ(t ) = Ṙ(t � �t ) � ��
m,nFm,n/kFm,nk2. (3.37)

The velocity adjustment is given by

��
m,n := Am,n ±

p
Bm,n, Am,n 7 0 (3.38)

with

Am,n := hṘ(t � �t ), Fm,ni /kFm,nk2, (3.39)
Bm,n := A2

m,n � 2(Un �Um )/M . (3.40)

It ensures energy conservation, when the second condition is satis�ed, that is Bm,n � 0.
Each single trajectory has a stochastic sequence for the index of propagated BO sur-
faces, � (t ), since the jumps between the surfaces occur randomly. Therefore, typically
a large number of trajectories need to be propagated to sample the atomic probabil-
ity distribution, which is also called atomic density. However, the number of required
propagated trajectories is speci�cally dependent on the observables of interest. A con-
sistency check whether nonadiabaticity is correctly considered is to compare the av-
erage adiabatic population of each surface with the average fraction of trajectories
propagating along the same surface for a large enough number of trajectories such
that both quantities are statisitically converged. The fraction of the BO surface labeled
with |�nR(t )i is de�ned by

fn (t ) :=
1

Ntraj

NtrajX

i=1
�n,�i (t ), (3.41)
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where Ntraj denotes the number of propagated trajectories and �i (t ) is the stochastic
sequence of BO surface indices on which propagation takes place for the ith trajectory.
Nonadiabatic transitions are accurately described when the average values of adiabatic
populations and fractions for each BO surface match.

A comparison between FSSH and the exact propagation according to Eq. (3.20) was
performed for �exible trimer aggregates in one-dimension, �nding very good agree-
ment72,73,78,82.

The surface hopping method is reviewed in detail in Ref. 165.

3.2 Nonadiabatic dynamics

After we provided the tools to describe excitons, BO surfaces and the dynamics of the
aggregate, we discuss nonadiabatic dynamics of exciton pulses in T-shape aggregates
in this section. The focus lies on understanding how a CI a�ects an exciton pulse, such
that we can utilize it to direct and manipulate exciton pulses. A detailed study of the
mechanism of a CI is presented for a minimal T-shape aggregate in section 3.2.1, con-
sisting of two perpendicular aligned dimers, each of them constrained to move along
a single direction. Subsequently, we extend the T-shape aggregate in section 3.2.2 to
seven atoms, where the investigations are focused on the possibility of excitation trans-
fer after the wave packet traverses a CI and redirection on an orthogonal direction.

3.2.1 Two perpendicular dimers

We use Rydberg states with principal quantum number � = 44, leading to a transition
dipole moment of µ = 1000 atomic units. For simplicity we set C6 = 0 in this sec-
tion. The atomic con�guration is described by the distance between the atoms on the
horizontal direction, a1 ⌘ R (0)

12 , the distance between the atoms of the vertical dimer,
a2 ⌘ R (0)

34 , and the horizontal distance between atom 2 and the x position of the ver-
tical dimer, denoted by d . The horizontal o�set of the vertical dimer is then given by
�xo�set ⌘ a1 + d . A sketch of the atomic con�guration is shown in Fig. 3.4(a). Specif-
ically, we set the parameters to (a1,a2,d ) = (2.16, 5.25, 8.5) µm. The width of the
Gaussian nuclear wave function is set for each atom to �0 = 0.5 µm.

Although, we position atoms (3,4) such that their mean � position is mirror symmetric
to the x axis, single realizations of the atomic con�guration can still be asymmetric
due to the Wigner distribution, such that |�3/�4 | , 1. It is useful to introduce the
asymmetry parameter,

b := 2
|�3/�4 |
|�3/�4 | + 1

, b 2 [0, 2], (3.42)

to quantify the asymmetry for each atomic con�guration and subsequently for each
trajectory. We say that trajectories withb ⇡ 1 are symmetric and forb 7 1 asymmetric.
We will later see that this distinctive feature of trajectories is the main reason for the
occurrence of two di�erent dynamics. The bars in Fig. 3.4(a) visualize the excitation
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Figure 3.4: (a) Orthogonal atom chains with one Rydberg dimer each. Atoms 1 and 2 initially
share an excitation. Due to the ensuing repulsion (blue arrows) atom 2 reaches the conical
intersection at xCI. The colored bars visualise the excitation amplitude on each atom cn =
h�n |�repi, with “+” for cn > 0 and “-” for cn < 0. The origin of the coordinate system is set to
the mean initial position of atom 1. (b) The repulsive energy surface Urep (red) and adjacent
surface Uadj (green) of the trimer subunit (atom 2, 3 and 4) near the CI. (c) and (d) Forces on
atom 3 (solid lines) and atom 4 (dashed lines), for the repulsive surface [red, (c)] and adjacent
surface [green, (d)]. The insets show atomic positions and the excitation distribution cn of
exciton states and forces for the values �x23/a2 = 2.5, 0.46, marked as gray, dashed vertical
lines, where �x23 denotes the distance between atom 2 and the vertical chain. The parameter b
controls the degree of symmetry of the trimer, where b = 1 corresponds to an isosceles trimer
con�guration. The gray, dotted vertical line marks the con�guration with �x23/a2 =

p
3/2,

where for b = 1 the CI is located.

amplitude of the exciton on the repulsive BO surface initially. For each atom the length
of the bar represents the amplitude of the diabatic coe�cient, cn = h�n |�rep(R0)i, where
the sign “+” is chosen for positive and “-” for negative values. As one can see, the single
p excitation is initially localized on atoms (1,2). On the BO surface k , the force on atom
n is given by Fnk = �rRnUk (R). Due to the initial repulsive force Fn,rep, as indicated by
the blue arrows, atom 2moves and eventually reaches the position xCI, where atoms (2–
4) form a triangular subunit corresponding to the ring trimer studied in75. The CI of
the trimer is realized for b = 1, d =

p
3/2a2 in Fig. 3.4(a), where the three atoms form

an equilateral triangle. To illustrate the CI, we show in Fig. 3.4(b) the two intersecting
energy surfaces as a function of two selected atomic position variables. The upper
surface (shaded in red) will be hereafter referred to as the repulsive surface Urep, with
corresponding exciton state |�repi, as it always entails repulsive interactions of nearby
atoms. The lower surface at the intersection (shaded in green) will be referred to as the
adjacent surface Uadj, with corresponding exciton state |�adji. Further surfaces are not
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shown and play no signi�cant role.

We will now systematically construct and interpret the atomic motion triggered by the
initial excitation, �rstly by analyzing typical trajectories and their energy spectra, then
by investigating the atomic densities of the repulsive and adjacent adiabatic surface,
which �nally will enable us to understand the full evolution of the atomic densities.
We consider its evolution in time, spatially resolved, in terms of population of adiabatic
surfaces and regarding the purity of the state.

Evolution and energy spectra of typical trajectories

The quantum-classical FSSH method is based on the propagation of classical trajecto-
ries. Studying the characteristics of single trajectories is an essential step to character-
ize the dynamics of the wave packet. Thus, FSSH as an approximate scheme is not only
a necessary tool to determine the system’s dynamics at all but moreover signi�cantly
aids our physical understanding.

The initially localized excitation on atoms (1,2) yields strong repulsive forces between
them which ultimately provokes atom 2 to move towards the vertical dimer. Initially,
the propagation occurs for all trajectories adiabatically on the repulsive surface, for
selected single trajectories in Figs. 3.5(a)–3.5(c) and corresponding energy spectra in
Figs. 3.5(d)–3.5(f) we highlight this surface as red lines. Before atoms 2, 3, and 4 form
a trimer subunit, it is apparent from all energy spectra in Figs. 3.5(d)–3.5(f), that a �rst
transition from the repulsive to the adjacent surface (green lines) occurs shortly before
one microsecond. Physically, the aggregate continues propagation with the exciton
state of the horizontal dimer, however, its BO surface has a crossover with the repulsive
BO surface of the vertical dimer, leading to a transition in the energy spectra. At the
time of the transition, both dimers are weakly coupled, which is the reason why all
trajectories change the global BO surface. For further details concerning this trivial
transition, see appendix B.2.

The physical situation remaining unchanged, atom 1 separates itself from the remain-
ing atoms and since atom 2 gets closer to the vertical dimer, the exciton is consequently
transformed from a dimer to a trimer state, thereby transferring excitation to the ver-
tical dimer.

Already shortly before atom 2 reaches the vicinity of the CI con�guration [this posi-
tion of atom 2 is marked as xCI in Fig. 3.4(a)], excitation is transferred to atoms (3,4).
Interlinked with it are forces on the vertical dimer, inducing motion of its atoms. A
characteristic feature is the sudden increase of forces in the vicinity of the CI con�gu-
ration, which is almost instantaneous [apparent from the forces shortly before atom 2
reaches the position marked as gray, dotted line in Fig. 3.4(d)]. In the energy spectra of
selected trajectories in Figs. 3.5(d)–3.5(f), the vicinity of the CI is marked as gray area.
After the trajectories traverse this region, they start to evolve di�erently. The degree
of mirror asymmetry along the horizontal axis, which is quanti�ed by the parameter
b de�ned in Eq. (3.42), distinguishes the further dynamics of trajectories. We consider
for a moment the con�guration where atom 2 is at the position marked with xCI, such
that for a perfectly symmetric trajectory (b = 1), the CI con�guration is realized. With
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increasing asymmetry (which is quanti�ed by increasing deviations of the parameter b
from one), the deviation from the equilateral triangle con�guration increases and with
it the energy gap between repulsive and adjacent surface, resulting in an avoided cross-
ing instead of a conical intersection. For further details about the relation of the energy
gap to the asymmetry, see appendix B.3. The two trajectories in Figs. 3.5(a)–3.5(b) with
their corresponding energy spectra in Figs. 3.5(d)–3.5(e), respectively, are representa-
tives for asymmetric trajectories. A symmetric trajectory is shown in Fig. 3.5(a), with
corresponding energy spectrum in Fig. 3.5(f). The greater energy gap makes it more
likely for asymmetric trajectories to stay on the adjacent surface whereas symmetric
trajectories have a higher chance to make a transition back to the repulsive BO sur-
face.

Staying on the adjacent surface, the excitation on atom 2 is quickly and entirely trans-
ferred to the two vertical atoms after the nonadiabatic region is traversed. Forces act
only on atoms which share the excitation, due to dominant resonant interactions (we
actually neglect vdW interactions in this system for simplicity). This implies that
during the process of transferring the excitation from atom 2 to the vertical dimer,
atoms (3,4) are repelled from atom 2 until no excitation is left on the latter. Since
asymmetric trajectories tend to stay on the adjacent surface, the induced forces on
both vertical atoms are asymmetric as well, leading to a repulsion of only one atom.
Two examples of this are the trajectories in Figs. 3.5(a)–3.5(b). Both trajectories are al-
most re�ections of each other by mirroring along the x axis. Surprisingly, the adjacent
surface provides repulsion of the vertical atom with larger distance to atom 2†.

A transition back to the repulsive surface in the vicinity of the CI leads to a very dif-
ferent dynamical scenario. Then, atom 2 does not suddenly transfer all its excitation
to the vertical dimer. Instead, all three atoms share the excitation for a longer time
and during this period atoms (3,4) strongly repel from atom 2 with the magnitude of
the forces a factor of ten larger compared to forces on the adjacent surface [compare
Fig. 3.4(c) with Fig. 3.4(d)]. The interactions increase until all three atoms form a linear
trimer [as evident from the peak of the red energy surface around 2.5 µs in Fig. 3.4(f)],
which is due to decreasing interatomic distances between atoms 2 and 3, and atoms 2
and 4, respectively. Since only symmetric trajectories with high probability access the
repulsive surface get, the strength of repulsion is almost equal on both atoms of the ver-
tical dimer. In Fig. 3.5(c) we show as an example a trajectory with the characteristics
of the repulsive BO surface.

The energy spectra such as shown in Figs. 3.5(d)–3.5(f) should experimentally be acces-
sible with micro-wave spectroscopy of Rydberg aggregates, similar to Ref. 118,166.

Exciton spli�ing

The discussion of single trajectories showed us that the CI divides classical trajecto-
ries into two classes, which indicates that the total wave packet is also drastically af-

† For propagation along the adjacent surface, shortly after atom 3 traversed the nonadiabatic region,
all excitation is transferred to the vertical dimer with most excitation residing on the atom farther apart
from atom 3, as depicted in Fig. 3.4(d), which consequently is stronger repelled
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Figure 3.5: Selected single trajectories R(t ) of atoms (3,4) in (a)–(c) with corresponding time
resolved energy spectra (black lines) and potential energy U� (t ) (R(t )) (colored line) in (d)–(f).
For both, trajectories and potential energy, evolution on the repulsive surface is marked with
red lines and evolution on the adjacent surface with green lines. (a), (b) Two characteristic
trajectories that stay on the adjacent surface. The two trajectories are almost mirror symmetric
around the x axis. (c) A characteristic trajectory jumping back to the repulsive surface after
passing the vicinity of the CI. The gray area marks the vicinity of the CI between the adjacent
and the repulsive surfaces, governing the dynamics. The earlier crossings are less relevant for
our dynamics here and trivial in the sense that all trajectories undergo a transition there. We
explain this in the main text and study this type of crossings in appendix B.2.

fected by it. In this section we will present and discuss the �nal results of the four
atom T-shape aggregate, which we obtained by a numerical simulation with the FSSH
method. The discussion uses typical quantum observables but resorts to the knowledge
we gained from the investigation of single trajectories. To study the spatial dynamics
of the wave packet it is suitable to calculate time-resolved atomic densities, which sum
the spatial probability densities of each individual atom to plot them combined over the
same space coordinates. Very helpful are partial atomic densities, which are fractions of
the total atomic density which evolve on single BO surfaces only. Their density pro�les
are understood well with the help of single trajectories. Additionally, to investigate the
dynamics, we use adiabatic populations, which indicate the participating BO surfaces
and quantify their contribution to the dynamics. Finally we also calculate the purity of
the electronic density matrix to obtain informations about the system being in a pure
or mixed state.

In the following we formally introduce atomic densities. The total atomic density is
de�ned by

n(r, t ) :=
1
N

NX

j=1

⌅
dN�1R{j} |�(R, t ) |2���Rj=r

, (3.43)
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whereas a partial atomic density for a BO surface corresponding to an exciton � (R), is
given by

n� (r, t ) :=
1
N

NX

j=1

⌅
dN�1R{j} | h� (R) |�(R, t )i |2���Rj=r

. (3.44)

The integration
⇤
dN�1R{j} is over all but the coordinates of the jth atom. These def-

initions are based on using the exact quantum method with a full propagation of the
Schrödinger equation. However, since we use the quantum-classical FSSH method, the
de�nitions have to be readjusted. The following de�nitions are adapted to a trajectory
based quantum-classical method. There, the spatial coordinates need to be de�ned on
a grid, which we set in the following way:

�
grid
k

:= �
grid
1 + (k � 1)���grid, � 2 {x ,�, z}, (3.45)

with grid spacing ���grid in � direction. The next step is to calculate the histogram
of how frequently atoms visit a certain spatial volume. This procedure is based on
classical trajectories, where each atom has a completely determined position at every
time step. Since the T-shape aggregates in this chapter are restricted to the x-� plane
and the atoms are free to move in a single direction only, we separately de�ne two
histograms, for the horizontal Rydberg chain

n
x�grid
i (t ) :=

1
NtrajNx

NtrajX

k=1

NxX

j=1
�

 
�x�grid

2
� |x (k )

j (t ) � xgridi |
!
, (3.46)

and for the vertical Rydberg chain

n
y�grid
i (t ) :=

1
Ntraj(N � Nx )

NtrajX

k=1

NX

j=(Nx+1)
�

 
�y�grid

2
� |� (k )

j (t ) � �gridi |
!
, (3.47)

where x (k )
j (t ) (� (k )

j (t )) is the horizontal (vertical) coordinate of the jth atom for the
kth trajectory, Ntraj is the total number of propagated trajectories and � denotes the
Heaviside function. Turning the histograms into densities, equivalent to the de�nition
in Eq. (3.44), is possible by assigning a density value to all coordinate values between
the grid points, which is realized by

n(� , t ) :=
1

���grid

NgridX

i=1
�

 
���grid

2
� |� � � gridi |

!
n
��grid
i (t ), � 2 {x ,�}, (3.48)

where Ngrid is the number of grid points. De�ning the partial atomic densities equiv-
alently to Eq. (3.44) for the quantum-classical method requires to condition the his-
tograms in Eq. (3.46) and Eq. (3.47) such that they only measure when trajectories
evolve on the BO surface of interest.

The signature of the CI is very well visible in the partial atomic densities of the adjacent
and repulsive BO surface for atoms (3,4), shown in Fig. 3.6. After the wave packet ini-
tially populates the repulsive surface entirely, at around one microsecond the density
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decreases slightly thereon due to the trivial crossing, which we discussed earlier. The
entire wave packet undergoes a transition to the globally adjacent surface, apparent
due to maximum density values for the adjacent surface around 1 to 1.5 microseconds
in Fig. 3.6(a). Subsequently, the CI transition follows at around 4–5 µs, where the tran-
sition time is broadly distributed. This leads to a splitting of the wave packet in two
almost equal parts. Each part evolves on one of the two participating BO surfaces. The
investigation of single trajectories revealed already, that propagation along di�erent
BO surfaces features di�erent dynamics.

On the repulsive surface, atoms (3,4) experience a strong repulsion, almost equal for
both atoms. This explains the strong repulsion in the partial density of the repulsive
BO surface in Fig. 3.6(b). Another feature is the large broadening of the atomic position
distribution after the CI transition. As already mentioned, the time of a return tran-
sition from the adjacent to the repulsive surface is already broadly distributed, such
that the position of atom 2 varies strongly when the propagation starts again on the
repulsive surface. Since the atoms (3,4) repel mainly from atom 2, the forces induced
on the vertical atoms vary strongly, leading to a broad distribution of velocities and
consequently broad position distributions.

Initial con�gurations with large upwards or downwards shifts of the vertical dimer
away from its symmetric position relative to the horizontal axis are highly asymmetric
and the resulting trajectories consequently propagate along the adjacent surface. Due
to the high asymmetry of the trajectories, the adjacent surface repels e�ectively only
the atom of the vertical dimer, which is farther apart from the horizontal axis. Since
this can be either atom 3 or atom 4, two di�erent motions of the vertical dimer can
be observed which explains the branching of the atoms’ position distribution into two
parts, due to the fact that each atom can either rest or be repelled. The result is a total
four-fold branching in the partial density of the adjacent surface. Another character-
istic of the surface are the sharp pro�les of each branch, compared to the very broad
atomic distributions on the repulsive surface. Evolution on the adjacent surface oc-
curs when no return transition to the repulsive surface appears. Thus, a broadening
due to di�erent transition times can be excluded. Moreover we found for trajectories
propagating along the adjacent surface, that the forces act signi�cantly only for a short
time on the vertical dimer, when atom 2 traverses the vicinity of the CI con�guration.
At this point, the distances between atom 2 and the other two atoms are still quite
large, which besides the weaker induced forces on the vertical dimer also explains a
smaller relative variation of them, compared with a propagation along the repulsive
surface. This eventually yields rather localized position distributions, as can be seen in
Fig. 3.6(a).

With the interpretation of the partial atomic densities at hand, we �nally can under-
stand the total atomic densities. We present in Fig. 3.7(a) the total density of the hori-
zontal and in Fig. 3.7(b) the total density of the vertical dimer, respectively. The density
of the horizontal dimer shows that atom 2 experiences an increasing broadening of its
spatial distribution, with dynamics ranging from transmission to re�ection shortly be-
fore reaching the horizontal position of the vertical dimer. The re�ection is due to the
part of the wave packet propagating along the repulsive surface. The potential en-
ergy reaches a maximum value for the linear trimer con�guration, apparent from the
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Figure 3.6: Partial atomic densities of atoms (3,4), for (a) evolution on the adjacent surface
and (b) evolution on the repulsive surface. The computation is according to Eq. (3.48) but with
frequency measures restricted to single BO surfaces. We propagated Ntraj = 106 trajectories.
Each density plot is renormalized to the global maximum value of both densities. Furthermore
we plot all density values between 0.6 and 1 with the same color, to highlight details at lower
density values.

energy spectra in Fig. 3.5(f). If the kinetic energy of atom 2 is smaller than this bar-
rier, the atom is re�ected. The transmission is due to propagation along the adjacent
surface, where the atom does not experience this barrier and it thus can continue its
motion without inversion of direction. The atom’s wave packet of the vertical dimer
fans out after around 2.8µs due to the CI transition, such that simultaneous evolution
on two BO surfaces occurs. This is indicated also by the adiabatic populations of the
repulsive and adjacent surfaces in Fig. 3.7(c) which eventually are half populated. The
earlier drop of the adiabatic population of the repulsive surface around 1µs is due to
the trivial crossing discussed earlier. The CI eventually splits the nuclear wave packet
and the electronic state simultaneously in two equal parts, which we deliberately de-
signed by choosing an appropriate initial con�guration for the aggregate. The initial
total wave function is given by |�0(R)i = �0(R) |�el,0i, where �0(R) is the nuclear wave
function and |�el,0i the electronic wave function, which is approximately the localized
repulsive exciton, |�el,0i ⇡ |�rep(R0)i. After the CI transition, the total wave function
is transformed to |��n(R)i = �rep(R) |�rep(R)i + �adj(R) |�adj(R)i, which is a coherent
splitting of the wave packet where the simultaneous presence of two excitons allow for
a superposition of di�erent nuclear wave functions. This �nal state of the aggregate
indicates entanglement between the atomic con�guration and the electronic state. To
quantify this, we measure the purity of the electronic density matrix, which is de�ned
by

P (t ) := tr(�̂ 2(t )), (3.49)

where
�̂ (t ) :=

⌅
dNR |�(R, t )i h�(R, t ) | (3.50)

is the electronic density matrix. Using FSSH as dynamical method, the calculation of
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Figure 3.7: Total atomic densities of the aggregate together with measures to quantify nona-
diabatic transitions and entanglement. (a) Atomic density of the horizontal dimer and (b) of the
vertical dimer. The maximum value of the data in (a) and (b) is individually set to one. (c) Adi-
abatic populations, �n,n (t ), of the BO surfaces, which can be calculated according to Eq. (3.52).
The participating surfaces are the repulsive (red) and adjacent one (green). All other BO sur-
faces are negligible for the dynamics. A self consistency check for the nonadiabatic transitions
to be correctly treated is to compare the adiabatic populations to the trajectory fractions, de-
�ned in Eq. (3.41). The fractions (dotted lines) are in good agreement with the populations.
(d) Purity, P (t ), de�ned in Eq. (3.49), which measures the entanglement between nuclear and
electronic degrees of freedom. To obtain the results we propagated 106 trajectories with FSSH.

the density matrix is best performed in its diabatic representation,

�̂ (t ) =
NX

n,m=1
�n,m (t ) |�ni h�m | , (3.51)

where the coe�cients are trajectory averages over binary products of diabatic coe�-
cients72,73,82,

�n,m (t ) := cn (t )c⇤m (t ). (3.52)

The purity drops from one to one half, which indicates a transition from a pure to
a mixed state. The mixed state is the result of entanglement between nuclear and
electronic degrees of freedom.

3.2.2 The seven atom T-shape aggregate

For one-dimensional Rydberg chains with a dislocation at one end, the initiation of
exciton pulses was demonstrated72,73, where diatomic proximity combined with exci-
tation is transported. This mechanism of transporting energy and momentum can be
regarded as a quantum analogue of the classical Newton’s cradle. However, the be-
havior of exciton pulses in higher dimensional arrangements is a priori unclear due to
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Figure 3.8: Sketch of a seven atom system combining features of adiabatic entanglement trans-
port and CI dynamics. Three atoms are placed on the horizontal and four on the vertical di-
rection. Atoms (1,2) are prepared in a repulsive exciton initially, resulting in the excitation
distribution shown by red bars, as described in the caption of Fig. 3.4. Atom 3 is in the vicinity
of a CI at position xCI. Around that con�guration, the excitation can either almost exclusively
reside on atoms 3, 5 and 6, when the distance between atoms (5,6) is adjusted su�ciently small
or resides on atoms (2,3) for large distances between atoms (5,6). Atom (5,6) are accelerated at
this time on the two di�erent surfaces, already described in the four atom section. We analyze
whether or not the atom pair (5,4) or (6,7) �nally build a combined exciton-motion pulse. This
is quanti�ed by the binary entanglement E45 and E67 at the moment that atom 4 and atom 7
reaches the location indicated by a black box, termed "entanglement readout", respectively. We
�nally use the indicated displacement �� of the horizontal chain to steer entanglement trans-
port upwards or downwards.

new features such as CIs. The four atom T-shape aggregate already indicated that the
CI drastically a�ects the exciton dynamics. This minimal T-shape aggregate revealed
the mechanism of the CI, but investigating transport features on the vertical direction
was not possible due to too few atoms. In this section we change this, with speci�c in-
terest in the possibility of continued exciton pulse propagation after redirection on an
orthogonal direction. T-shape aggregates are convenient, since the one-dimensional
restriction of the atomic motion technically simpli�es the implementation. Further-
more, two-dimensional e�ects such as the CI appear only in a small volume, namely
when a trimer sub-unit is formed between atoms from the horizontal and vertical chain.
To investigate transport features on the vertical chain we extend it to four atoms. They
are positioned such that transport in upwards and downwards direction can occur.
Moreover the horizontal chain is extend to three atoms to allow transfer of excitation
and momentum already on the horizontal chain. Thus, altogether, we investigate a
seven atomT-shape aggregate as sketched in Fig. 3.8. The interatomic distance between
atoms (1,2), denoted with a1, is adjusted to be the smallest, which allows for initiating
the exciton pulse on both atoms by populating the repulsive BO surface. Propagation
along this surface ensures exciton pulse propagation towards the vertical chain, trans-
ferring excitation and momentum �rst to atom 3 which eventually reaches the CI po-
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sition [marked with xCI]. Atoms 3, 5, and 6 can form a trimer subunit for a su�ciently
small spacing between atoms (5,6), so that repulsive and adjacent surface get closely
spaced, which ultimately splits the exciton pulse as for the four atom aggregate.

We speci�cally use Rydberg states with principal quantum number � = 80, which cor-
responds to a scaled radial dipole moment of µ = 3371 a.u.. The geometric parameters
of the con�guration are set to a1 = 6 µm, a2 = 9.5 µm, d = 22 µm. The horizontal o�set
of the vertical chain is �xo�set = a1 + 2d . The width of each atom’s nuclear wave func-
tion is set to �0 = 0.5 µm initially. The remaining parameter is �� which adjusts the
vertical shift of the horizontal chain. In the following we explicitly consider vdW inter-
actions and set C6 = �7.6 ⇥ 1020 atomic units. In this section we set �� = 0, to realize
a symmetric T-shape con�guration. Note that we de�ne �� to be positive for shifts in
downwards � direction. We will discuss this vertical shift as control parameter for the
dynamics on the vertical chain in section 3.3.

Nondirectional transport

When the exciton pulse encounters a CI, the total wave function is coherently split,
as for the four atom aggregate, discussed in section 3.2.1. The investigation of single
trajectories yields an intuitive understanding of the dynamics. An exciton pulse is ini-
tiated on atoms (1,2) and transfers momentum and excitation to atom 3 which hence
approach the vicinity of the CI [marked with xCI in Fig. 3.8]. During the time of exci-
ton pulse propagation along the horizontal chain, the only di�erence to the four atom
aggregate is the appearance of three instead of one trivial crossings (see discussion in
section 3.2.1 and appendix B.2) before the con�guration of the nontrivial CI is reached.
The reason for the appearance of three trivial crossings is that the potential energy
reaches a local minimum twice, which is energetically below the repulsive BO surface
of the vertical chain. This takes place when atom 2 and atom 3 carry maximum mo-
mentum, respectively. At the position where atoms (2,3) are in closest proximity, the
surface of propagation is above the most energetic surface of the vertical chain. To-
gether this implies the appearance of three (avoided) crossings of the BO surface of
propagation with the BO surface of the vertical chain, before the vicinity of the non-
trivial CI crossing is reached.

The nontrivial CI branches the wave packet to evolve on two BO surfaces as we ob-
served it already for the four atom aggregate. We start the discussion of the dynamics
with an investigation of single trajectories.

Two examples of trajectories propagating along the adjacent surface after passing the
vicinity of the CI are shown in Figs. 3.9(a), 3.9(b), with corresponding energy spectra
in Figs. 3.9(d), 3.9(e), respectively. As for the double dimer aggregate, the adjacent
surface is more likely to be populated by trajectories with larger shifts of the vertical
chain away from its symmetric position relative to the horizontal chain. However,
the repulsion of atoms (5,6) is much less asymmetric than in the four atom aggregate,
which is due to the addition of vdW interactions. The o�-resonant contribution to the
interactions are important here to ensure that atoms without excitation do not ionize
when motion decreases the interatomic spacings. We discuss the dynamics for the



3.2 Nonadiabatic dynamics 59

0 10 20 30 40 50
-40

0

40 (a)

t (7s)

E 
(M

H
z)

0 10 20 30 40 50

(b)

t (7s)
0 10 20 30 40 50

(c)

t (7s)

0 8 16 24
0

10

20

30 (d)

t (7s)

y 
(7

m
)

0 8 16 24

(e)

t (7s)
0 8 16 24

(f)

t (7s)

Figure 3.9: Atomic positions from single trajectories for atoms (4–6) (a)–(c) with correspond-
ing eigenenergies in (d)–(f). (a) and (b) Two di�erent trajectories ending up on the adjacent
surface. (c) A trajectory returning to the repulsive surface after traversing the vicinity of the
CI. (d)–(f) Time-resolved energy spectra (black lines) and potential energy (colored line), for
position trajectories above. For both, positions and potential energy, evolution on the repulsive
surface is marked with red and evolution on the adjacent surface with green. The trajectories
shown in (c) evolve in the end on a third surface, shown as black lines. The gray area marks the
CI and its vicinity. The earlier transitions between repulsive and adjacent surface are trivial,
see the discussion in section 3.2.1 and appendix B.2

trajectory in Fig. 3.9(a) for which atom 5 has a larger vertical distance to atom 3 than
to atom 6. The propagation along the adjacent surface transfers excitation from atom 3
to atoms (5,6) very quickly, within the vicinity of the CI. As a feature of the adjacent
surface, the vertical atom with the larger distance to the excitation inducing atom of
the horizontal chain, shares more excitation than the remaining atom of the trimer
subunit [as apparent from the excitation inset in Fig. 3.4(d)]]. For the trajectory under
discussion, this is atom 5 and resonant interactions let the atom be repelled towards
atom 4. Di�erent to the four atom aggregate, we observe also a repulsion of atom 6,
which is due to vdW forces. In the four atom aggregate we were allowed to neglect
vdW forces and thus observed the repulsion of only one atom. Atom 5 experiences still
a stronger repulsion here and approaches atom 4 faster. Excitation then gets localized
for a while on atoms (5,4) and we expect that momentum and excitation are transferred
together in the downwards direction, eventually carried by atom 4. However, this is
not the case which we found out by a time-resolved tracking of both atomic motion and
excitation transfer from which we subsequently generated a movie82 (not append to
this thesis). The movie revealed that due to the occurrence of a second CI the excitation
is swapped to the upper dimer pair.

A trajectory propagating along the repulsive surface is shown in Fig. 3.9(c). When
atom 3 reaches the position of the �rst nontrivial CI crossing, a return transition to
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Figure 3.10: Partial excitation densities for atoms (1–3) in (a), (b) and atoms (4–7) in (c), (d),
according to Eq. (3.53). (a) and (c) Spatial distribution of excitation for propagation along the
adjacent surface with exciton � (R) = �adj (R). (b) and (d) Spatial distribution of excitation for
propagation along the repulsive surface with exciton � (R) = �rep (R). All densities all scaled to
have the same global maximum. Initially the excitation is localized on atoms (1,2) and resides
exclusively on the repulsive BO surface, however, later on, it distributes among two BO sur-
faces and more than two atoms, such that the peak values decrease drastically. This makes the
implementation of a colormap cuto� necessary, to highlight distribution of excitation at later
times. Speci�cally, we set all density values above 0.2 to the same color. The dashed white lines
in (a), (b) mark the horizontal position of atoms (4-7).

the repulsive surface (red line) is performed, apparent from the energy spectrum in
Fig. 3.9(f). Di�erent to the propagation along the adjacent surface, all the three atoms 3,
5, and 6 simultaneously share excitation after the transition back to the repulsive sur-
face. Since atoms (5,6) reach the outer lying atoms 4 and 7 almost at the same time, the
excitation gets delocalized over all atoms on the vertical chain. However a small asym-
metry of the spatial distribution of the vertical atoms localizes excitation on atoms (5,4).
Atom 3 is re�ected o� the vertical chain and eventually moves back towards x < 0. We
generated for this trajectory also a movie which revealed that several further CIs occur
and �nally cause that most excitation reside on atoms (2,3), hence on the horizontal
chain.

To clarify the di�erent distributions of excitation on the two surfaces, we calculate the
partial excitation density,

nexc� (r, t ) :=
1
N

NX

j=1

⌅
dN�1R{j} | h� (R) |�(R, t )i |2 | h� (R) |�ji |2���Rj=r

, (3.53)

which describes the spatial distribution of the p excitation in state |� (R)i, weighted
with the probability density that the aggregate is in the stated exciton. Note that we
actually have to adjust Eq. (3.53) for the use with the FSSH method, as it was necessary
for the atomic densities.
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The excitation distribution of the entire wave paket is shown in Fig. 3.10, where
Figs. 3.10(a), 3.10(b) show results for atoms (1–3) and Figs. 3.10(c), 3.10(d) for atoms (4–
7). The description we gave with single trajectories, of how each surface distributes
excitation, is con�rmed to hold true for the wave packet as well.

The adjacent surface provides a transfer of excitation to the outer atoms of the ver-
tical chain, as apparent from Fig. 3.10(c). Moreover, Fig. 3.10(a) indicates that almost
all excitation is removed from atom 3 when it is in the vicinity of the CI. However,
the motion of atom 3 can proceed di�erently. Either it traverses the vertical chain or
it is re�ected o� from it, as evident from the atomic density of the horizontal chain,
shown in Fig. 3.11(a). Without vdW interactions, the atom would always traverse the
vertical chain, since resonant interactions can only induce forces on atoms which share
excitation (see appendix B.4).

The repulsive surface transfers a fraction of excitation to atoms (5,6) on the vertical
chain only for a short time, however, before both of them reach atoms 4 and 7, respec-
tively, the excitation is almost completely relocalized, as it can be seen in Fig. 3.10(d).
Most of the excitation stays on atom 3, which is re�ected o� the vertical chain to move
backwards, evident from Fig. 3.10(b). The atomic density of atoms (4–7) in Fig. 3.11(b)
shows that almost surely motion is induced on atoms 4 and 7 regardless whether exci-
tation is localized on them or not. The adiabatic populations in Fig. 3.10(c) con�rm that
the CI leads to a half-half splitting of population on the repulsive and adjacent surface
at around 20 µs. The population changes before are again due to trivial crossings. The
purity, shown in Fig. 3.10(d), �nally con�rms the coherent splitting of the wave packet
to evolve on two surfaces simultaneously.

We conclude, that the exciton pulse can not be completely continued on the vertical
chain with this symmetric con�guration, where �� = 0. The transport of excitation is
not only undirected on the vertical chain, but also a signi�cant fraction of excitation
remains on the horizontal chain.
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Figure 3.11: Dynamics of atomicmotion and populations. (a) Total atomic density of atoms (1–
3). (b) Total atomic density of atoms (4–7). (c) Adiabatic populations (solid lines), �n,n , according
to Eq. (3.52), together with fractions (dashed dotted lines) of repulsive surface (red), adjacent
surface (green) and third most energetic surface (yellow). (d) Purity, P (t ), of the electronic
density matrix, according to Eq. (3.49). All data is averaged over 106 realizations. The maximum
value of the data in (a), (b) is individually set to one. To highlight details at lower densities, all
values between 0.7 and 1 are represented with the color of maximum density. The dashed white
line in (a) marks the horizontal position of atoms (4–7).

3.3 Exciton switch

We found in section 3.2.2 that the continuation of exciton pulse propagation on the
vertical chain for a symmetric T-shape aggregate with �� = 0 is not possible. More
precisely, the fraction of excitation which is transferred to the outer two atoms on
the vertical chain is very low. This is due to the population of two surfaces after the
�rst nontrivial CI crossing, where only one of them, the adjacent surface, transfers
excitation to atoms 4 and 7. However, the repulsive surface transfers the excitation
�nally back to the horizontal chain and this excitation is lost for the exciton pulse
propagation on the vertical chain.

The objective of this section is to engineer the dynamics in the vicinity of the CI to es-
tablish exciton pulse propagation on the vertical chain with high �delity and to control
the propagation direction. We still use the seven atom T-shape aggregate as sketched
in Fig. 3.8, but take use of the asymmetry parameter �� to guide the exciton pulse.
Moreover we systematically vary all parameters a1, a2 and �� to perform high �delity
exciton pulse propagation after redirection on the vertical chain. In order to quantify
exciton pulse propagation, we require a measure of characteristic properties, which is
coherently shared excitation interlinked with atomic motion. To obtain this measure,
we sample the coherence properties of the pulse on both ends of the vertical chain, a
distance aE away from atoms 4 and 7 [see Fig. 3.8]. We call this location “detector” in
the following. The distance aE is useful to verify atomic motion. If the atoms are not
set into motion, or the motion is interrupted such that the atoms can not reach the
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detector, exciton pulses are not established. The second feature — coherently shared
excitation— is quanti�ed through the bipartite entanglement of formation167,168, which
contains how much excitation is shared and how it is distributed between two atoms.
To calculate it, we extract from the electronic density matrix information about the ex-
citon pulse restricted on two atoms. This is end we calculate reduced electronic density
matrices,

�̂ab := Tr{a,b}
f
�̂

g
, (3.54)

for two atoms, labeled with a,b. Technically, the calculation is a partial trace,
Tr{a,b}

f
· · ·

g
, over electronic states for all atoms other than a, b. Suppose |�i is a pure

state of a bipartite system A + B, containing the two subsystems A and B. With the
help of the reduced density matrix in subsystemX 2 {A,B}, �̂X := Tr{X}

f
|�i h�|

g
, the

bipartite entanglement is de�ned as

E ( |�i) := Tr
f
�̂A log2 �̂A

g
= Tr

f
�̂B log2 �̂B

g
, (3.55)

which reveals that the entanglement of formation is basically the entropy associated
with the state. A mixed state of the bipartite system is described by a density matrix,
denoted with �̂, and the entanglement of formation is the minimum average entangle-
ment over all pure state decompositions,

E (�̂) := min
{�i}

X

i

piE (�i ), (3.56)

where pi is the probability weight of the pure state �i . The minimization procedure
can be performed analytically for arbitrary two qubit states, which are realized by the
electron state of any two chosen atoms of the Rydberg aggregate. The entanglement of
formation is then closely related to the concurrence, which we denote with C. Speci�-
cally, the concurrence of atoms (a,b) is given by Ca,b = 2|�a,b |, with �a,b the coherence
between electronic states with excitation residing in atom a and b, respectively and
measures simultaneous excitation on sites a and b. The entanglement of formation is
�nally a nonlinear function of the concurrence,

E (�̂a,b ) = h
✓
1/2 +

q
1 � C2

a,b
/2

◆
,with (3.57)

h(x ) : = �x log2 x � (1 � x ) log2(1 � x ). (3.58)

While using the FSSHmethod to solve the quantum dynamics, the concurrence simpli-
�es to Ca,b = 2 ���cac⇤b ���. Both, the concurrence and the bipartite entanglement take values
betweeen 0 and 1. Moreover, the bipartite entanglement monotonically increase with
the concurrence. When the entire excitation is localized on atoms (a,b) and the excita-
tion is furthermore shared in equal parts, the bipartite entanglement is maximal.

High values of bipartite entanglement for atoms (4,5) (atoms (6,7)) at the detectors,
which we denote with Ē45 (Ē67), indicate exciton pulse propagation with high �delity
along the vertical chain. In Fig. 3.12, the entanglement of formation is shown for vary-
ing parameters, Figs. 3.12(a)–3.12(c) are the results for Ē45 and Figs. 3.12(d)–3.12(f) show
the results for Ē67. The �gures indicate a complex dependency on the parameters,
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Figure 3.12: Response of the exciton switch to control parameters. We show the bipartite
entanglement transported (a)–(c) downwards in � direction, Ē34, and (d)–(f) upwards in � di-
rection, Ē56. Parameters are � = 80 and d = 22 µm. Both entanglement readouts (see Fig. 3.8)
are placed on the vertical chain in a distance of aE = 0.3d from atoms 4 and 7, respectively.
(a)–(b) and (d)–(e) Entanglement as a function of a1 and ��, for a2 = 9.5 µm in (a) and (d)
and a2 = 20 µm in (b) and (e). (c) and (f) Entanglement as a function of a2 and ��, for �xed
a1 = 6 µm. The markers (⇤, ⇥, +) highlight extreme cases: (⇤) high entanglement transport to
atoms (4,5), (⇥) high entanglement transport to atoms (6,7), (+) equal entanglement transport
towards atoms (4,5) and atoms (6,7). All entanglement measures were obtained by a simulation
with FSSH with 103 trajectories.

such that an a priori guess of optimal values for the parameters would be di�cult. We
can however understand the dependencies qualitatively. In Figs. 3.12(a)–3.12(b), the
bipartite entanglement for atoms (4,5) is shown for varying interatomic distances of
atoms (1,2), a1, and varying vertical shifts of the horizontal chain, ��, whereas the
interatomic distance of atoms (5,6), a2, is �xed, in Fig. 3.12(a) to a2 = 9.5 µm and in
Fig. 3.12(b) to a2 = 20 µm. Recall that the parameter �� takes positive values for shifts
in the downwards � direction. A �rst comparison indicates larger entanglement in
Fig. 3.12(b) than in Fig. 3.12(a), which shows that for larger values of a2 the entangle-
ment for atoms (4,5) increases. This is also con�rmed in Fig. 3.12(c), where the entan-
glement is shown in dependence on a2. The reason why the change of the parameter a2
leads to such di�erent entanglement measures is that the ratio a2/d controls whether
atoms 3, 5, and 6 can build an almost isolated trimer subunit or not. For large values
of this ratio, as it is realized in Fig. 3.12(b), the three atoms are not well isolated in the
vicinity of the trimer CI con�guration. As a result, at the position where we expect
an avoided crossing/CI between repulsive and adjacent surface for an isolated trimer,
we observe no crossing at all due to a much stronger coupling between atoms (2,3)
compared to the couplings of atoms 3 with atoms (5,6). The energy spectra is then
more or less given by the dimer states of atoms (2,3) and atoms (5,6), respectively.
The repulsive and adjacent surface remain far separated during propagation and the
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transport occurs almost adiabatically, even during the redirection to the vertical chain.
This �nally initiates an exciton pulse on the vertical chain in the downwards direction,
since atom 3 traverses atom 5 more closely, due to a shift of the horizontal chain in
the downwards vertical direction (�� > 0), and the repulsive surface repels the verti-
cal atom with smallest distance [compare with the forces in Fig. 3.4(c)]. For obtaining
directed transport on the vertical chain, a preset asymmetric con�guration due to ver-
tically shifting the horizontal chain is thus crucial. This explains why in Fig. 3.12(b) the
entanglement starts to increase above a certain value of ��, around one micrometer.
When the asymmetry is too small, almost equal repulsion of atoms (5,6) occurs and di-
rected transport is not possible. Moreover, the repulsive surface will more likely re�ect
atom 3 o� the vertical chain together with the excitation remaining on it, as described
in section 3.2.2.

That directed transport actually can occur at all is con�rmed by high entanglement
obtain for atoms (4,5) and low entanglement for atoms (6,7) apparent by comparing
Fig. 3.12(b) with Fig. 3.12(e) for equal speci�c choices of (a1,��). Finally we also ob-
serve in Fig. 3.12(b) a dependency of the entanglement on the parameter a1. This pa-
rameter adjusts the maximum velocity of the atoms and thereby it sets the timescale
for the transport. Smaller values lead to faster transport. Since the lifetime of the Ry-
dberg aggregate† is limited, the transport has to be fast enough to reach the entangle-
ment detectors within the lifetime of the aggregate. Technically we set the simulation
time to the lifetime of the aggregate. If the transport is too slow to reach the detector,
no entanglement is measured. This explains why the entanglement increases almost
monotonically in Fig. 3.12(b) with decreasing values of a1.

In contrast to the situation realized in Figs. 3.12(b) and 3.12(e) where the dynamics is
not a�ected by the CI, in Figs. 3.12(a) and 3.12(d) the ratio of a2/d is small enough for
atoms 3, 5, and 6 to be well isolated from the remaining atoms in the vicinity of the
trimer CI con�guration. As a consequence the exciton pulse enters the trimer sub-
unit on the adjacent surface, as it is evident from the energy spectra of single tra-
jectories in Figs. 3.9(d)–3.9(f). Since we obtain in Fig. 3.12(d) high entanglement for
con�gurations with preset asymmetry, as in Fig. 3.12(b), we can assume the excita-
tion is dominantly transferred along the adjacent surface after passing the nonadia-
batic region, which we explain in the following. In average the trajectories have an
asymmetry of b̄ = 1 � 2��/a2 and for parameters where we observe high entangle-
ment in Fig. 3.12d b̄ ⇡ 0.7, which reveals high asymmetry. Importantly the varia-
tion of asymmetry among all trajectories is with �b/b ⇠ �0/a2 ⇡ 0.05 very low and
hence the energy gap in the vicinity of the CI is for all of them approximately given by
�E/E ⇠ 1 � b̄ = 2��/a2 (see appendix B.3), which is approximately 30% for parame-
ters of high entanglement transport. Besides this large energy gap we can extract from
Fig. 3.12d that for high entanglement larger values of a1 are required, which corre-
sponds to smaller atomic velocities. Both large energy gap and small velocities ensure
that the majority of trajectories after they entered the trimer subunit on the adjacent
surface continue propagation on the same surface when they traverse the nonadiabatic
region and hence excitation transport remains adiabatic to a large extend.

† The lifetime of the Rydberg aggregate is roughly given by the lifetime of a single Rydberg atom divided
by the total number of atoms in the aggregate.
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con�guration (⇤) (⇥) (+)

parameters
a2 (µm) 20 9.5 9.5
�� (µm) 1.5 1.5 0

Entanglement
up, Ē67 (%) 0 60 24

down, Ē45 (%) 97 7 24

Table 3.1: Compilation of values for the parametersa2 and�� which distinguish the three con-
�gurationsmarkedwith (⇤), (⇥) and (+) in Fig. 3.12 togetherwith the entanglement obtained at
both detectors on the vertical chain due to wave packet dynamics. For all three con�gurations,
a1 = 6 µm.

Comparing Figs. 3.9(a), 3.9(d) with Figs. 3.9(b), 3.9(e) clearly indicates that large values
of a2 lead to entanglement transport in the upwards direction and low valued of a2 to
entanglement transport in the downwards direction. In Figs. 3.9(c), 3.9(f) we show the
entanglement transport in downwards and upwards direction, respectively, in depen-
dence of the vertical shift �� and the parameter a2, to investigate the directionality of
entanglement transport at intermediate values of a2. The value of a1 is set to 6 µm, for
which we obtained in both direction high entanglement. Above a2 = 14 µm the trans-
port is clearly in downwards direction, almost not dependent on ��. In a small region
where a2 < 10 µ m and 1 µm < �� < 2 µm entanglement is e�ciently transported in
upwards direction.

Ultimately, we can maximize the entanglement and control the exciton pulse propaga-
tion direction by only tuning the parameter a2 and �xing the value for the asymmetry
to �� = 1.5µm. Choosing (a1,a2,��) = (6, 20, 1.5) µm we get high entanglement in
downwards direction [marked as (⇤) in Fig. 3.12(c)], with exciton pulse propagation
along the repulsive surface. To achieve high entanglement in the upwards direction,
we set (a1,a2,��) = (6, 9.5, 1.5) µm [marked as (⇥) in Fig. 3.12(f)]. The plots con-
�rm also that for symmetric con�gurations with �� = 0 the entanglement is low in
both directions, almost independently of the values a2. To compare the two con�gu-
rations, (⇤), (⇥) with the entanglement values of a symmetric con�guration, we mark
the con�guration (a1,a2,��) = (6, 9.5, 0) µm with (+). A comparison of atomic con-
�guration parameters together with obtained entanglements at both detectors on the
vertical chain are given in Table 3.1. To highlight how the excitation is actually trans-
ferred for the cases (⇤) and (⇥), we show in Fig. 3.13 the time-resolved excitation prob-
ability (shading according to colormap) together with the mean positions (green line)
for each atom of the vertical chain. Fig. 3.13(a) clearly reveals that almost all excita-
tion is transferred in upwards direction for the con�guration marked with (⇥). The
repulsion of atoms (5,4) is ensured due to vdW interactions, when they approach each
other. In Fig. 3.13(b), the excitation transfer is shown for the con�gurationmarkedwith
(⇤). It clearly shows localization of excitation and exciton pulse propagation in down-
wards direction, whereas upwards almost no excitation is transferred. Atoms (5,6) are
repelled regardless of whether they share excitation or not, which is a signature of
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Figure 3.13: Mean atomic positions (green lines) with p excitation probability of the combined
repulsive and adjacent surfaces (shading according to colormap) on each atom of the vertical
chain for two di�erent cases: (a) for the con�guration marked with (⇥) in Fig. 3.12, whose
dynamicsmainly evolves on the adjacent surface after traversing the nonadiabatic regionwhich
leads to exciton pulse propagation in upwards direction, (b) for the con�guration marked with
(⇤) in Fig. 3.12, for which the wave packet performs a jump back to the repulsive surface in the
nonadiabatic region, ultimately leading to exciton pulse propagation in downwards direction.
The excitation probability for atom n is represented by Gaussians of a selected �xed width,
normalized to

P
n | h�n |�n (R)i |2 (where

P
n runs over the repulsive- and adjacent surfaces) and

centered on the mean position of atom n.

vdW interactions.

Finally we present for all three cases the atomic densities of atoms (4–7), together with
the corresponding adiabatic populations in Fig. 3.14. After dynamics was initiated on
the vertical chain, the adiabatic populations con�rm adiabatic transport on the repul-
sive surface for the con�guration marked with (⇤), as apparent from Fig. 3.14(e), and
dominant adiabatic transport on the adjacent surface for the con�guration marked
with (⇥), as seen in Fig. 3.14(d). Note that the population inversion around 40 µs
in Fig. 3.14(e) is due to a trivial crossing which does not change the dynamics. The
atomic density for (⇤) in Fig. 3.14(b) shows clearly a strong repulsion of atom 5 which
eventually repels atom 4. Atom 6 experiences also a repulsion, which is caused by
vdW interactions. However, excitation follows the atomic motion downwards. For
the propagation along the adjacent surface, the atomic density of the vertical chain in
Fig. 3.14(a) shows a strong repulsion of atoms (5,6), yet the asymmetry is enough to
guide the excitation upwards. We observe that the repelling smallest distance between
atoms (5,4) is much smaller than between atoms (6,7). The reason is that due to exci-
tation being guided upwards, atomic repulsion is ensured by resonant interactions in
upwards and by vdW interactions in downwards directions. The atomic density for
(+) is shown in Fig. 3.14(c) with corresponding adiabatic populations in Fig. 3.14(f).
The dynamics of this con�guration we already discussed in section 3.2.2, leading to
nondirectional transport with low entanglement on both ends of the vertical chain.

To conclude, we demonstrated that exciton pulses can be redirected onto an orthogo-
nal direction with high �delity. The key is to avoid the formation of a trimer subunit
in the vicinity of the trimer CI con�guration by increasing the interatomic distance
of atoms (5,6). Creating an asymmetry by shifting the horizontal chain vertically de-
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Figure 3.14: Atomic densities on the vertical chain (a)–(c) with corresponding adiabatic pop-
ulations in (d)–(f). (a) and (d) Results for the con�guration (⇥), which leads to exciton pulse
propagation dominantly along the adjacent surface after traversing the nonadiabatic region.
(b) and (e) Results for the con�guration (⇤), which leads to exciton pulse propagation along the
repulsive surface. Note that the population inversion in (d) is due to a trivial crossing. (c) and
(f) Results for the symmetric con�guration (+), which leads to nondirectional transport with
low entanglement on both ends of the vertical chain due to a half-half splitting of population
on the repulsive and adjacent surface after traversing the nonadiabatic region.

creases the distance between one of the vertical placed atoms and atom 3, which �nally
allows unidirectional exciton pulse propagation along the vertical chain. On the other
hand, �xing the asymmetry but allowing the formation of a trimer subunit allows exci-
ton pulse propagation on the adjacent surface which �nally redirects the pulse in oppo-
site direction than the propagation direction along the repulsive surface. Remarkably,
we can control the BO surface and direction of exciton pulse propagation by tuning
only the interatomic distance between atoms (5,6).



4 A T-shape aggregate with
unconstrained dynamics

In Chapter 3 we demonstrated the manipulation of exciton pulses on planar T-shaped
aggregates. Spatial constraints ensured low-dimensionality allowing to guide exciton
pulses and to restrict nonadiabatic dynamics to occur in a small volume. This chapter is
dedicated to the investigation of exciton pulse propagation and interaction with a CI in
higher dimensions, which complicates directing transport of excitation and controlling
the in�uence of a CI on it.

We will demonstrate that if initiated in a low dimensional space, entangled atomic
motion in the continuum will remain con�ned to this space despite the possibility for
all particles (ions and electrons) to move in full space. Together with advances in the
newest generation experiments on Rydberg gases beyond the frozen gas regime, in-
volving microwave spectroscopy118 or position sensitive �eld ionization119, our results
enable the quantum simulation of chemical processes in �exible Rydberg aggregates as
an experimental science. These recent e�orts118,119 extend earlier pioneering studies
of motional dynamics in Rydberg gases166,169–176 and render now the rich dynamics of
Rydberg aggregates fully observable120.

We present the theoretical framework in section 4.1, describing the treatment of an-
isotropic interactions in section 4.1.1 and how to select an initial exciton state with a
microwave in section 4.1.2. Subsequently, section 4.2 discusses the dynamics of the
aggregate with a focus on the comparison to the planar aggregates. Time-resolved ob-
servables accesible by experiments are reviewed in section 4.3. In section 4.5 the in�u-
ence of perturbing ground state atoms is estimated, for the case that the experimental
setup does not employ isolated Rydberg atoms, but instead Rydberg atoms excited out
of an ultracold gas of ground-state atoms and subsequently embedded therein. Finally
we conclude in section 4.6. We will thus show in this chapter, that two central ele-
ments of the Rydberg aggregate, nonadiabatic motional dynamics on several coupled
BO surfaces75,82 and entanglement transport are now experimentally accessible, as we
show here.

4.1 Theoretical Framework

In section 3.2.1, we already described the dynamics of two perpendicular Rydberg
dimers constrained to a plane and moreover restricting motional dynamics to be one-
dimensional. Here we study a system with the same initial geometry, but remove all
spatial constraints, allowing for motion in the full three-dimensional space.
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Figure 4.1: Embedded �exible Rydberg aggregate. Four excitation beams (red shades) de�ne
focus volumes in which exactly one atom is excited to a Rydberg state (blue balls, atoms (1–
4)), within a cold gas (green balls). Our co-ordinate system has its origin at the mean position
of atom 1, several geometrical parameters are explained in the text. Subsequent to Rydberg
excitation, dipole-dipole interactions will cause acceleration along the green arrows, causing
atom 2 to reach the position shown in light blue, where a CI will cause strong nonadiabatic
e�ects.

To be speci�c, we investigate a �exible Rydberg aggregate consisting of N = 4 7Li
Rydberg atoms (mass M = 11000 a.u.), excited to principal quantum number � = 80,
embedded within a host cold atom cloud of ground state atoms, see Fig. 4.1. The typical
experimental situation excites Rydberg atoms from a cold atom cloud. The ground state
atoms may have bene�ts for detecting Rydberg atoms113,115,116

This con�guration is createdwith tightly focused Rydberg excitation lasers. We assume
that the focus volumes are small enough to deterministically excite just a single atom
within each to an angular momentum l = 0 Rydberg state |si ⌘ |� , si, exploiting the
dipole-blockade37,40. We place the origin of our coordinate system at R(0)

1 , the laser
focus positioning atom 1, such that other focus positions shown in the �gure are

R(0)
2 = (a1, 0, 0), (4.1)

R(0)
3 = (a1 + d,�a2/2, 0), (4.2)

R(0)
4 = (a1 + d,a2/2, 0). (4.3)

The vectors of atomic positions, R� = (x� ,�� , z� ), are represented in the cartesian basis
{ex , e�, ez}, as it is depicted in Fig. 4.1. In particular we use the following values for
the geometrical parameters: a1 = 10 µm, a2 = 37 µm and d = 51 µm. We will refer
to atoms (1,2) as the horizontal Rydberg dimer and atoms (3,4) as the vertical one, to
conform with nomenclature from Chapter 3. As before, the positions of all atoms are
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collected into the vector R = (R1, . . . ,RN )T . Co-ordinates of ground-state atoms are
not required since these will be merely spectators for the dynamics of Rydberg atoms,
as shown in78 and found experimentally in118,119.

Exciting the aggregate to the single p excitationmanifold causes resonant dipole-dipole
interactions between the atoms and eventually initiates entanglement transport and
atomic motion. The interactions scale quadratically with the s-p radial transition ma-
trix element, which speci�cally for � = 80 is given by d ⌘ d� ,1;� ,0 = 8250 atomic
units. For an experimentally treatment we remove the assumption of isotropic inter-
actions, which we used for the planar aggregates in Chapter 3, instead we take the full
anisotropy of the dipole-dipole interactions into account.

4.1.1 Anisotropic dipole-dipole interactions

The use of isotropic interactions in Chapter 3 was a simpli�cation and is achievable
either for linear or planar aggregates by choosing a particular alignment of the p orbital
and the spatial arrangements. Another method is to apply an external magnetic �eld,
tuning the interactions from anisotropic to isotropic with increasing magnetic �eld
strength, as we will demonstrate in Chapter 5.

However, resonant dipole-dipole interactions are in general anisotropic due to the pos-
sibility of di�erent orientation of angular momentum orbitals. For a full description of
the anisotropy, the magnetic quantum numbers have to be taken into account and for
s-p transitions within a single p excitation manifold, the electronic basis needs to be
enlarged to Bel := {|�� ,mi}m=�1,0,1�=1,...,N , where

|�� ,mi = |s . . . (p,m) . . . si (4.4)

denotes the aggregate state where all but the � th atom are in s states and the remaining
atom carries the p excitation with magnetic quantum number m. The relative orien-
tation of the angular momentum vector L of the p state to the quantization axis qais
described by the magnetic quantum numberm†.

The resonant interactions for s-p transitions are presented in section 1.3.1 by Eq. (1.55).
The Hamiltonian containing all resonant interactions can therefore be written as

Ĥdd(R) =
NX

� ,�=1;
�,�

1X

m,m0=�1
Vm,m0 (R� ,� ) |�� ,mi h�� ,m0| , (4.5)

We retain the simple structure of Eq. (3.12) to treat vdW interactions,
Ĥvdw = �

PN
� ,�=1C6/2R6

kl
1̂, which consequently induce an atomic con�guration depen-

dent energy shift, ensuring globally repulsive interactions at small interatomic spac-
ings. As in Chapter 3, the vdW interactions have only the purpose to prevent two

† Speci�cally, the magnetic quantum numberm = 0, 1, �1 relates to an included angle of 0�, 45�, 135�,
respectively.
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excitation-less atoms from collisions. The electronic Hamiltonian is then again as in
Eq. (3.13) given by Ĥel(R) := Ĥdd(R) + Ĥvdw(R).

Note that for Lithium the spin-orbit coupling is very small and we thus can in good
approximation neglect it133,177.

4.1.2 Initial preparation

The trapping potentials are approximately harmonic in the vicinity of the laser foci and
therefore the spatial wave functions can be assumed as the ground state of a harmonic
oscillator, leading to the initial nuclear (atomic) wave function

�nuc(R, t = 0) = (2�� 2
0 )
�3N /4e�(R�R

(0) )2/(4� 2
0 ), (4.6)

with R(0) containing the initial positions and a width of the Gaussians of �0 = 0.5 µm,
which is challenging but in reach for standard techniques. Besides trapping and ar-
ranging the atoms, all four atoms have to be excited to Rydberg s states, such that
the electronic state of the aggregate is |Si ⌘ |s . . . si. The next step is to excite with
a microwave to a speci�c exciton, an eigenstate of Eq. (4.5). We will restrict our-
selves to linearly polarized light and as a natural choice, we set the quantization axis
to the microwave polarization direction. The anisotropy of the dipole-dipole interac-
tions considers the alignment of the p orbital, explicitly, the including angles of the
interatomic distance vector with the polarization axis, denoted by � (qa, r),� (qa, r) in
Vm,m0 (r) ⇠ Y2,m0�m (� (qa, r),� (qa, r))/r 3 describe the orientation on which the strength
of the interaction is dependent. Since the linearly polarized microwave orients the
angular momentum along the polarization direction, it is helpful to represent all dis-
tance vectors in a microwave �xed frame of reference. Speci�cally, we use the basis
Bqa := {qx , q�, qz = qa} such that the microwave populates them = 0 states. So far we
speci�ed the representation of spatial directions in the cartesian basis B := {ex , e�, ez}.
The basis change B ! Bqa is technically performed by r̃ = Qqar, where r is represented
in B and r̃ is represented in Bqa by setting Qqa = (hqk , eli)k,l=x ,�,z . The including angles
� (qa, r), � (qa, r) are then the standard expressions for azimuthal and polar angles of r̃
in a spherical representation, respectively. For reasons of numerical stability it is best
to express the spherical harmonics in cartesian co-ordinates of the interatomic vectors
in the basis Bqa

†, which are then given by

Y2,m (� (qa, r),� (qa, r)) = Y2,m (r̃) =

8>>>>><>>>>>:

p
15/32�

f⇣
r̃x ± ir̃�

⌘
/r̃

g2
, m = ±2

⌥
p
15/8� r̃z

⇣
r̃x ± ir̃�

⌘
/r̃ , m = ±1

p
5/16�

⇣
�1 + 3[r̃z/r̃ ]2

⌘
, m = 0

. (4.7)

The smallest interatomic distance of the aggregate is between atoms (1,2) initially. This

† To obtain atomic forces and nonadiabatic coupling vectors, the gradient of the Hamiltonian and hence
the binary interactions has to be determined. A spherical representation can cause problems for the polar
angle in the transition region from 2� to 0.
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ensures that excitation is localized on the horizontal dimer when creating the exciton
corresponding to the repulsive surface. The microwave performs the transition |Si !
|�repi, with |�repi denoting the exciton, which �nally yields repulsive forces. We restrict
the microwave polarization direction to be perpendicular to the interatomic distance of
the horizontal dimer, for two: Firstly, only perpendicular- or parallel alignments of the
polarization to the interatomic distance lead to a decoupled subspace of the electronic
Hamiltonian in Eq. (4.5), for aggregate states given in Eq. (4.4) withm = 0, as shown in
Ref. 72. Thus, the linearly polarizedmicrowave accesses excitons that populate only the
pm=0 orbitals, for which the nodal plane is perpendicular to the polarization direction.
Due to the necessity to excite repulsive excitons with positive energy, only one of the
two alignments is feasible: The microwave is restricted to excite symmetric states†
and only for the perpendicular alignment, the repulsive surface corresponds to the
symmetric exciton state of the form |�inii ⌘ |�repi ⇡ ( |�1, 0i + |�2, 0i) /

p
2. To populate

the exciton completely, a Rabi-� pulse of the microwave is needed with its frequency
being detuned by the exciton energyUrep ⇡ d/3R3

12 from the s-p transition†.

The total initial state of the Rydberg aggregate is then given by

|�tot(R, t = 0)i = �nuc(R, t = 0) |�inii , (4.8)

and repulsive forces initially lead to a repulsion of the horizontal dimer, such that
atom 2 can approach the vertical dimer. Allowing the atoms to move in full space
increases the quantum mechanical complexity even more than for the restricted mo-
tional dynamics of the planar aggregates in Chapter 3. Therefore, we again rely on
quantum-classical methods to solve the dynamics, using Tully’s fewest switching al-
gorithm (FSSH)155,156,165, which we outlined in section 3.1.3.

The results in the following section are performedwith amicrowave polarization in the
� direction, qa = e� , for which the excited exciton corresponds to the secondmost ener-
getic BO surface in the global energy spectrum of the Hamiltonian given in Eq. (4.5).

For the employed parameters of the aggregate, the mean value of the potential energy
is initially Ūrep(R0) ⇡ 22.27MHz.

4.2 Nonadiabatic dynamics

Following Rydberg excitation to |si and |pi, the four aggregate atoms will move essen-
tially unperturbed through the background gas78.

The BO surface of initial preparation exerts repulsive forces on atoms (1,2) and al-
though the motion is unconstrained, the large interatomic spacing compared to the
very localized nuclear wave function, �0/a1 = 0.05, leads to a directed motion of the
atomic wave packets within (or very close to) the x-� plane, with almost no dynamics
o�-the-plane. In Figs. 4.2(a)–4.2(c) we show for the �nal state at t ⇡ 93 µs the column
atomic densities, which are projections of the full three dimensional atomic density

† see appendix C
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Figure 4.2: Atomic density of the �nal state at t = 92.9 µs in (a)–(c) and adiabatic populations
(solid lines) and fractions (dashed dotted lines) in (d). Shown are column densities in the x-
� plane (a), x-z plane (b) and �-z plane (c). The black ’+’ in (a)–(c) mark the initial atomic
positions. The maximal densities are set to 1 and the microwave polarization direction is set to
q = e� .

onto a plane. In particular the x-z density shown in Fig. 4.2 (b) con�rms almost no dy-
namics o� the x-� plane. However the x-� density and also the�-z density in Fig. 4.2(a)
and Fig. 4.2(c), reveal a branching of each atom’s density in the vertical dimer into three
parts, which we already observed for the one-dimensional con�ned case of the planar
four atom aggregate in Fig. 3.7, discussed in section 3.2.1. It can be assumed that the
splitting as previously is due to nonadiabatic dynamics and propagation along two dif-
ferent BO surfaces. The time-resolved adiabatic populations and fractions shown in
Fig. 4.2(d) in fact reveal a drastic change in the populations of BO surfaces, such that
after 30 µs mainly two BO surfaces participate equally in the dynamics. The reason
is, as before, that when atoms (2–4) form an equilateral triangle con�guration, the to-
tal wave packet hits a CI causing the splitting. The mechanism is thus similar to the
dynamics of the planar aggregates with isotropic interactions.

In contrast to the aggregate with isotropic interactions, here there are three BO sur-
faces involved in the dynamics before the trimer CI con�guration is reached, instead
of two. A study of single trajectories and their time resolved energy spectra revealed
that the �rst two transitions are due to trivial (avoided) crossings (see appendix B.2).
The �rst population transfer around ⇡ 5.5 µs is a trivial crossing of the repulsive sur-
face [red line in Fig. 4.2(d)] with a surface in close proximity [orange line in Fig. 4.2(d)].
The latter is another surface of the horizontal dimer, which corresponds to an exciton
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Figure 4.3: BO segregated atomic column densities at �nal time of t = 92.9 µs, for (a) and (c)
the second most energetic, and (b) and (d) the fourth most energetic BO surface. (a) and (b)
column densities in the x-� plane. (c) and (d) column densities in the �-z plane. The densities
are normalized to the global maximum value of all of them.

state with population of m = ±1 states. For an isolated dimer, these two surfaces
would be genuinely degenerate, however, the presence of the vertical dimer introduces
a small splitting between them⇠ 0.57KHz. During the dynamics the initially populated
BO surface crosses the other and changes the energetic ordering from being the second
to the thirdmost energetic one, which is visible as population transfer in Fig. 4.2(d). The
second trivial crossing around 11 µs eventually populates the adjacent surface [green
line in Fig. 4.2(d)], the surface which adiabatically is connected to the adjacent surface
of the trimer. The wave packet approaches the CI and gets split to approximately prop-
agate on two BO surfaces afterward. With high �delity the total wave function gets
coherently split such that it is given by |��n(R)i ⇡ �rep(R) |�rep(R)i+ �adj(R) |�adj(R)i.
To assign components of the atomic density to its surface of propagation we show in
Fig. 4.3 BO segregated atomic column densities for the repulsive surface in Figs. 4.3(a),
4.3(c) for the adjacent surface in Figs. 4.3(b), 4.3(d). The repulsive surface corresponds
to the components which are the most exterior parts of the density in � direction for
atoms (3,4). Only a small fraction remains at its initial position. Conversely, the ad-
jacent surface corresponds to the components inside the � direction. Moreover, the
components have a double peak structure. Overall, the essential characteristics of the
atomic density are similar to the aggregates with one-dimensional spatial con�nement.
The reason is that the BO surfaces induce the same forces as shown in Figs. 3.2.1(c),
3.2.1(d), such that each BO surface leaves its mark in the atomic density.
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Figure 4.4: Time-resolved exciton density of states �(E, t ) (a) and potential energy density
� (E, t ) (b). The densities are normalized to have a maximum value of one. Furthermore, to
emphasize low density features, we plot the square root,

p
�(E, t ) and

p
� (E, t ), respectively.

We can conclude that the CI operates as an exciton splitter, as it was observed for the
planar four atom T-shape aggregate. This is an important theoretical result, since it
opens the way for direct observation of nonadiabatic signatures in
experiments116,118,119,158 due to much in�ated length and time scales compared to the
typical quantum chemical systems. Optical con�nement of atoms in one-dimensional
traps along with a reduction of the electronic state space assumed for the planar ag-
gregates75,82 studied in Chapter 3 constitute a signi�cant experimental challenge. The
present results show that these restrictions are not required. It is simply the symmetry
of the initially prepared system which keeps the motion similarly planar and hence
accessible. The successful splitting into di�erent motional modes through the CI is a
sensitive measure for the extent to which the atomic motion remains in a plane. Ad-
ditionally the dynamics leading to Fig. 4.2 entails entanglement transport. At t = 0,
atoms (1,2) in state |�inii are maximally entangled73, at the �nal time this has been
transported to atoms (3,4) for the outermost lobes82.

4.3 Experimental signatures

The total atomic density, shown as column densities in Figs. 4.2(a)–4.2(c), is experi-
mentally accessible if the focus positions R(n)

0 are su�ciently reproducible to allow av-
eraging over many realisations. Additionally, one requires near single atom sensitive
position detection. A shot-to-shot position uncertainty �0 in 3Dwithin each laser focus
is already taken into account in our simulation. Recent advances in position sensitive
�eld ionisation enable ⇠ 1 µm resolution, clearly su�cient for an image such as Fig. 4.2.
Panel (c) in Fig. 4.2 could alternatively also be observed by waiting for atoms (3,4) to
impact on a solid state detector.

The background gas can also act as a probe for position and state of the embedded
moving Rydberg atoms113–117, o�ering resolution su�cient for Fig. 4.2 as well.

Nonadiabatic dynamics discussed here can not only be monitored in position space,
but also in the excitation spectrum of the system, similar to Ref. 118. The observable
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Figure 4.5: BO segregated, time-resolved densities of potential energy, for (a) second, (b) third,
and (c) fourth most energetic BO surface. The normalization is performed with the maximum
value of the total potential energy density, which is shown in Fig. 4.5(c). Furthermore, to em-
phasize low density features, we plot the square root densities.

is the time-resolved potential energy density u (E, t ), shown in Fig. 4.4(b). Observa-
tion of u (E, t ) could proceed by monitoring the time- and frequency resolved outcome
of driving the p-d transition. To obtain u (E, t ), we bin the potential energy U� (t ) of
the currently propagated BO surface � (t ) into a discretized energy grid E and average
over all trajectories. We see a clear splitting into several features within u (E, t ) around
15 µs, the density branches from there on into two parts which is a clear signatures
of the CI. To understand this in more detail, we show in Fig. 4.5 the potential energy
density segregated to the three most strongly participating BO surfaces. They con�rm
the propagation exclusively along the repulsive surface at the beginning [high density
values until 5 µs in Fig. 4.5(a)], but before the CI is hit around 15 µs, another surface is
populated [high density values between 5 µs to 30 µs in Fig. 4.5(b) which corresponds
to the orange adiabatic population line in Fig. 4.2(d)] due to a trivial crossing with a
surface corresponding to an exciton state populatingm = ±1 p orbitals. However, the
transition is not as trivial as for the planar aggregates with isotropic interactions. The
initially prepared exciton has a small admixture of p orbitals inm = ±1 direction due
to the anisotropy of the interactions and the dispersion of the wave packet in all three
dimensions. Therefore a small fraction of the wave packet does not undergo the transi-
tion and remains on the more energetic surface. A second appearance of such a trivial
crossing around 11 µs populates the fourth most energetic surface, which adiabatically
connects to adjacent trimer surface. On the other hand the third most energetic surface
connects adiabatically to the repulsive trimer surface in the vicinity of the trimer CI
con�guration which is reached around 30 µs and thus leads to a repopulation of the
second most energetic surface.

To visualize distances between energy surfaces, we additionally present in Fig. 4.4(a)
the density of the global energy spectrum, �(E, t ). Technically it is obtained through
the same procedure as the density of the potential energy. It reveals the close spacing
and overlapping of three BO surfaces between 10–20 µs, which �nally is a source for
the nonadiabatic dynamics.

An alternative experiment to observe our nonadiabatic dynamics, would individually
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trap four atoms at positions R(n)
0 , with trapping width �0, prior to Rydberg excitation,

see e.g.158.

4.4 Switch Born-Oppenheimer surfaces

So far we presented results for a microwave polarization in � direction. We show in
Fig. 4.6 a comparison with results for polarization in z direction. For a purely isolated
dimer aligned along the x direction, microwave polarization in both, � and z direction,
is perpendicular to the horizontal dimer and thus linear polarization excites the same
exciton with the same energy value of the BO surface. The only di�erence would be
the direction of the excited p orbital, which is aligned along the polarization direction.
The degeneracy of these two polarization directions is lifted through the presence of
the vertical dimer in the T-shape aggregate. For polarization in � direction the exci-
ton corresponds to the second most energetic BO surface, whereas for polarization inz
direction the third most energetic surface gets populated. Switching between popu-
lating both surfaces leads to very di�erent dynamics. The x-� atomic column density
for polarization in z direction, shown in Fig. 4.6(d), indicates a strong repulsion of
atoms (3,4). Moreover, there is no three-fold branching for each atom, as for polar-
ization in � direction [for comparison the corresponding x-� atomic column density is
shown in Fig. 4.6(a)]. The repulsion without branching of the wave packet is due to fact
that the biggest part of the wave packet propagates along the same physical BO sur-
face, as apparent from the adiabatic populations shown in Fig. 4.6(f). The population
only changes are due to trivial crossings and actually ensure the following of the same
excitonic state continuously. A comparison of the potential energy densities for po-
larization in � and z direction shown in Fig. 4.6(b) and Fig. 4.6(e), respectively, reveals
almost no branching for the z direction polarization and high population density on
the repulsive surface, consistent with the adiabatic populations.

The splitting between second and third most largest BO surface is small, with a mean
energetic separation of only �Ē = 0.57 KHz. This provokes an overlap of their indi-
vidual energy density pro�les and in the energy spectrum, shown in Fig. 4.4(a), where
both surfaces are indistinguishable initially.

This close proximity of the two surfaces allows to switch between them by only chang-
ing the polarization direction and keeping the microwave frequency unchanged, as-
suming a su�ciently broad pulse is used for addressing. Consequently, the polariza-
tion direction controls the subsequent evolution, in particular the branching of the
wave packet and the nonadiabaticity.

4.5 Perturbation by ground state atoms

We expect the dynamics of the embedded Rydberg aggregate discussed here not to
be signi�cantly perturbed by its cold gas environment. Rydberg-Rydberg interactions
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Figure 4.6: Comparison of x-� column density at �nal time of t = 92.9 µs in (a) and (d), po-
tential energy density in (b) and (e), and adiabatic populations/fractions in (c) and (f), for two
di�erent choices of microwave polarization directions. Results for the polarization direction
q k e� are shown in (a)–(c), and for q k e� in (d)–(f). We plot again the square roots of the
normalized potential energy densities.

substantially exceed elastic Rydberg ground-state atom interactions59,178 for separa-
tionsd > 200 nm, and dipole-dipole excitation transport disregards ground state atoms78.
The kinetic energies of O(10MHz) are still low enough to render inelastic � or l chang-
ing collisions very unlikely178, leaving molecular ion- or ion pair creation as main Ry-
dberg excitation loss channel arising from collisions with ground state atoms178,179.
Even including those and assuming a moderate background gas density, we can ex-
trapolate experimental data from Rb (Ref. 118) and still �nd a su�ciently large lifetime
of the Rydberg aggregate, which we will estimate in the following. Rydberg excited
atoms with � = 80 in l = 0, 1 states move through a background gas of ground state
atoms, which we assume to be of density � = 4 ⇥ 1018 m�3, at a maximal velocity of
about �ini ⇠

p
Uini(R0)/2 ⇡ 0.85 m/s. We can deduce a maximal cross-section for ion-

izing collisions between Rydberg atoms and ground state atoms of � (� ) = 610 nm2 at
� = 60 from experiment118. Assuming scaling with the size of the Rydberg orbit179,
we extrapolate this value to our � = 80, thus � (80) = � (60) (80/60)2103 nm2. The total
decay rate of four atom aggregate under investigation is then �tot = 2�coll + 4�0, with
spontaneous decay rate �0 and collisional decay rate �coll for single atoms. We have as-
sumed that only two atoms ever move with the fastest velocity. Using �coll = ��ini� (80),
we �nally arrive at a total lifetime � = 1/�tot = 130µs for the aggregate.

However, detrimentally large cross sections for the same processes were found in Ref.
178,179 for much larger densities �. Further research on ionization of fast Rydberg
atoms within ultra cold gases is thus of interest for the setup assumed here.
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4.6 Conclusions

In summary, controlled creation of a few Rydberg atoms in a cold gas of ground state
atoms will allow to initiate coherent motion of the Rydberg atoms without external
con�nement as demonstrated here with the unconstrained motion of four Rydberg
atoms, forming coupled excitonic BO surfaces. This enables nonadiabatic motional dy-
namics and entanglement transport in assemblies of a few Rydberg excited atoms as
an experimental platform for studies of quantum chemical processes in�ated to conve-
nient time (microsconds) and spatial (micrometers) scales, with the perspective to shed
new light on relevant processes such as ultra-fast vibrational relaxation or quantum
control schemes for embedded systems. Experimental observables are atomic density
distributions or exciton spectra. Di�erent degrees of nonadiabaticity can be accessed
from the same initial atomic positions through the choice of the initial exciton state.

The e�ects explored will be most prominent with light Alkali species, such as Li dis-
cussed here, but also the more common Rb can be used. Here a slightly smaller setup
would su�ciently accelerate the motion to �t our scenario into the Rb system life-time.
Rb would, however, pose a greater challenge for the theoretical modelling, making the
inclusion of spin-orbit coupling necessary166,176.

Beyond the controlled scenario discussed here, illuminating a 3D gas entirely with a
single Rydberg excitation laser, followed bymicrowave transitions to the p state, should
also quickly result in nonadiabatic e�ects. They would arise through the abundant
number of CIs in random 3D Rydberg assemblies75.



5 Tuning interactions with magnetic
fields

The dipole-dipole interactions between Rydberg atoms are in general anisotropic. For
linear72–74 (planar) spatial con�gurations of the aggregates and excitation of the p
orbitals parallel or perpendicular (perpendicular) to the con�guration directions, the
dipole-dipole interactions are isotropic. However, for planar aggregates resonant inter-
actions are only istropic with positive amplitude. As depicted in Fig. 3.3 of Chapter 3,
this prevents access to a CI during dynamics on the repulsive BO surface. The neces-
sary negative sign of the binary interactions can thus not be achieved by the simple
choices alone. We demonstrate in this chapter how this problem can be overcome by
applying an external magnetic �eld.

The e�ect of the magnetic �eld on the anisotropic interactions together with a com-
parison to an isotropic interaction model is presented in section 5.1 by simulating the
dynamics for a four atom aggregate similar to the one of section 3.2.1 using both in-
teraction models. Subsequently, section 5.2 quantitatively investigates the e�ect of the
magnetic �eld on the dipole-dipole interactions. We start in section 5.2.1 with a discus-
sion of spin-orbit coupling, �nestructure, and where both can be neglected, and then
derive with these prerequisites an analytical interaction model for planar aggregates
in section 5.2.2. Finally, in section 5.2.3, we compare isotropic and e�ective interac-
tions with the complete interaction model, which also takes spin-orbit coupling into
account.

5.1 Isotropic versus anisotropic dipole-dipole model

In the electronic Hamiltonian, Ĥel(R) := Ĥdd(R) + Ĥvdw(R) in Chapter 3, we employed
isotropic binary interactions of the form V (r ) = �d2/6r 3 , for the investigation of pla-
nar aggregates. However naturally, only isotropic dipole-dipole interactions of the
form V (r ) = d2/3r 3, thus V (r ) > 0, can be realized by exciting to the single p excita-
tion manifold with the p orbitals aligned perpendicular to the x-� plane of the aggre-
gate. This corresponds to the excitation of (p,m = 0) states, with a quantization axis
qaperpendicular to the x-� plane, qa ? R(0) . To achieve a negative sign the (p,m = ±1)
manifold has to be excited when using the same orientation of the quantization axis.
However, the coupling betweenm = �1 andm = 1 states produces an anisotropy for
the interactions. The idea is to use a magnetic �eld to detune both p orbital orienta-
tions energetically, which eventually yields approximately isotropic interactions with
negative sign by selectively exciting one of the two p orientations.
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Figure 5.1: Comparison of aggregate’s dynamics employing two di�erent interaction models,
isotropic interactions according to Eq. (3.6), and anisotropic interactions together with a mag-
netic �eld shift according to the Hamiltonian in Eq. (5.1). The aggregate consists of two perpen-
dicular dimers, as in section 3.2.1, with the atomic motion constrained to 1D. In both models
we used the parameters � = 80, a2 = 19 µm and d = 40 µm. To obtain qualitatively the same
dynamics in both, a1 is adjusted individually, compensating quantitative di�erences in both
potentials. The anisotropic model uses a1 = 8 µm and the isotropic one a1 = 11.8 µm. (a)
and (b) Atomic density of atoms (1,2). (d) and (e) Atomic density of atoms (3,4), where (a) and
(d) are for the anisotropic model and (b) and (e) for the isotropic one. To highlight details at
lower densities, all value between 0.4 and 1 are represented with the color of the highest den-
sity. (c) Adiabatic populations on the repulsive- (red line) and adjacent energy surface (green
line) and purity (black lines). We compare the anisotropic (solid line) with the isotropic model
(dash-dotted line). (f) Cut through the atomic densities at the time indicated by black lines in
(d) and (e) for both models, with line-styles as in (c). The applied magnetic �eld strength for
the anisotropic model is Bz = 160 G.

We have to start with using the full anisotropy of the resonant dipole-dipole interac-
tions given by Eq. (1.55),Vm,m0 (r) ⇠ Y2,m0�m (� ,�)/r 3, and extend the electronic basis to
{|�� ,mi}, with |�� ,mi = |s . . . (p,m) . . . si the aggregate states which include all p or-
bital orientations, already de�ned in Eq. (4.4). Applying a magnetic �eld perpendicular
to the x-� plane, B = Bzez , them = ±1 states are energetically shifted by �E = µBBzm,
such that the total Hamiltonian can be written as

Ĥ (R,Bz ) = Ĥel(R) + µBBz
NX

�=1

1X

m=�1
m |�� ,mi h�� ,m | . (5.1)

In Fig. 5.1 we present the dynamics of a double dimer system similar to the double
dimer aggregate in section 3.2.1, employing once the isotropic interaction model and
then comparing it with amodel that takes the full anisotropy of the interactions into ac-
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count. Additionally it includes the e�ect of an external magnetic �eld, according to the
Hamiltonian in Eq. (5.1). The atomic motion for each dimer is still constrained to 1D.
Di�erent from the aggregate in section 3.2.1, we use adjusted parameters (see caption of
Fig. 5.1) to realize a situation which is adapted to the exciton switch of section 3.3/ The
results in Fig. 5.1 reveal that qualitatively the same main features are found as for the
isotropic model. However, for the greatest resemblance the parameters of both mod-
els have to be chosen slightly di�erent due to the quantitative di�erence of potentials,
which a�ect most importantly the initial acceleration of atoms (1,2), in turn controlling
the relative population of the two energy surfaces after CI crossing, seen in Fig. 5.1(e).
Thereby, the interatomic distance of the horizontal dimer, a1, is in both models sepa-
rately adjusted to achieve a rough 50-50 splitting on the two surfaces. Both variants
then qualitatively agree, in particular regarding clear signatures of multiple populated
BO surfaces in the snapshot shown in Fig. 5.1(f).

5.2 Analytical derivation of e�ective interactions

The numerical comparison of the dynamics for an aggregate in Fig. 5.1, of both interac-
tion models, already showed the qualitative e�ect of the magnetic �eld, decreasing the
anisotropy. In the following we quantitatively investigate the e�ect of the magnetic
�eld on the dipole-dipole interactions. We derive a model with e�ective interactions
and demonstrate that in the limit of in�nitely strong magnetic �elds it results in the
isotropic model according to Eq. (3.6).

5.2.1 Negligible spin-orbit coupling in the regime of strong
magnetic fields

The spin-orbit coupling leads to a �nestructure of p states with di�erent azimuthal
quantum number, j, of the total angular momentum, Ĵ = L̂ + Ŝ. We denote the energy
splitting between p states with j = 1/2 and j = 3/2 with �Efs. The single p excitation
manifold is thus also energetically split by �Efs. Considering the spins of the atoms,
the interaction Hamiltonian describing the coupling of atoms with a magnetic �eld
pointing in z direction can be written as

Ĥmf (Bz ) = µBBz

NX

�=1
L̂(� )z + 2Ŝ

(� )
z , (5.2)

where µB is the Bohr magneton, Bz , L̂(� )z and Ŝ (� )z denote the magnetic �eld, orbital
angular momentum and spin component in z direction, respectively, and � labels the
atom. Evaluation of the energy shifts due to the magnetic �eld requires an extension
to many-body spin states. It is su�cient to label the magnetic quantum number of
each spin which we denote with m(� )

s for the � th atom. A spin con�guration for the
aggregate is uniquely de�ned by the tuple MS := [m(1)

s . . .m
(N )
s ]T. We denote the cor-

responding state with |MSi := |m(1)
s i(1) . . . |m(N )

s i(N ) , which is the product state of all
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single atom spin states, labeled for the � th atom with |m(� )
s i(� ) . Introducing the quan-

tum number for the z component of the aggregate spin,

MS (MS ) :=
NX

i=1
m(� )

s , (5.3)

which is the sum over all individual spin quantum numbers, the energy shift for ag-
gregate states of the form |�� ,m,MSi in the magnetic �eld is given by

�Emf (Bz,MS ,m) = µBBz (2MS +m), (5.4)

withm the orbital magnetic quantum number of the p states. The detuning between
the m = 1 and m = �1 states inside a single MS-manifold is 2µBBz . An e�ective de-
coupling of bothm-manifolds is achieved if the detuning between them is signi�cantly
larger than the squared coupling elements. If furthermore the magnetic �eld shifts,
Emf = µBBz are much larger than the �nestructure splitting, than a strong �eld regime
is attained, where spin and angular momentum couple separately to the magnetic
�eld, which e�ectively removes the �nestructure and gives an energy level structure
sketched in Fig. 5.2(b). The energy spacing in this strong �eld regime are Emf = µBBz ,
which is of the order of ⇠ 100..250MHz for adequate magnetic �eld strengths.

The �nestructure furthermore yields doublets for neighboring states with (�MS ,�m) =
(±1,⌥2), sketched as red and blue lines in Fig. 5.2(b). The only singlet states withm , 0
are for completely upwards or downwards oriented spins and the p orbital oriented in
the same direction: (MS ,m) = (N /2, 1) and (MS ,m) = (�N /2,�1). Hence we con-
centrate on the (MS ,m) = (N /2, 1) manifold, which can be well addressed during the
Rydberg excitation process. The magnetic �eld yields increasing decoupling of the
(MS ,m) = (N /2, 1) manifold from the (MS ,m) = (N /2,�1) manifold with increasing
magnetic �eld strength. We study this decoupling in detail, giving the Hamiltonian
structure and derive e�ective interactions in section 5.2.2. The only coupling of the
(MS ,m) = (N /2, 1) state to other manifolds than (MS ,m) = (N /2,�1) is through spin-
orbit interactions and can thus be neglected.

5.2.2 Planar Rydberg aggregates in strong magnetic fields

Here we derive the Hamiltonian for a Rydberg aggregate in an external magnetic �eld
pointing in the z direction, where the magnetic �eld shift is much larger than the
�nestructure. This strong �eld regime allows a reduction of the electronic Hilbert space
to a single spin manifold. All atoms are assumed to be located within a plane, as in all
cases considered here, with quantization axis perpendicular to that plane. Then, the
m = 0 manifold is already completely decoupled72. We are interested in them = ±1
states and thus neglect them = 0manifold in the following. We use the decomposition
|�k ,mi = |�ki ⌦ |mi for the aggregate states in the following section, where |�1i , |1i
are the states for magnetic quantum number m = ±1 of orbital angular momentum.
We consider two Hilbert spaces: The “pure” aggregate space, V , spanned by the basis
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Figure 5.2: Sketch of energy splittings for the aggregate states. (a) Without magnetic �eld,
the �nestructure separates aggregate states with pj=1/2-excitation from the ones with pj=1/2-
excitation. (b) Magnetic �eld shifts of aggregate states in the strong �eld regime, where
Emf = µBBz � �Efs. The aggregate states energetically separate with energy gaps Emf for
neighboring states with (�MS ,�m) = (0,±1) and energy gaps ⇠ �Efs, for neighboring states
with (�MS ,�m) = (±1,⌥2) (energy gap between neighboring blue and red lines). The notation
{"}N"{#}N# is a short form for a spin con�guration with N" spins oriented upwards (ms = 1/2)
and N# spins oriented downwards (ms = �1/2).

B[V ] := {|�ki}Nk=1 and the space including the angular momentum magnetic quantum
numbers,V , spanned by B[V] := {|�1i , |1i} ⌦ B[V ].

The dipole-dipole interaction Hamiltonian with magnetic �eld shift for �xed m = ±1
is given by

Ĥm (R) := Ĥel(R) +mEmf1[V ], (5.5)

with Ĥel(R) the Hamiltonian de�ned in Eq. (3.13) and 1[V ] the identity operator, act-
ing on states of V . The electronic Hamiltonian Ĥel(R) is the restriction of the full
anisotropic Hamiltonian to aggregate states with �xedm, such that |mi hm | ⌦ Ĥm (R) =
Ĥ (R,Bz )

���m, with Ĥ (R,Bz ) the Hamiltonian given in Eq. (5.1).

The dipole-dipole transitions fromm = 1 tom = �1 are described by

Ŵ (R) :=
d2

2

NX

� ,�=1
�,�

R�3��e
�2i�� � |�� i h�� | , (5.6)

where R�� = |R�� | and ��� are the modulus and azimuthal angle of the separation
R�� between atoms � and � , within the co-ordinate system de�ning our quantization
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axes.

We now treat Ĥm (R) as unperturbed system and Ŵ (R) as perturbation and set up op-
erators:

Ĥ0(R) :=
X

m2{�1,1}
|mi hm | ⌦ Ĥm (R), (5.7)

Ŵ (R) := |1i h�1| ⌦ Ŵ (R) + |�1i h1| ⌦ Ŵ †(R), (5.8)

Ĥ (R) := Ĥ0(R) + Ŵ (R). (5.9)

The Hamiltonian Eq. (5.9) describes Rydberg aggregates with magnetic �eld shifts for
them = ±1 states, but neglecting �nestructure shifts. Rewriting it in block-structure
with block basis |1i , |�1i,

Ĥ (R) =
 
Ĥ1(R) Ŵ (R)
Ŵ †(R) Ĥ�1(R)

!
=

 
Ĥel(R) + Emf1[V ] Ŵ (R)

Ŵ †(R) Ĥel(R) � Emf1[V ]

!
, (5.10)

indicates that a block-diagonalization for large magnetic �eld shifts is possible, such
that a perturbation series in orders of E�1mf can analytically be derived. The structure
of the Hamiltonian is already in the form to apply the block-diagonalization scheme
derived in appendix E.1. Restricting ourselves to the block Ĥ 01 ⌘ h1| Ĥ 0 |1i, where
Ĥ 0 denotes the block-diagonalization of Ĥ , we get up to second inverse order of the
magnetic �eld shifts

Ĥ 01 ⇡ Ĥel + Emf1[V ] + ŴŴ †/2Emf +
⇣
Ŵ ĤelŴ

† � {Ĥel,ŴŴ †}/2
⌘
/4E2mf , (5.11)

according to Eq. (E.20), where {Â, B̂} = ÂB̂ + B̂Â denotes the anticommutator for ar-
bitrary operators Â, B̂. It is useful to rescale all operators to get an intuition when
the correction terms get small. To do so we de�ne a maximum dipole-dipole interac-
tion element, Emax

dd := d2/(2R3
min), with Rmin := min� ,� :�,� R�� and introduce dimen-

sionless operators ˆ̃X , by de�ning X̂ := Emax
dd

ˆ̃X , with X̂ 2 {Ĥ 01, Ĥel,Ŵ }. This yields
| h�� | ˆ̃Hel |��i |  1 and | h�� | ˆ̃W |��i |  1. Introducing further a decoupling parameter,
� := Emax

dd /(2Emf ) and setting Emf as our zero of energy, we �nd up to �2 the following
e�ective interaction Hamiltonian form = +1:

ˆ̃H 01 ⇡ ˆ̃Hel + �
ˆ̃W ˆ̃W † + �2 ˆ̃W ˆ̃Hel

ˆ̃W † � �2{ ˆ̃Hel,
ˆ̃W ˆ̃W †}/2 (5.12)

For Bz ! 1, which is equivalent to � ! 0, we �nally �nd limBz!1
ˆ̃H 01 =

ˆ̃Hel, where ˆ̃Hel
is the electronic Hamiltonian de�ned in Eq. (3.13), which uses negative binary resonant
interactions of the form V (r ) = �d2/6r 3.
To get an idea, which magnetic �eld strengths are necessary to suppress the remaining
anisotropy, we rewrite the decoupling parameter,

� (� ,R,Bz ) = 731.4
(�/40)4

(R/µm)3(Bz/G)
, (5.13)
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which is valid for 7Li. For the double dimer in section 3.2.1 we used � = 44 and a
minimal distance of a1 = 2.16 µm. The decoupling parameter is smaller than 0.27 for
�eld strengths above 400 G. The exciton switch in section 3.3 worked with � = 80 and
a minimal distance of a1 = 6 µm. For a decoupling parameter smaller than 0.27, a �eld
strength above 200 G is required. The speci�ed �eld strengths uniformly decrease the
anisotropy. However, the strength of the anisotropic contributions is dependent on the
atomic con�guration and therefore a �xed �eld strength suppresses the anisotropic
contributions for some atomic con�guration better than for others. We will demon-
strate this in the next section, where we �nally compare the isotropic model with the
analytically derived Hamiltonian in this section, given in Eq. (5.11). We then proceed
to compare both models with the complete Hamiltonian, describing anisotropy of the
interactions, an additional applied magnetic �eld and also the spin-orbit coupling.

5.2.3 Comparison between isotropic, e�ective and complete
Hamiltonian

In this section we assess how good the isotropic or the e�ective Hamiltonian (both
without spin degrees of freedom) approximate the complete Hamiltonian, which in-
cludes spin-orbit coupling in addition to the magnetic �eld.

We denote the space of the electron spin states of the � th atom with S (� ) , the basis
of which is spanned by B[S (� )] = {|�1/2i(� ) , |1/2i(� )}. The states |�1/2i(� ) denote
downwards oriented electron spin and |1/2i(� ) upwards oriented electron spin for the
� th atom. The space of all N electron spins is then given by S = ⌦N�=1S (� ) , with the
product basis B[S] = ⌦N�=1B[S (� )].
The spin-orbit interaction destroys the decoupling of the m = 0 states, such that we
have to rede�ne some quantities of section 5.2.2. The space V is now spanned by
B[V] := {|�1i , |0i , |1i} ⌦ B[V ], with |mi the states of the quantum number m 2
{�1, 0, 1}. The Hamiltonian for them = 0 states is given by

Ĥ0(R) := �2Ĥdd(R) + Ĥvdw(R), (5.14)

with Ĥdd(R) the resonant dipole-dipole Hamiltonian in Eq. (3.7) and Ĥvdw(R) the o�-
resonant vdWHamiltonian in Eq. (3.12). Note that Ĥ0(R) experiences no magnetic �eld
shift. We rede�ne Ĥ0(R) from Eq. (5.7), such that it includes them = 0 states:

Ĥ0(R) :=
X

m2{�1,0,1}
|mi hm | ⌦ Ĥm (R). (5.15)

The Hamiltonian in Eq. (5.9), Ĥ (R), is now calculated with the rede�ned Ĥ0(R).

With these de�nitions, we can span the complete space V := V ⌦ S, describing both,
the orientation of the p states and the spins of the electrons. The product basis, where
spin and orbital angular momentum of the p states are not combined to a total angular
momentum, is then given by Bls[V] := B[V] ⌦ B[S].
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The Hamiltonian H (R) in Eq. (5.9) includes the magnetic �eld shifts for the orbital
angular momentum only. The magnetic �eld shift for the spins is described by

Hmf�s := Emf
X

|MS i2B[S]
MS (MS ) |MSi hMS | (5.16)

The dipole-dipole interactions together with the total magnetic �eld shift is then given
by

Ĥdd+mf (R) := H (R) ⌦Hmf�s. (5.17)

To set up the spin-orbit interaction Hamiltonian in a simple way, it is useful to employ
yet another basis. First we de�ne the spin spaces S (,� ) , which describe all spins ex-
cept those of the the � th atom, S (,� ) := ⌦N

�=1;�,�S (� ) . Their product basis B[S (,� )]
is spanned by B[S (,� )] = ⌦N

�=1;�,�B[S (� )]. The spin-orbit coupling yields a total
angular momentum, Ĵ := L̂ + Ŝ per atom. The pair (j,mj ) are the quantum num-
bers of Ĵ, with j 2 {1/2, 3/2} and mj 2 Mj := {�|j |,�|j | + 1, . . . , |j |}. The result
of the spin-orbit coupling is the �nestructure splitting �Efs, between p states with
j = 3/2 and p states with j = 1/2. To write down the spin-orbit Hamiltonian in its
eigenbasis, we �rst introduce aggregate states which include the spin of the p states,
|�k , j,mji := |s . . . (p, j,mj )...si. We now de�ne spacesVj ⇢ V, which we span with the
basis B[Vj] := ⌦N�=1{|�k , j,mji}mj2Mj ⌦B[S (,� )]. The orthogonal sum of both ’j-spaces’
spans the complete space,V = V1/2 �V3/2. This yields the eigenbasis of the spin-orbit
Hamiltonian, Bj,mj[V] := B[V1/2][B[V3/2]. Introducing the unitary transformation Û,
which performs the basis transformation from Bj,mj[V] to Bls[V], the spin-orbit Hamil-
tonian in the basis Bls[V] is given by

Ĥso = �EfsÛ

 
O[V1/2] � 1[V3/2]

!
Û†, (5.18)

where O[V1/2] is the null operator acting on elements in V1/2 and transforming them
into its zero. Note that we thus shift the origin of energy to the j = 1/2 manifold. The
complete Hamiltonian is then given by

Ĥ(R) := Ĥdd+mf (R) + Ĥso. (5.19)

We compare the three di�erent Hamiltonians in Eq. (3.13), Eq. (5.12) and Eq. (5.19)
by using them to calculate the eigenenergies for a four atom system with a symmet-
ric con�guration (b = 0), as sketched in Fig. 3.4(a). We show for Eq. (5.19) only the
(MS ,m) = (N /2, 1) manifold, which is the one that we propose to work with. The po-
sitions of atoms (3,4) are �xed, whereas the positions of atoms (1,2) are parameterized
as x1 = �x and x2 = a1+x . The eigenenergies of all three Hamiltonians are plotted as a
function of the co-ordinate x in Fig. 5.3. The isotropic model in Eq. (3.13) approximates
Eq. (5.19) well for all locations crucial in our simulations, as shown in Figs. 5.3(a)–5.3(c).
Crucial for the simulations are con�gurations with small x values, where the atoms are
accelerated due to the interactions, and in the neighborhood of the conical intersection.
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Figure 5.3: Comparison of energy spectra from di�erent approximations of the complete
Hamiltonian, for a double dimer as sketched in Fig. 3.4(a). We use � = 80, which yields a
�nestructure splitting of �Efs = 0.15 MHz133. Further parameters are b = 0, d = 40 µm,
a1 = 8 µm and a2 = 19 µm. The atoms (3,4) are �xed, whereas the positions of atoms (1,2)
are parameterized, such that x1 = �x for atom 1 and x2 = a1 + x for atom 2. We compare the
complete model (solid lines) with di�erent approximate models (dashed dotted lines) in di�er-
ent columns. The approximate models are: (a)–(c) purely isotropic model used for the main
results in section 3, with Hamiltonian given in Eq. (3.13). (d)–(f) Corrected model with e�ec-
tive Hamiltonian according to Eq. (5.12) up to �rst order in � . (g)–(i) Same as (d)–(f), but using
the e�ective Hamiltonian up to second order in � . We consider three di�erent magnetic �eld
strengths: Bz = 50 G in the lower row, Bz = 100 G in the middle row and Bz = 160 G in the
upper row. The energy of in�nitely separated atoms is set to zero.

The agreement is not good for the equidistant linear trimer con�guration x = d . The
excitation is there mostly delocalized and the phase of the dipole-dipole interaction
plays a role. The e�ective Hamiltonian in Eq. (5.12) approximates the complete one
for this con�guration very well, as shown in Figs. 5.3(d)–5.3(g). It appears that the
Hamiltonian of order � in Eq. (5.12) approximates Eq. (5.19) better than the order �2

version. This may be since Eq. (5.12) does not take the spin-orbit coupling into account
and the �nestructure is of the order of the �2 corrections. A better description beyond
the � correction would then require a block-diagonalization, which explicitly includes
spin-orbit coupling.
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As expected, increasing the magnetic �eld strength improves the decoupling of the
(MS ,m) = (N /2, 1) manifold. This results in a better agreement between the reduced
models and the complete model for higher �eld strengths.



Conclusions and Outlook

The fast progress in cooling, trapping and coherent excitation of Rydberg atoms is
opening up the �eld of quantum simulation with Rydberg atoms. Whereas the focus so
far was mainly on quantum information processing or simulators for condensed mat-
ter Hamiltonians, this thesis demonstrates suitability of �exible Rydberg aggregates as
test bench for quantum transport. To this end we have investigated here �exible Ryd-
berg aggregates in higher-dimensional arrangements. Quantum transport is typically
a feature of molecular aggregates. For plants it is important to absorb photons and
ultimately perform with the gained energy photosynthesis. Before the energy can be
converted, LHCs transfer photo-induced excitation resonantly to certain reaction cen-
ters. Under debate is whether quantum features are essential for this transport. The
numerous degrees of freedom complicate the identi�cation of the essential components
of transport. Nevertheless, e�cient models explained already many transport features
in molecular aggregates, e.g. for LHCs. The di�culty is to adequately take into account
the strong coupling between electronic and nuclear degrees of freedom for latter. As
a result, models are often designed to contain either energy transport or CI-dynamics.
With �exible Rydberg aggregates we found a toy model which allows us to investi-
gate both. Speci�cally in this thesis, we were able to study the e�ect of CIs on exciton
pulses. The feasibility to consider both features is in fact a result of using �exible
Rydberg aggregates, which are simple enough in their structure to solve combined dy-
namics of spatial and electronic degrees of freedom with the help of quantum-classical
methods, such as FSSH, and to treat the strong interactions non-perturbatively. In fact,
the observed exciton pulses72,73,82,177 rely on an adequate description of the coupling
between electronic states and nuclear degrees of freedom. The pulses are initiated by
preparing a strong diatomic proximity of an atom pair, which also completely localizes
the excitation on this dimer. Such a large displacement is hard to capture with typical
phonon modes. Early studies180,181 already revealed combined exciton-phonon pulses.
However, in these models the lattice displacements a�ect only the on-site excitation
energies and not the transition matrix elements of the excited state manifold and for
this reason they di�er in theway of coupling electronic and nuclear degrees of freedom.
Furthermore, a restriction to nearest neighbor interactions excludes the investigation
of CIs. The ability to fully treat the interactions between nuclear and electronic de-
grees of freedom in �exible Rydberg aggregates allowed us to discover the coherent
splitting of an exciton pulse caused by a CI. The coherent superposition is on the scale
of several micrometers and therefore in a regime were physics is usually classical. Re-
cently, an experiment demonstrated coherent superpositions even on the half-metre
scale182. However, the exciton pulse splitting demonstrated in this thesis di�ers from
other demonstrations of the quantum superposition principle by superimposing both
exciton states and distinct spatial states on a mesoscopic scale simultaneously. We
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(a) (b)

Figure 5.4: Comparison of di�erent CI splitting mechanisms. Illustration of a wave
packet (blue, solid line) and its splitting into parts (blue, dashed line) by hitting a CI of two
BO surfaces(black lines). (a) A wave packet approaches the CI on an excited surface and splits
such that two partial wave packets evolve on an energetically lower BO surface. The CI serves
as an ultrafast decay channel as observed in photodissociation processes100,102. (b) A wave
packet carries kinetic energy and can therefore approach the CI from a lower-lying state. After
the splitting, both excited- and lower-lying states are populated and hence the CI is utilized to
partly populate the excited state. This type of splitting occurs for instance in quantum reactive
scattering processes183–186 and is also the type of wave packet splitting observed for the studied
T-shape aggregates in this thesis.

were able to demonstrate exciton splitting for both planar and unconstrained aggre-
gates. For the planar aggregates the orientation of the p orbitals was �xed along a
chosen direction in the plane of the aggregate. For the unconstrained aggregate, we
varied the alignment of the p orbitals and observed a dependency of the exciton split-
ting on this variation. When the orbital of the excitation is aligned perpendicular to
the aggregate’s plane of initial con�guration, propagation occurs along a decoupled
sub-manifold of the electronic Hamiltonian with isotropic interactions. However, in
contrast to the interaction model employed for the planar aggregates, the amplitude
of the binary interactions is positive, such that the repulsive surface does not feature
a CI and therefore no exciton splitting occurs. An alignment of the excitation orbital
within the plane genuinely features anisotropy of the interactions which is large in the
vicinity of con�gurations with equidistant diatomic spacings. The consequence is a CI
which splits the exciton, similarly as for the planar aggregates.

In exciton splitting the CI does not act as an ultrafast decay channel, as it is depicted in
Fig. 5.4(a), and would for instance be the case for the photoisomerization of rhodopsin
in vision. Further, the exciton pulse splitting is similar to quantum reactive scatter-
ing183–186 processeswhere thewave packet approaches the CI from a lower-lying BO sur-
face with the help of kinetic energy. The splitting partly populates both the excited and
the lower neighboring BO surface, as depicted in Fig. 5.4(b).

This orbital sensitivity of the exciton splitting might be useful to draw conclusions
about the initial orbital orientation of excitation and to even measure it without the
need of ionizing the atoms. Detecting the atomic density spatially resolved with a
CCD camera, perpendicularly oriented to the aggregate’s plane of initial con�guration
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and orthogonal to the initial pulse propagation could distinguish between both orbital
orientations of the excitation. The experiment has to be repeated several times with the
same excitation scheme which subsequently resamples the atomic density. Counting
the number of spatially connected domains of atomic hits �nally distinguishes both
alignments of the excitation orbital.

With the extended planar T-shape aggregates with more atoms on the vertical Ryd-
berg chain we investigated the possibility to establish exciton pulse propagation after
redirecting it on an orthogonal direction. We observed no pulse propagation for sym-
metric T-shape aggregates where the pulse exactly hits the CI. The conclusion is that
adiabaticity is essential for the pulse propagation. However, the knowledge of how the
CI a�ects the pulse can be used to alter the aggregates’ geometry in order to achieve
exciton pulse propagation after redirection. The key is to preset an asymmetry of the
horizontal chain relative to the vertical chain, such that the pulse avoids exactly hitting
the CI. Additionally, we are able to select the direction of the pulse on the vertical chain
by varying the interatomic distance of the two atoms closest positioned to the horizon-
tal chain. This distance controls whether a trimer subunit of these two atoms and the
approaching excitation carrying atom from the horizontal chain is formed or not. A
large spacing prevents the formation of the subunit and ensures that the pulse propa-
gates over the whole time along the repulsive surface, since the energy spacing to other
BO surfaces remains large. On the other hand, for smaller interatomic distances of the
inner vertical dimer the trimer subunit is formed but the preset asymmetry ensures
that the trimer con�gurations su�ciently deviates from the equilateral con�guration
where the CI is located and hence the energy gap to the neighboring BO surface re-
mains large enough to guide the pulse almost adiabatically on the adjacent surface.
Therefore, the diatomic spacing of the inner vertical dimer switches between either
populating the repulsive surface or the adjacent surface and consequently controls the
direction of exciton pulse propagation on the vertical chain. We could con�rm high
�delity pulse propagation by measuring the bipartite entanglement on both ends of
the vertical chain.

Future perspectives

The results obtained in this thesis have stimulated further questions. In the following
we present some interesting ideas for further investigations.

Exciton pulses with superatoms

Rydberg aggregates in this thesis are based on single atoms as constituents. Trap-
ping single atoms per lattice site in an optical lattice is already experimentally feasi-
ble54,187,188. However, preparation of speci�c spatial arrangements, e.g. T-shape ag-
gregates which we studied in this thesis, might still be a di�cult experimental task.
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To overcome this issue, spatially separate atom clouds could be realized as a replace-
ment for single atoms. The dipole blockade ensures that a single Rydberg excita-
tion is coherently shared between all atoms within each cloud such that a superatom
emerges35,36,189–195 with similar properties to a single Rydberg atom. To ensure that
superatoms can move similar to a single atom80,81,196, they are allowed to only contain
a small fraction of Rydberg excitation. This is achieved by dressing techniques56,76,197
where the coupling to Rydberg states is o�-resonant. So far a dimer based on Rydberg
dressed superatoms was studied80,81,196. An interesting question is whether exciton
pulse propagation could be realized with superatoms. Following studies could investi-
gate the possibility for exciton splitting.

Entangled spin transport on mesoscopic scales

Generation of exciton pulses was theoretically demonstrated with lithium atoms so far.
The advantage of using Lithium is that spin-orbit interactions can be neglected. How-
ever, we expect interesting new physics from studying �exible Rydberg aggregates
based on Rubidium which exhibits strong spin-orbit coupling. Dipole-dipole interac-
tions do not directly operate on the spins of the electron as long as spin-orbit coupling
plays no role. In contrast, the transfer of orbital momentum excitation in Rydberg ag-
gregates based on Rubidium might open the way to also transfer entangled spin states.
In this way couplings between spin and spatial degrees of freedom are e�ectively in-
troduced. Flexible Rydberg atoms based on Rubidium are also appropriate from an ex-
perimental point of view, simply because most ultracold experimental setups employ
them.

Investigation of Rydberg dressed exciton-phonon pulses

Experiments with ultracold atoms reached the point to trap single atoms in optical
lattices and enables the possibility to study exciton-phonon pulses for di�erent spa-
tial structures. Systems with a large number of atoms would require Rydberg dressed
ground state atoms56,56,58,76, since they have a longer lifetime compared to Rydberg
atoms. For dressed states, the possibility for exciton pulse propagation was demon-
strated for a linear �ve atom chain76 so far. Studying the dynamics in an optical lattice
would allow for expanding the spatial dynamics around the equilibrium con�guration,
such that the spatial dynamics can be described as an expansion of phonon modes.
Taking into account terms beyond the harmonic expansion198–200 might be crucial for
a complete localization of an angular momentum excitation between an atom and its
nearest neighbors, as pointed out earlier. Nonlinear lattice dynamics is responsible
for many interesting physical phenomena such as soliton formation and enhanced su-
perconductivity201–203. However, combined exciton-phonon pulses in the nonlinear
regime were not studied so far. Ultracold Rydberg dressed atoms in an optical lattice
could serve as a toy model for such investigations and to derive conclusions about
genuine condensed matter systems.
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Investigations of three-state CIs

In this thesis CIs appeared between two BO surfaces. For three-dimensional con�g-
urations, three BO surfaces can conically intersect, which were located for certain
molecules204–207. However their role and impact for excited state dynamics is not com-
pletely clear. With the help of �exible Rydberg aggregates a study of three-state CIs
could be performedwith the advantage that the intersection can be studied in a reduced
system where in�uences from an environment can be highly suppressed. A model sys-
tem would be a four atom aggregate with tetrahedral con�guration. An interesting
question is whether excitation can be quickly transferred through a sudden transition
to a exciton state mediated by a three-state CI.

Comparison of the observed exciton spli�ing with singlet
fission in organic semiconductors

One of themain result of this thesis is the coherent splitting of an exciton pulse through
a CI. In the following we want to compare this process with an exciton splitting pro-
cess which occurs in organic semiconductors. The mechanism behind solar cells is the
creation of excitons by absorbing photons and a subsequent charge separation. The
resulting energy di�erence at the electrodes eventually creates a desired electric po-
tential. High e�ciency of solar cells necessitates stable charge separation, implying an
exciton lifetime longer than the migration time to the electrodes, which is equivalent
to a su�cient mobility of the excitons. The materials used for organic semiconduc-
tors lead to a population of molecular orbitals with an overall net spin zero or one,
respectively, which consequently creates singlet (net spin zero) and triplet (net spin
one) excitons208,209. Although the number of triplet states is three times the number
of singlet states due to the quantum mechanical rules of angular momentum addition,
triplet excitons usually do not contribute to charge separation, because they are not
likely to be excited by absorbed photons and furthermore a direct excitation leads to
small mobility of them and the tendency for non-radiative decay210. This limits the ef-
�ciency of solar cells already to 25%. A more precise theoretical calculation of an upper
bound for the e�ciency is the Shockley-Queisser limit 211, which also includes the lack
of triplet excitons for charge separation. However, for particular materials, a process
called singlet �ssion212,213 turns singlet excitons into two triplet excitons conserving the
total net spin to zero. This process doubles the number of charge carriers and �nally
overcomes the di�culties of a direct excitation of triplet exciton by creating excitons
which are able to move apart such that they do not annihilate. Ultimately, excitons are
generated with a long lifetime. Singlet �ssion can be observed in organic materials in
which the molecular singlet excited state has an energy of at least twice the one of the
triplet excited state, such that the process is exergonic214. It was theoretically shown
that it increases the maximally allowed e�ciency to 44%, hence it circumvents the
Shockley-Queisser limit by far. Based on this predictions, experimental evidence for a
drastically increased e�ciency was found215–220. For a long time the detailed mecha-
nism of singlet �ssion was unclear and several mechanisms were under debate221–229.
Recent experiments found evidence for a CI mediating the process230 and could verify
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that strong couplings between nuclear and electronic degrees of freedom are crucial.
However, the couplings have to be optimal in the sense that on the one hand they need
to be strong enough to enable the exciton splitting process but on the other hand they
should be su�ciently weak to prevent annihilation of both triplet excitons.

Although our model of exciton dynamics is very simple and the excitons here are of
a di�erent kind than in organic semiconductors, we are also able to demonstrate ex-
citon splitting caused by a CI. The di�erence is that in the process of singlet �ssion
the number of charge carriers is increased, whereas the exciton splitting in T-shape
Rydberg aggregates as demonstrated in this thesis does not multiply the number of
excitons. However, the comparison of both processes reveals some similarities. For
both, high energetic excitons are converted into low energetic ones which therefore
suppresses thermalization losses. Furthermore they share a reorganization of the exci-
ton structure. It is a further open question whether exciton �ssion can be realized with
Rydberg aggregates. To dynamically change the number of excitons, the constituents
should feature molecular orbitals such that more than one electron are available to
be excited. This could for instance be realized with aggregates of interacting Rydberg
molecules59–68.



A Calculations for chapter ’Rydberg
atoms’

A.1 Adjusting dipole matrix elements for the
treatment of spin-orbit coupling

In section 1.2.2, we presented the evaluation of the dipole matrix elements without
considering �nestructure. Here we show the calculation accounting for �nestructure.
We only have to use the translation from the orbital angular momentum basis into the
total angular momentum basis. Let |�soi = |� , `, j,mji be a bound state ket of an alkali
or hydrogen atom, the �nestructure of which is considered. These kets are related
to the product basis of spin and the kets of the atom without including �nestructure,
|� , `,mi, in the following way:

|� , `, j,mji =
X

ms=±1/2
Cj,mj
`,mj�ms ;s,ms

|� , `,m =mj �msi |msi . (A.1)

This is the same transformation as between the spherical harmonics and its general-
ized versions, given in (1.22). The transformation is the same here, since we neglect a
dependency of the bound state radial wave functions on the quantum numbers of the
total angular momentum, such that only the spherically dependent part of the wave
functions di�er. This yields for the dipole matrix elements

hd̂i�
0
so
�so = D

� 0,`0

� ,` D̃
`0,j 0,m0j
`,j,mj

, (A.2)

where D� 0,`0

� ,` is the radially dependent reduced matrix element, de�ned in Eq. (1.40).
The formula of dipole matrix elements without the treatment of spin-orbit interactions,
given in Eq. (1.39) has be adjusted only in the vector, containing the anisotropy, from
D`
0,m0

`,m ! D̃
`0,j 0,m0j
`,j,mj

, where D`
0,m0

`,m is de�ned in Eq. (1.41) and D̃
`0,j 0,m0j
`,j,mj

is given by

D̃
`0,j 0,m0j
`,j,mj

=
X

ms=±1/2
Cj
0,m0j
`0,m0j�ms ;s,ms

Cj,mj
`,mj�ms ;s,ms

D
`0,m0j�ms

`,mj�ms
. (A.3)
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A.2 Coupling of spherical harmonics

For the evaluation of matrix elements of the dipole-dipole interactions, it is suitable to
recouple the product of two spherical harmonics, which have the same argument, into
a sum of single spherical harmonics. Suppose we have the spherical harmonics Y`1,m1

and Y`2,m2 , where in general we use the short notation Y`,m := Y`,m (� ,�), such that we
skip the arguments. The product of both can be expanded in the following way:

Y`1,m2 · Y`2,m2 =

1X

`=0

X̀

m=�`
c`,mY`,m, (A.4)

with the expansion coe�cients

c`,m =

⌅
d�Y ⇤`,m (� ,�)Y`1,m2 (� ,�)Y`2,m2 (� ,�) (A.5)

=

r
3
4�

r
2`2 + 1
2` + 1

C`,0`1,0;`2,0C
`,m
`1,m1;`2,m2

. (A.6)

An important special case is for `1 = `2 = 1, where we get

Y1,m1 · Y1,m2 =
(�1)m1

4�
�m1,�m2 +

r
3

10�
C2,m1+m2
1,m1;1,m2

Y2,m1+m2 . (A.7)

A.3 Evaluation of matrix elements of dipole-dipole
interactions

In section 1.3, we presented in Eq. (1.52) the dipole-dipoleHamiltonian. Its �rst term is a
purely isotropic interaction, whereas the second termmakes the interaction anisotropic
in general. We can evaluate the second term further by using for both, the dipoles and
the distance vector, their spherical representation. Remember that the distance vector
has the spherical representation R12 =

q
4�
3 R12

P
µ=±1,0Y1,µbµ and the scalar product of

two vectors a, b with spherical representation is given by ha, bi := P
µ=±1,0 a

⇤
µbµ , where

xµ = hbµ , xi for all x 2 C3. With this, we can write the second term of Eq. (1.52) as:

3
R5
12
hR12, d̂(1)i hR12, d̂(2)i =

3
R5
12

4�
3
R2
12

X

µ,µ 0=±1,0
Y ⇤1,µY

⇤
1,µ 0d̂

(1)
µ d̂ (2)

µ 0 . (A.8)
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Using the formula in Eq. (A.7) for the product Y ⇤1,µY
⇤
1,µ 0 , we get

3
hR12, F(1)i hR12, F(2)i

R3
12

=
4�
R3
12

X

µ,µ 0=±1,0

8><>:
(�1)µ
4�

�µ,�µ 0 +

r
3

10�
C2,µ+µ

0

1,µ;1,µ 0 Y
⇤
2,µ+µ 0

9>=>; d̂ (1)
µ d̂ (2)

µ 0

(A.9)

=
1
R3
12

X

µ=±1,0
(�1)µd̂ (1)

µ d̂ (2)
�µ

+

p
24�
R3
12

X

µ,µ 0=±1,0

 
1 1 2
µ µ0 �(µ + µ0)

!
Y2,�(µ+µ 0)d̂

(1)
µ d̂ (2)

µ 0 , (A.10)

wherewe additionally used the relationY ⇤`,m = (�1)�mY`,�m and transformed the Clebsch-
Gordan coe�cient into a 3j-symbol via

C`3,m3
`1,m1;`2,m2

:= (�1)`1�`2+m3
p
2`3 + 1

 
`1 `2 `3
m1 m2 �m3

!
. (A.11)

We show further that the sum in the �rst term of Eq. (A.10) is nothing else than the
inner product of the two dipoles:

X

µ=±1,0
(�1)µd̂ (1)

µ d̂ (2)
�µ = d̂

(1)
0 d̂ (2)

0 �
X

µ=±1
d̂ (1)
µ d̂ (2)
�µ (A.12)

= d̂ (1)
0 d̂ (2)

0 �
X

µ=±1

⇣
µd̂ (1)

x + id̂
(1)
�

⌘ ⇣
�µd̂ (2)

x + id̂
(2)
�

⌘
(A.13)

= d̂ (1)
0 d̂ (2)

0 �
X

µ=±1
�µ2d̂ (1)

x d̂ (2)
x + iµ

⇣
d̂ (1)
x d̂ (2)

� � d̂ (1)
� d̂ (2)

x

⌘
� d̂ (1)

� d̂ (2)
�

(A.14)

=
X

�2{x ,�,z}
d̂ (1)
�
d̂ (2)
�
= d̂(1) · d̂(2) (A.15)

Thus, this term cancels with the purely isotropic part of the dipole-dipole interaction
and we �nally arrive at

Ĥdd(R12) := �
1

4��0

p
24�
R3
12

X

µ,µ 0=±1,0

 
1 1 2
µ µ0 �(µ + µ0)

!
Y2,�(µ+µ 0)d̂

(1)
µ d̂ (2)

µ 0 (A.16)

The matrix elements between the states |�1; �2i and |�01; �02i with |�ki = |�k , `k ,mki and
|�0
k
i = |� 0

k
, `0

k
,m0

k
i are simpler than Eq. (A.16), since only the dipole matrix elements

for the spherical component with �mk := m0
k
� mk , k 2 {1, 2} are non-vanishing,
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hd̂µi
�0k
�k
= �µ,��mk hd̂��mk i

�0k
�k
. This terminates the sums in Eq. (A.16) and we �nally get

h�1; �2 | Ĥdd(R12) |�01; �02i = �
p
24�
hd̂��m1i

�01
�1
hd̂��m2i

�02
�2

R3
12

⇥
 

1 1 2
��m1 ��m2 �m1 + �m2

!
Y2,�m1+�m2 (�12,�12). (A.17)

A.3.1 Evaluation of matrix elements of dipole-dipole
interactions between s and p states with the same
principal quantum number

In this work, the focus is on dipole-dipole interactions between s and p states with
the same principal quantum number. In particular we are dealing with 7Li. We set
�1 = {� , 1,m}, �01 = {� , 0, 0} for atom 1 and �2 = {� , 0, 0}, �02 = {� , 1,m0} for atom 2.
This implies �m1 = �m and �m2 =m

0. The dipole transition matrix elements simplify
to

hd̂��m1i
�01
�1
hd̂��m2i

�02
�2
= D� ,0

� ,1 C
1,m
0,0;1,mD

� ,1
� ,0 C

0,0
1,m0;1,�m0 (A.18)

= d2� ,0;� ,1
C1,00,0;1,0p

3

=1z }| {
C1,m0,0;1,m

p
3C0,01,0;1,0|{z}
=�1/

p
3

=(�1)m0+1/
p
3z     }|     {

C0,01,m0;1,�m0 (A.19)

=
(�1)m0

3
d2� ,0;� ,1. (A.20)

We abbreviate Vm,m0 (R12) := h�1; �2 | Ĥdd(R12) |�01; �02i and get as matrix elements

Vm,m0 (R12) = �
r

8�
3
d2� ,0;� ,1

R3
12

(�1)m0
 
1 1 2
m �m0 m0 �m

!
Y2,m0�m (�12,�12). (A.21)

A.4 Formula for calculating van-der-Waals
interactions via block-diagonalization

We start by introducing the Hamiltonian for two dipole-dipole interacting atoms,

Ĥ (R) := Ĥ (� ) ⌦ 1̂(� ) + 1̂(� ) ⌦ Ĥ (� ) + V̂dd(R), (A.22)

where Ĥ (� ) is the Hamiltonian of the single alkali atom � and 1̂(k ) denotes the identity
operator over the bound state space for atom k = � , � . The Hamiltonian can be ex-
panded in the pair state basis {|X i}, where each |X i is a tensor state of an individual
state from atom � and atom � . Since the eigenenergies are degenerate with respect to
the magnetic quantum numbers, we rewrite pair states as |X i = |x ,Mi ⌘ |xi ⌦ |Mi,
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where |xi contains the principal and azimuthal- and |Mi the magnetic quantum num-
bers. The explicit structure of these pair states is |xi = |�� i ⌦ |��i, with |�ki = |�k , `ki
and |Mi = |m� i ⌦ |m�i for atom k = � , � . Note that the range of magnetic quantum
numbers is dependent on the azimuthal quantum numbers,M = M (x ). The expansion
of the total Hamiltonian in the pair bound state basis yields

Ĥ =
X

|xi,|x 0i
Ĥx ,x 0 ⌦ |xi hx0| , (A.23)

where the sub-Hamiltonians are de�ned as

Ĥx ,x 0 :=
X

M,M 0
HX ,X 0 |Mi hM0| (A.24)

with the matrix elementsHX ,X 0 ⌘ hx ,M | Ĥ |x0,M0i. We omit the dependency on R and
the atom numbers and abbreviate Ĥ := (� ,� )Ĥ (R) for better readability.

For the diagonal sub-Hamiltonians with x = x0, no dipole-dipole interactions are in-
volved and the structure is simply given by the pair state energy of |xi, whichwe denote
with Ex , times the identity of theM (x )-subspace, 1̂x :=

P
M (x ) |Mi hM |. For transitions,

x ! x0, dipole-dipole interactions might appear. We can thus write

Ĥx ,x 0 =
8><>:
Ex 1̂x , x = x0

V̂x ,x 0, x , x0,
(A.25)

with
V̂x ,x 0 :=

X

M,M 0
VX ,X 0 |Mi hM0| (A.26)

the dipole-dipole operator containing as matrix elements the dipole transitions
VX ,X 0 ⌘ hx ,M | V̂dd |x0,M0i. However, since each of these sub-Hamiltonians does not
decouple from the others, the total Hamiltonian given in the structure of Eq. (A.23)
has to be block-diagonalized via a unitary transformation U . The new Hamiltonian,
H 0 = U†HU is the result of a basis change, which decouples the sub-Hamiltonians
and modi�es them, such that the previous couplings to the other sub-Hamiltonians are
included. Unfortunately, the block-diagonalization can analytically be performed only
in a perturbative way, where the e�ective couplings between the sub-Hamiltonians is
weak. However, we found the van-der-Waals interactions from the two state model in
section 1.3.2 with their dependency ⇠ R�6 as a perturbation of large detunings com-
pared to the dipole transition strength. This justi�es to block-diagonalize perturba-
tively, according to the scheme outlined in Appendix E.2, to �nd van-der-Waals inter-
actions up to terms ⇠ R�6. We can write

H 0x ,x 0 ⇡ Hx ,x 0 +Wx ,x 0 (A.27)

withŴx ,x 0 the so called van-der-Waals interaction for the corresponding sub-Hamiltonian,
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given by
Ŵx ,x 0 :=

1
2

X

|�i:E�,Ex ,E 0x

⇣
��1x ,� � ��1�,x 0

⌘
V̂x ,�V̂�,x 0 . (A.28)

The binary products of sub-Hamiltonians with dipole-dipole transition matrix ele-
ments are weighted with the inverse energy detunings, which are de�ned as

�x ,� := Ex � E� . (A.29)

The van-der-Waals corrections in Eq. (A.28) are non-vanishing for the following selec-
tion rules: (`1 � `01), (`2 � `02) 2 {0,±2}.

We can now con�rm the dependency Ŵx ,x 0 ⇠ R�6, since it consists of binary products
of dipole-dipole interaction sub-Hamiltonians, which are ⇠ R�3. The strength of the
van-der-Waals interaction is indicated by the so called Dispersion coe�cient, which
we denote with C6 and can be calculated by

C6 = �R6 · Ŵx ,x 0, (A.30)

for a speci�c pair (x ,x0), following the structure of Eq. (1.60). The most relevant van-
der-Waals interaction for our purposes is between s-states. We abbreviate with ss0 ⌘
((� , s ), (� 0, s )) the pair of quantum numbers and with |ss0i the pair state. For x = x0 =
ss0, the calculation of the C6-coe�cient for this state is, according to Eq. (A.30)

Css 0
6 = �R6

X

|�i:E�,Ess 0

| hss0| V̂dd |�i |2
Ess 0 � E�

, (A.31)

which is the formula of standard second order Rayleigh-Schrödinger perturbation the-
ory. Note that Eq. (A.31) is also valid for � 0 = � , such that s0 = s . We can use the
structure of Eq. (A.31) to calculate dispersion coe�cients for other pair states, as long
as we do not consider the dependency of the magnetic quantum number. Calculat-
ing the dispersion coe�cient of the pair state |xi, we have to replace hss0| ! hx | and
Ess 0 ! Ex in Eq. (A.31) to get Cx

6 .

We have to discuss the solution for the van-der-Waals corrections given in Eq. (A.28),
in order to use it for practical calculations. The C6-coe�cient is per de�nition inde-
pendent of the interatomic distance, by multiplying the van-der-Waals matrices with
R6. In the sum, couplings to other states can appear which have very small detunings.
If the coupling to a speci�c state is too strong, the coupling to this state has to be re-
moved as a contribution to the C6-coe�cient, since the the treatment is limited to the
weak coupling regime. We have to successively remove all contributions until the sum
converges. All the removed states which have a small energy detuning, couple rather
resonantly than o�-resonantly to the state of consideration, which lead to interactions
⇠ R�n with 3 <= n < 6. In practice, this means that if resonances to other states appear,
all these (quasi)-resonant states have to be collected to one subspace and diagonalized
as a whole, which gives then the (quasi-)resonant contribution of the interactions.
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B.1 Deriving the van-der-Waals interaction formula
for localized, singly excited many-body states

Van-der-Waals interactions can be calculated by second-order Rayleigh-Schrödinger
perturbation theory. For the aggregate’s basis states, which are localized N -body states
with a single p excitation, the formula is given in Eq. (3.8), which we repeat here:

h |�� ivdw =
X

|Y i:
EY,Eaggr

���h�� | V̂ |Y i���2
Eaggr � EY

, (B.1)

For evaluating the van-der-Waals shift, it is useful to rewrite the N -body state as
|Y i = |Y1 . . .YN i, where |Yki is the state of atom k . Furthermore we denote with �k
the principal quantum number and with `k the azimuthal quantum number of the state
|Yki. The matrix element can be written as

h�� | V̂ |Y i =
1
2

X

i,j:
i,j

✓⇣
�� ,i hps | V̂ (i,j )

dd |YiYji + �� ,j hsp | V̂
(i,j )
dd |YiYji

⌘ Y

k,i,j

hs |Yki

+ (1 � �� ,i � �� ,j ) hss | V̂ (i,j )
dd |YiYji hp |Y� i

Y

k,i,j,�

hs |Yki
◆

=
1
2

X

i,�

⇣
hps | V̂ (� ,i )

dd |Y�Yii + hsp | V̂ (i,� )
dd |YiY� i

⌘ Y

k,� ,i

hs |Yki

+
1
2

X

i,�

X

j,i
hss | V̂ (i,j )

dd |YiYji hp |Y� i
Y

k,i,j,�

hs |Yki (B.2)

The term hps | V̂ (� ,i )
dd |Y�Yii contributes equally to the summation as hsp | V̂ (i,� )

dd |YiY� i and
they are only nonvanishing for `� = 0, 2, according to dipole-dipole selection rules.
However, the transition hss | V̂ (i,j )

dd |YiYji contributes only for `� = 1. This gives two
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cases, depending on how we choose the azimuthal quantum number on atom � :

h�� | V̂ |Y i =

8>>>>>><>>>>>>:

X

i,�
hps | V̂ (� ,i )

dd |Y�Yii
Y

k,� ,i

hs |Yki , `� = 0, 2

1
2

X

i,�

X

j,i
hss | V̂ (i,j )

dd |YiYji
Y

k,i,j,�

hs |Yki , `� = 1
. (B.3)

Calculating the absolute square values of the transition element doubles the number
of summations. For the case of `� = 0, 2, this would lead to an additional summation,
whose index we denote with i0, and terms

hps | V̂ (� ,i )
dd |Y�Yii hY�Y 0i | V̂

(� ,i 0)
dd |psi

Y

k,� ,i 0
hs |Yki

Y

k 0,� ,i 0
hs |Yk 0i

under the double sum. However, all mixed terms with i0 , i cancel. The reason is
that we need to choose the azimuthal quantum numbers of the states |Yii and |Yi 0i
equal to one, `i , `i 0 = 1, to have nonvanishing dipole-dipole transitions. On the other
hand we need to choose `i 0 = 0, if i0 < {i,�}, such that

Q
k,� ,i hs |Yki is nonvanishing.

This is a contradiction. Only for i0 = i we do not have to choose `i 0 = 0, because the
state |Yi 0i is then not included in the product

Q
k,� ,i hs |Yki. Nonvanishing contributions

are thus only from diagonal elements with i0 = i . The argumentation is the same
for the term with �xed `� = 1. However, here we have two additional sums, whose
summation index we denote with i0 and j0, respectively. As in the previously discussed
case, only diagonal elements contribute, (i0, j0) = (i, j ). Since we can swap the indices
i0 $ j0 under the sum, also the contribution with (i0, j0) = (j, i ) is a diagonal element.
After these considerations, we canwrite for the absolute square of the transitionmatrix
element

���h�� | V̂ |Y i���2 =
8>>>>>><>>>>>>:

X

i,�

���hps | V̂ (� ,i )
dd |Y�Yii���2

Y

k,� ,i

hs |Yki , `� = 0, 2

1
2

X

i,�

X

j,i

���hss | V̂ (i,j )
dd |YiYji

���2
Y

k,i,j,�

hs |Yki , `� = 1
. (B.4)

The initial formula with second-order perturbation theory over N -body states decom-
poses into a sum over second-order perturbation theory with pair states. Due to the
products in Eq. (B.4), N � 2 elements of the state |Y i are �xed, in the case `� = 0, 2 all
to s states and for `� = 1 one to a p state and the rest to s states. Since the aggregate’s
energy is Eaggr = (N � 1)Es + Ep , we get for the denominator in the case of `� = 0, 2,
Eaggr � EY = Eps � EY�Yi and in the case of `� = 1, Eaggr � EY = Ess � EY�Yi , where
Eps ,Ess and EY�Yi are pair state energies. Summing over all di�erent pair states, which
we denote with |�i, we get the following van-der-Waals formula:

h |�� ivdw =
X

i,�

X

|�i:
Eps,E�

| hps | V̂ (� ,i )
dd |�i |2

Eps � E�
+
1
2

X

i,�

X

j,i

X

|�i:
Ess,E�

| hss | V̂ (i,j )
dd |�i |

2

Ess � E�
, (B.5)

which is Eq. (3.9) in section 3.1.1 of Chapter 3.
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B.2 Tail distribution of the relative energy gap for a
trivial avoided crossing

Here we discuss analytically the appearance of the trivial transitions in the four atom
T-shape aggregate. The Hamiltonian of the four atom aggregate can be written down
as the two Hamiltonians of the dimers and the interactions between them. De�ning
the dimer Hamiltonian,

Ĥ (k,l )
dimer(R) := �µ

2R�3 ( |�ki h�l | + H.c.) (B.6)

As already pointed out in the main text, the dimer energies are U±(R) = ±µ2/R3 with
corresponding excitons |� (k,l )

± i = ( |�ki ⌥ |�li) /
p
2. The atoms on the horizontal dimer

are labeled with 1,2 and for the vertical dimer with 3,4, such that Ĥ (1,2)
dimer(R1,2) is the

Hamiltonian for the horizontal and Ĥ (3,4)
dimer(R3,4) for the vertical dimer, with R1,2 and

R3,4 the interatomic distance, respectively. We see that if a total system consists of two
completely decoupled dimers, the energies for the repulsive and attractive surfaces are
degenerate, when the two interatomic distances are equal, R1,2 = R3,4.

If the two dimers are not completely decoupled, the interaction between them can be
written as

Ŵ (R3,4
1,2) := �µ2

X

k=1,2

X

l=3,4
R�3k,l |�ki h�l | (B.7)

= �µ2
 
R�31,3 R�31,4
R�32,3 R�32,4,

!
(B.8)

where the vector R3,4
1,2 contains all interatomic distances from one to the other dimer.

The Hamiltonian of the total system is then given by

Ĥ (R) = *
,
Ĥ (1,2)
dimer Ŵ

Ŵ † Ĥ (3,4)
dimer

+
- . (B.9)

To �nd out what happens with the degeneracy of the two decoupled dimer, we use the
following extended dimer states,

|� (1,2)
+ i = |� (1,2)

+ i ⌦ 0(3,4) (B.10)

|� (3,4)
+ i = 0(1,2) ⌦ |� (3,4)

+ i , (B.11)

which are the repulsive eigenstates of the noninteracting total system. Note that 0(k,l )
is used as the zero vector of the system k, l . We apply quasidegenerate perturbation
theory for R1,2 ⇡ R3,4 and restrict ourselves to the two repulsive surfaces. We get

ĤQDPT =
⇣
h�x+ | Ĥ |�

�
+i

⌘
x ,�
=

 
U+(R1,2) w (R3,4

1,2)
w (R3,4

1,2) U+(R3,4)

!
, x ,� 2 {(1, 2), (3, 4)}, (B.12)
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with
w (R3,4

1,2) := �
µ2

2
⇣
(R�31,3 � R�31,4) � (R�32,3 � R�32,4)

⌘
. (B.13)

The coupling between both dimers vanisheswhen both are in�nitely separated and also
for completely symmetric con�gurations, where b = 1, which is equivalent to R1,3 =

R1,4 and R2,3 = R2,4. In this case, the degeneracy of the states is not lifted such that a real
crossing of eigenenergies would appear, when varying one of the dimer’s interatomic
distance and �xing the other. To discuss the case of nonvanishing interactions,w , 0,
it is useful to introduce the detuning � := U+(R3,4) � U+(R1,2) and the mean energy
value, Ū+ :=

�
U+(R3,4) +U+(R1,2)

�
/2. The eigenenergies and -states of ĤQDPT are then

given by

U ±QDPT = Ū+ ±

s

w2 +
✓�
2

◆2
, (B.14)

|�±QDPT i =
1

q
�2
± + 1

⇣
�± |� (1,2)

+ i + |� (3,4)
+ i

⌘
, with (B.15)

�± := �
�

2w
± 1
w

s

w2 +
✓�
2

◆2
(B.16)

We are specifying now the formulas for the case R1,2 = R3,4, where the degeneracy
is located for the noninteracting total system. This is equivalent to � = 0 and Ū+ =
U+(R1,2) = U+(R3,4). The solutions are then given by

U ±QDPT = Ū+ ± |w | (B.17)

|�±QDPT i =
⇣
±sgn(w ) |� (1,2)

+ i + |� (3,4)
+ i

⌘
/
p
2, (B.18)

and we see that the degeneracy is lifted and the energy gap between both states is
Ugap = 2|w |. The gap relative to the unperturbed energy is then given by

U rel
gap :=

Ugap

U+(R1,2)
=
|(R�31,3 � R�31,4) � (R�32,3 � R�32,4) |

R�31,2
. (B.19)

In Fig. B.1 we show the tail distribution of the relative energy gap, measuring the prob-
ability that the relative gap is above a varying level. The distribution re�ects the situa-
tion of the two perpendicular dimer aggregate in section 3.2.1. We �nd the relative gap
is smaller than 0.08 with about 96% probability and smaller than 0.022 with a proba-
bility of 52%, con�rming that the avoided crossing has a small energy gap.
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Figure B.1: Tail distribution (exceedance) of the energy gap relative to the unperturbed repul-
sive dimer energy, de�ned in Eq. (B.19). The distribution measures the probability that the
relative energy gap is above a varying level. We used for the atomic positions Gaussian prob-
ability distributions and calculate for each realization the relative energy gap, with adjusted
positions of the horizontal dimer, x1 = x (0)

1 � �x/2,x2 = x (0)
2 + �x/2, such that its interatomic

distance equals the one of the other dimer. The mean positions of the initial con�guration are
adjusted to x (0)

1 = 0,x (0)
2 = a1,�

(0)
3 = �a2/2,�

(0)
4 = a2/2 and their standard deviation is �0, where

the parameters (a1,a2,d,�0) are the ones of the two perpendicular dimer aggregate, discussed
in section 3.2.1.

B.3 Trimer conical intersection: energy gap
considerations for single trajectories and wave
packets

The trimer is the minimal aggregate system allowing for a CI of two BO surfaces. We
already discussed an isosceles trimer in section 2.2 with the corresponding energy spec-
trum shown in Fig. 2.7. However, the intersection appears only for the equilateral tri-
angle con�guration which requires a completely symmetric positioning of the vertical
dimer relative to the horizontal axis. This is only one out of in�nitely many con�gu-
rations which form the wave packet and thus, the intersection is almost never exactly
present. For all asymmetric con�gurations an energy gap appears which is dependent
on the order of asymmetry. We �rst want to derive how the size of the energy gap scales
with the asymmetry, which is quanti�ed by the parameter b de�ned in Eq. (3.42). We
set the atomic positions of atoms 2, 3, and 4 to

R2 = (x2,�2) = (0, 0), (B.20)

R3 = (x3,�3) = (
p
3a2/2 + �x ,�ba2/2), (B.21)

R4 = (x4,�4) = (
p
3a2/2 + �x , (1 � b/2)a2), (B.22)

to explicitly account for asymmetric con�gurations, as sketched in Fig. B.2. The con-
�gurations can be parameterized with K := (�x ,b)T, where K0 := (0, 1)T sets the
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y4 

y3 

y
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Figure B.2: Sketch of a trimer with atoms 2, 3 and 4, near a con�guration with CI, as it could
be realized as a subunit of the four atom aggregate, discussed in section 3.2.1. The parameter
b, de�ned in Eq. (3.42), measures the asymmetry of the con�guration by comparing with the
mirror con�guration, obtained by mirroring along the horizontal axis. Con�gurations with
b ⇡ 1 are symmetric and with b 7 1 asymmetric con�gurations. The mean distance between
atom 3 and 4 is a2, as in section 3.2.1. The CI is located at the equilateral triangle con�guration,
which implies b = 1.

CI con�guration. The electronic Hamiltonian of the trimer is given by

Ĥtrimer(K) := �µ2
4X

k,l=2
k,l

R�3k,l (K) |�ki h�l | . (B.23)

For the CI con�guration the value of the degenerate eigenenergy is E (0)
CI = µ2/a23. The

corresponding eigenstates can be set to

|� (0)
CI,1i =

1p
2

⇣
�1 0 1

⌘T
, (B.24)

|� (0)
CI,2i =

1p
6

⇣
�1 2 �1

⌘T
. (B.25)

We Taylor expand the electronic Hamiltonian around the CI con�guration,

Ĥ as
trimer(K) ⇡ Ĥtrimer(K0) + Ĥ

PT
trimer(K), (B.26)

and restrict the further calculations to the the term ĤPT
trimer(K) which is responsible for

lifting the degeneracy. Building matrix elements with the CI eigenstates,

Strimer(K)�� := h� (0)
CI,� | Ĥ

PT
trimer(K) |�

(0)
CI,�i , (B.27)

the eigenenergies E (1)
1 (K),E (1)

2 (K) of Sel(K) are the �rst order corrections to the energy
and lift the degeneracy. Thus the energy gap is given by �Eas(K) := |E (1)

1 (K)�E (1)
2 (K) |

up to �rst order. Consistently expanding this expression to second order around K0,
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Figure B.3: Energy spacing between repulsive and adjacent eigenenergy for di�erent asym-
metry parameters, b = 1 (solid), b = 0.88 (dashed), b = 0.76 (dashed dotted). The blue
lines are numerical results. The minimal energy spacing (black dots) is shifted to bigger hor-
izontal distances, x3 � x2 for higher asymmetry, which is well described by the analytical re-
sult Eq. (B.29) (grey line)

we get

�Eas(K) ⇡ µ2

a32

"p
3(1 � b) � 31(1 � b)�x/4a2 +

2705 � 2321(2 � b)b
64
p
3(1 � b)

(�x/a2)
2

#
,

(B.28)
for b . 1. For every small given asymmetry, there is a �xmin where the energy gap
becomes minimal:

�xmin/a2 ⇡ 1.12 · (1 � b)2,
�Easmin(b) ⇡ µ2a�32

p
3 · (1 � b).

(B.29)

Thus, the horizontal distance between atom 2 and the two others has to be larger com-
pared to the CI con�guration to achieve a minimal energy gap, as evident in Fig. B.3.
For adjusting the horizontal distance with �x such that for every asymmetry it adjusts
the minimal energy gap, we �nd a linear scaling of the energy gap with the asymmetry.
This is still valid for higher asymmetry values, as apparent from Fig. B.3.

Since the nonadiabatic dynamics due to the CI is not controlled by a single trajectory
but by the complete wave packet, we calculate in the following the energy gap dis-
tribution for positioning the wave packet at the CI con�guration with mean positions
(x̄2, �̄2) = (0, 0), (x̄3, �̄3) = (

p
3a2/2,�a2/2), (x̄4, �̄4) = (

p
3a2/2,a2/2) of atoms 2, 3,

and 4. The ratio between the length scale a2 and the width of each atomic Gaussian,
�0 is set to �0/a2 = 0.0952 to re�ect the situation of the double dimer system stud-
ied in section 3.2.1 Note that atom 2 has no distribution in vertical and atoms 3 and
4 no distribution in horizontal direction, such that (�2,x3,x4) = (�̄2, x̄3, x̄4). We di-
agonalize the trimer Hamiltonian for 106 realizations, where the atomic positions are
randomly distributed according to the atomic Gaussians. Afterward, for each con�g-
uration the relative energy gap is calculated, U rel

gap = Ugap/Ū = (Urep � Uadj)/Ū , with
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Figure B.4: Tail distribution (exceedance) of the energy gap relative to the mean energy be-
tween repulsive and adjacent BO surface for a trimer whose atomic mean positions are in the
CI con�guration. The distributionmeasures the probability that the relative energy gap is above
a varying level. We used for the atomic positions Gaussian probability distributions and calcu-
late for each realization the relative energy gap. The varying atomic positions are x2, �3, �4.
The distribution is only dependent on the ratio between the standard deviation of the atomic
spatial distributions, �0, and the mean interatomic distance of the vertical dimer, a2. This ratio
is adjusted to �0/a2 = 0.0952 to re�ect the situation for the two perpendicular dimer aggregate,
discussed in section 3.2.1.

Ū :=
⇣
Urep �Uadj

⌘
/2. We �nally get the tail distribution of the relative energy gap de-

termined through statistical sampling. The tail distribution gives the probability that
the relative energy gap is above a varying level. The result is shown in Fig. B.4 and we
see that the distribution is much broader than the one for the trivial (avoided) crossing,
shown in Fig. B.1, �nding large energy gaps with signi�cant probability. This is one of
the reasons, why almost surely the transition between repulsive and adjacent BO sur-
face occurs for the trivial (avoided) crossing, but in the vicinity of the CI the transition
can be avoided with signi�cant probability.

B.4 Forces on atoms from resonant interactions

When the aggregate is in the exciton state |� (R)i, the force from resonant interactions
on atom k can be calculated with F|�i

k
= h� (R) | rRk Ĥdd(R) |� (R)i. Evaluating this for-

mula for the use with isotropic binary interactions, V (Rk,l ) = V (Rk,l ), and the basis
{|�ki} yields

F|�i
k
= 2<

8><>:h� (R) |�ki
X

l,k

⇣
rRkV (Rk,l )

⌘
h�l |� (R)i

9>=>; . (B.30)

For anisotropic binary interactions, Vm,m0 (Rk,l ), and the basis {|�k ,mi}, we get

F|�i
k
= 2<

8><>:
X

m

h� (R) |�k ,mi
X

l,k

X

m0

⇣
rRkVm,m0 (Rk,l )

⌘
h�l ,m0|� (R)i

9>=>; . (B.31)



B.4 Forces on atoms from resonant interactions 111

For both cases we �nd, that a force from resonant interactions is only acting on an
atom when it shares excitation.





C Microwave excitation of excitons

We demonstrate here how to get access to excitons with a microwave. The microwave
wavelength has to be large to ensure homogeneous �eld strengths for more than one
atom. This also allows to use the dipole approximation such that the electric �eld
directly couples to the atomic dipoles without spatial dependence. We furthermore
restrict ourselves to the treatment of linearly polarized and monochromatic light in q
direction, such that we can write E(t ) = E cos (�t ) q. Setting the co-ordinate system
in which the dipoles are de�ned such that the z axis is set to the microwave polariza-
tion direction, the microwave couples only to the d0 components of the dipole. The
aggregate-microwave interaction can thus approximately be written as

Ĥmw(t ) = E cos (�t )
NX

�=1
d̂ (� )
0 , (C.1)

with � labeling the aggregate’s atoms. The excitation is to be performed from the Ry-
dberg ground state |Si = |s . . . si to an exciton of the electronic Hamiltonian, which
makes it necessary to enlarge the electronic basis and also the electronic Hamiltonian
by adding the state |Si. The aggregate-microwave interaction represented in the ex-
tended electronic basis makes it necessary to �rst determine the matrix elements. Since
the microwave couples exclusively to the d0 components of the dipoles, matrix ele-
ments of the coupling operator in Eq. (C.1) are non-vanishing only for aggregate states
|�� ,miwithm = 0. We therefore abbreviate |�� i ⌘ |�� ,mi and can evaluate the matrix
elements:

hS| Ĥmw(t ) |Si = 0, (C.2)
h�k | Ĥmw(t ) |�li = 0, (C.3)
h�k | Ĥmw(t ) |Si = ~� cos (�t ) , (C.4)

with the Rabi frequency de�ned as � := Eq hs| d̂ |pi /~ = E d� ,1;� ,0/
p
3~. Most impor-

tantly, we need to get access to Rydberg dimer excitons. The dimer states are necessary
for initiating the exciton pulses. Therefore it is enough to restrict the treatment to two
atoms. The resonant dipole-dipole transitionmatrix elements between aggregate states
with m = 0 are given by V0,0(r) =

⇣
1 � 3 cos2 �

⌘
d2� ,1;� ,0/3r

3, where � is the angle be-
tween microwave polarization direction and direction of the interatomic distance vec-
tor r. Altough the microwave couples only tom = 0 states, the resonant dipole-dipole
interactions can still couple to states withm = ±1. A complete decoupling of them = 0
subspace is only ensured for perpendicular or parallel adjustment of the microwave po-
larization direction relative to the interatomic distance vector, � = 0,�/2. We restrict
the description of the excitation scheme to these two orientations, which are the ones
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used in the main text. We furthermore neglect the van-der-Waals interactions in the
excitation scheme description, which gives only a small shift to the eigenenergy values,
but does not change the excitons.

perpendicular alignment When the polarization direction is perpendicular to the
interatomic distance vector such that � = �/2, the eigenenergies are given by E±(r ) :=
±d2� ,1;� ,0/3r 3 and the corresponding excitons |�±i = ( |�1i ± |�2i) /

p
2.

parallel alignment For polarization direction and the interatomic distance being
parallel, � = 0, the eigenenergies are given by E±(r ) := ±d2� ,1;� ,02/3r 3, whereas the exci-
tons are the same, however, the assignment to the energies changes,
|�±i = ( |�1i ⌥ |�2i) /

p
2.

We speci�cally need to access the surface/energy E+ which exerts repulsive forces on
the atoms. In the following we restrict the treatment to the perpendicular alignment.
Changing the representation to the eigenbasis {|�+i , |��i , |Si}, the atomic levels and
interactions are captured by the Hamiltonian

Ĥ0 =
*.
,
E+ 0 0
0 E� 0
0 0 ��S

+/
-
, (C.5)

assuming that |Si is detuned by ��S from the single excitation manifold. In the same
basis, the atom-microwave interaction is given by

ĤI (t ) = ~� cos (�t )
*..
,
0 0

p
2

0 0 0p
2 0 0

+//
-
. (C.6)

We realize, that the antisymmetric exciton, |��i, is not accessible with a spatially ho-
mogeneous �eld since it decouples here in the description. This is the reason why we
chose to treat the case of perpendicular alignment of the microwave, since for parallel
alignment the repulsive surface is not accessible due to its antisymmetric exciton. The
decoupling of the antisymmetric state from the microwave allows us to remove it in
the further description.

To eliminate the trivial oscillations of state populations which arise due to the Hamil-
tonian Ĥ0, we transform the Schrödinger equation i~ @ |� (t )i /@t = (Ĥ0 + ĤI (t )) |� (t )i
to the interaction picture, which is then given by i~ @ |� (t )i /@t = ˆ̃HI (t ) |� (t )i, with
ˆ̃HI (t ) = eiĤ0t/~ĤI (t ))e�iĤ0t/~. In the basis {|1i ⌘ |�+i , |0i ⌘ |Si}, evaluation yields the
dynamics governing Hamiltonian

ˆ̃HI (t ) =
p
2~� cos (�t )

 
0 ei�At

e�i�At 0

!
(C.7)

=
p
2~�

 
0 ei(�A+�)t/2 + e�i�t/2

e�i(�A+�)t/2 + ei�t/2 0

!
(C.8)
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where �A = (E+ + �S) /~ is the frequency corresponding to the transition |0i ! |1i.
In a second step we rewrote the cosine in its frequency representation and de�ned the
detuning between microwave frequency and the transition frequency corresponding
to |0i ! |1i, � := � ��A. Performing an additional unitary transformation, we arrive
at the Schrödinger equation i~ @ |� (t )i /@t = Ĥ (t ) |� (t )i, with

Ĥ (t ) = �~��̂1,1 + ei��̂1,1t ˆ̃HI (t ))e�i��̂1,1t (C.9)

= ~

 
�� �/

p
2 + e2i�t�/

p
2

�/
p
2 + e�2i�t�/

p
2 0

!
(C.10)

where �̂1,1 = |1i h1| is the projector onto the subspace of |1i. We thus were able to
reduce the three state excitation problem to the standard Rabi two level system. In
a last step, we perform a rotating wave approximation and neglect all terms rotating
with 2�. They average out on a much shorter time scale and are therefore negligible.
Finally, we arrive at a time independent Hamiltonian,

Ĥ (t ) ⇡ ~
 
�� �/

p
2

�/
p
2 0

!
, (C.11)

and the population in the exciton state, P1(t ) := | h1|� (t )i |2, is given by231

P1(t ) =
2�2

�2 + 2�2 sin
2
⇣p

�2 + 2�2t/2
⌘
, (C.12)

for the initial condition where all population is in the state |Si, |� (0)i = |Si. The
exciton state |�+i can only be populated completely for the microwave frequency being
resonant with the |Si ! |�+i transition frequency.

With this excitation scheme we get access to the required initial exciton state for the
aggregate with unconstrained dynamics, discussed in Chapter 4. There, the initial
symmetric exciton state gave access to the CI during the dynamics. However, using
isotropic interactions, as in Chapter 3 for the planar aggregates, requires to prepare
the aggregate initially in the antisymmetric exciton state, which is not accessible by a
spatially homogeneous microwave, as it is apparent from Eq. (C.6). Nevertheless, exci-
tation schemes into asymmetric states are available. One way is to change the relative
phase of the exciton state by driving a resonant transition between the p state and the
absolute ground state locally, which means only on one of the two atoms232.





D Conical intersections

The theoretical description of dynamics in atomic and molecular systems is a di�cult
task due to the necessity of using quantum mechanics and the large number of con-
stituents. Apart from Hydrogen, already single atoms are at least three body systems
and the feasibility of a full description saturates quickly with increasing number of
constituents. Nevertheless, in many situations approximations can be performed to
get a solution close to the exact one. In atomic and molecular systems, the dynamics of
the nuclei occurs often on a much slower time scale than for electrons due to the much
bigger masses of nuclei. The contribution to the forces on the nuclei from the electrons
is therefore well described by averaging over the electron con�gurations. The nuclei
move according to forces from potential energy surfaces (PES), in this context they are
also called Born-Oppenheimer surfaces, whichwe already introduced in Chapter 2. The
restriction that the nuclei propagate along exactly a single PES is the Born-Oppenheimer
approximation. However, due to the quantum nature several coupled BO surfaces exist
and the Born-Oppenheimer approximation is only valid under two conditions: First,
the motion of the nuclei remains small during the dynamics and second, the PESs are
energetically su�ciently separated. Although the �rst condition is usually met, the
second is in higher dimensional systems often not ful�lled. Conical intersections 83–88
are crossings of BO surfaces in con�guration space and their appearance invalidates
the Born-Oppenheimer approximation. They provide ultra-fast relaxation from excited
to lower lying states for chemical and biological processes97–100. In general it is today
widely accepted that in organic photochemistry, conical intersections serve as decay
channel from excited to ground states103.

Owing to its signi�cance, we want to state the criteria when two BO surfaces conically
intersect. Denoting the electronic Hamiltonian with Ĥ which is dependent on con�g-
urations of the nuclear degrees of freedom, which we denote with R, the eigen value
problem can be written as

Ĥ (R) |�k (R)i = Uk (R) |�k (R)i , k = 1, 2, (D.1)

with |�k (R)i electronic eigenstates and Uk (R) BO surfaces. Although the BO surfaces
can be closely spaced and can even intersect, the Hamiltonian itself is inmost situations
continuously di�erentiable due to containing binary interactions between constituents,
which often scale with powers of inverse spacings e.g. the Coulomb potential or the
potential of dipole-dipole interactions. The di�erentiability of the Hamiltonian implies
that there is a basis in which all matrix elements and the basis states are di�erentiable.
The so called diabatic basis is constructed to ful�ll this requirement, which feature the
even stronger condition that all derivative couplings vanish. Technically speaking, for
{|�ki} being a diabatic basis, h�k | rR |�li = 0 for all states. The single excitation states,
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de�ned in Eq. (3.2) and in Eq. (4.4) are not dependent on the con�gurations R and thus
form a diabatic basis.

Suppose the electronic Hamiltonian can be written as

Ĥ =

 
H11 H12
H ⇤12 H22

!
, (D.2)

with Hkl = h�k | Ĥ |�li the matrix elements in a diabatic basis {|�ki}. The Hamiltonian
and the diabatic matrix elements dependent parametrically on R. We omit to write this
dependency for better readability. The BO surfaces are given by

U± = H̄ ±
q
(�H )2 + |H12 |2, (D.3)

with the mean value H̄ := (H11 + H22)/2 and the half distance between the diagonal
elements �H := (H11 � H22)/2. The electronic eigenstates can be expressed as

|�+i = cos(�/2) |�1i + sin(�/2) |�2i (D.4)
|��i = � sin(�/2) |�1i + cos(�/2) |�2i , (D.5)

where the trigonometric coe�cients are given by

sin� =
H12p

(�H )2 + |H12 |2
, (D.6)

cos� =
�H

p
(�H )2 + |H12 |2

. (D.7)

The BO surfaces are degenerate, when88,233

�H = 0, (D.8)
H12 = 0. (D.9)

The subspace of the full con�guration space containing con�gurations for which the
BO surfaces are degenerate is called the seam space, whereas all con�gurations lifting
the degeneracy are collected in the branching plane. If the con�guration space is N -
dimensional, the seam space is (N � 2)-dimensional and the branching plane two-
dimensional. Thus, the entire con�guration space has to be at least two-dimensional
in order to show degeneracies.

The change of BO surfaces in the vicinity of a degeneracy con�guration, which we
denote with R?, can be calculated by taylor expanding the Hamiltonian in (D.2) around
R? and using Eq. (D.8) and Eq. (D.9). It is useful to abbreviate the gradients of the three
quantities which determine the BO surface,

s := rRH̄ , (D.10)
g := rR (�H ), (D.11)
h := rRH12, (D.12)
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to write down the BO surfaces in the vicinity of a CI,

U±(R? + �R) ⇡ H̄? + s?�R ±
q
(g?�R)2 + |h?�R|2, (D.13)

where quantities with ? denote evaluation at R = R?. The degeneracy is a conical
intersection when g?, h? are nonvanishing and linearly independent. The two vectors
then span the branching plane, which is therefore also known as �–h space85,86. For
displacements from the intersecting point within the branching plane, we can set �R =
xe?� + �e?h , where e

?
� := g?/kg?k2, e?h := h?/kh?k2 are unit vectors in g?, h? direction

and with s?� := e?� s?, s?h := e?
h
s? we �nd

U±(R? + xe?� + �e
?
h ) ⇡ H̄? + xs?� + �s

?
h ±

q
x2kg?k22 + �2kh?k22 , (D.14)

Therefore, the degeneracy is lifted linearly for displacements along the branching.





E E�ective interactions from
block-diagonalization

When a system is coupled to other systems, the treatment of the total system is often
not tractable, since it is just too large. If the interactions between the systems are small,
a derivation of a new basis is possible, in which the systems (almost) completely de-
couple. This procedure is an iterative block-diagonalization of the total system, known
as van Vleck perturbation theory234. Here we demonstrate the scheme in a canonical
way, outlined by Shavitt et al235.

Suppose we have a Hamiltonian Ĥ = ĤD + Ŵ of the total system, which consists of
a block-diagonal part, ĤD, and an interaction Ŵ . We denote for every linear operator
Â in the space of the total system with ÂX := Â � ÂD the corresponding operator
with vanishing block-diagonal entries.

In the following we assume the block-diagonal part of the interactions vanishes, such
that Ŵ = ŴX. The objective is to �nd a unitary transformation Û , such that Ĥ 0 =
Û†Ĥ Û is block-diagonal, i.e. Ĥ 0X = 0. In canonical van Vleck perturbation theory, the
transformation is rewritten as Û = exp(Ĝ) with the property Ĝ = �Ĝ† and ĜD = 0.
The generator full�lls the commutation relation

f
ĤD, Ĝ

g
= �

1X

n=0
cn

f
Ŵ, Ĝ

g
2n
, (E.1)

where
f
Â, B̂

g
k
=

f f
Â, B̂

g
k�1 , B̂

g
denotes the recursive commutator, with

f
Â, B̂

g
0
= Â

and cn are related to the Bernoulli numbers b2n 236:

cn =
22n

(2n)!
b2n . (E.2)

Note that Eq. (E.1) already exploits that in our case ŴD = 0. An expansion of Eq. (E.1)
order by order leads to the equations

[ĤD, Ĝ (1)] = �Ŵ (E.3)

[ĤD, Ĝ (2)] = 0 (E.4)

[ĤD, Ĝ (3)] = �1/3[[Ŵ, Ĝ (1)], Ĝ (1)], (E.5)
...
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which can be used to determine the Ĝ (� ), � 2 {1, 2, . . . }. The block-diagonalized
Hamiltonian is order by order determined by

Ĥ 0(0) = Ĥ0, (E.6)

Ĥ 0(1) = 0, (E.7)

Ĥ 0(2) = 1/2[Ŵ, Ĝ (1)], (E.8)

Ĥ 0(3) = 1/2[Ŵ, Ĝ (2)], (E.9)

Ĥ 0(4) = 1/2[Ŵ, Ĝ (3)]

� 1/24[[[Ŵ, Ĝ (1)], Ĝ (1)], Ĝ (1)],
(E.10)

such that Ĥ 0 = P1
�=0 Ĥ 0(� ) .

E.1 E�ective interactions of o�-resonant coupled
systems

We consider now N � 2 coupled systems, Ĥk , k = 1, ...,N . The interaction between
system k and l is given by Ŵk,l , such that we can write

ĤD =

NX

k=1
Ĥk ⌦ |ki hk | , (E.11)

Ŵ =

NX

k=1

NX

l=k+1
Ŵk,l ⌦ |ki hl | + Ŵ †k,l ⌦ |li hk | , (E.12)

Ĝ (� ) =

NX

k=1

NX

l=k+1
Ĝ

(� )
k,l
⌦ |ki hl | � Ĝ†(� )

k,l
⌦ |li hk | , (E.13)

where {|ki}N
k=1 is an arbitrary orthonormal basis, where state |ki adresses the system

labeled with k. With this composition, we can rewrite the following commutators
f
ĤD, Ĝ (� )

g
= ĤkĜ

(� )
k,l
� Ĝ (� )

k,l
Ĥl (E.14)

hk |
f
Ŵ, Ĝ (� )

g
|ki =

NX

l=1,
l,k

⇣
Ŵk,l Ĝ

(� )
l ,k
+ H.c.

⌘
, (E.15)

where H.c. is the abbreviation for Hermitian adjoint. Up to third order, the block-
diagonalization of each system k , is given by

Ĥ 0k ⇡ Ĥk +
1
2

2X

�=1

2X

k=1

NX

l=1,
l,k

⇣
Ŵk,l Ĝ

(� )
l ,k
+ H.c.

⌘
(E.16)
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In many applications of van Vleck perturbation, the systems energy is detuned from
each other. To account for this, we �rst rewrite the systems Hamiltonians

Ĥk := Ek · 1̂ + V̂k , (E.17)

where V̂k is Hermitian. This structure of the Hamiltonians in Eq. (E.17) turns Eq. (E.3)
and Eq. (E.5) into �x point equations of the contained generator. Furthermore it gives
Ĝ (2) = 0. We consider now only Eq. (E.3), which yields

Ĝ (1)
k,l
= ��1k,l

⇣
Ĝ (1)
k,l
V̂l � V̂kĜ (1)

k,l
� Ŵk,l

⌘
, (E.18)

where �k,l := Ek �El is the energy detuning between system k and l . This equation can
iteratively be solved in powers of ��1

k,l . For in�nite detuning, �k,l ! 1, the generator
has to vanish. So we chose as an iteration start Ĝ (1),(0)

k,l
= 0. Inserting this in the rhs of

Eq. (E.18), we get the generator up to �rst order in ��1
k,l . Doing this recursion over and

over reveals the generator in higher inverse powers of the detuning. We stop with the
second order and take this as an approximation of the generator itself, which gives

Ĝ (1)
k,l
⇡ ���1k,lŴk,l + �

�2
k,l

⇣
V̂kŴk,l � Ŵk,lV̂l

⌘
. (E.19)

With this solution at hand, we see from Eq. (E.5) and the evaluation of the lhs commu-
tator with Eq. (E.14), that the leading order of Ĝ (3)

k,l
is proportional to ��3

k,l . This implies
that the block-diagonal solutions, Ĥ 0

k
, up to the second inverse orders of the detunings

require only an evaluation of Eq. (E.8), which �nally yields

Ĥ 0k ⇡ Ĥk +

NX

l=1,
l,k

✓
��1k,lŴk,lŴ

†
k,l
+ ��2k,l


Ŵk,lV̂lŴ

†
k,l
� 1
2
{V̂k ,Ŵk,lŴ

†
k,l

}
�◆
. (E.20)

If instead of the operators V̂l , l , k , we use the operators Ĥl on the rhs of Eq. (E.20),
the formula changes to

Ĥ 0k ⇡ Ĥk +

NX

l=1,
l,k

✓
2��1k,lŴk,lŴ

†
k,l
+ ��2k,l


Ŵk,l ĤlŴ

†
k,l
� 1
2
{Ĥk ,Ŵk,lŴ

†
k,l

}
�◆
. (E.21)

Note that if the perturbative series is truncated already with the �rst inverse order of
the detunings, then the factor 2 in front of ��1

k,l in Eq. (E.21) has to be neglected.

E.2 A block-diagonalization scheme for treating
o�-resonant interactions between an atom-pair

Considering two dipole-dipole interacting atoms of the same species, we have as start-
ing point a Hamiltonian of the form given in Eq. (A.22). The block-diagonalization
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scheme is a bit more complicated to evaluate due to the pair state basis. We use as
basis {|xi}, where |xi is a pair state without magnetic quantum number dependency,
explicitly, a pair state for atoms (� , �) is given by |xi = |�� i ⌦ |��i, with |�ki = |�k , `ki,
k = � , � . We repeat the structure of the sub-Hamiltonians, given in Eq. (A.25), which
is

Ĥx ,x 0 =
8><>:
Ex 1̂x , x = x0

V̂x ,x 0, x , x0,
(E.22)

The di�erence now to the previous scheme of block-diagonalization is, that to each
pair state |xi there exists another pair state, which is energetically resonant to it. This
is the pair state with swapped quantum numbers on the atoms between the atoms. To
account for this, we introduce for each |xi = |�� i ⌦ |��i the swapped state, |T (x )i :=
|��i ⌦ |�� i, withT (�� ,�� ) := (�� ,�� ) the transposition of the atomic quantum numbers.
The sub-Hamiltonians projecting to both states are identical, Ĥx ,x = ĤT (x ),T (x ) = Ex 1̂x ,
with Ex the energy corresponding to the pair states |xi, |T (x )i and 1̂x the identity of
the magnetic quantum number subspace. To avoid issues in the block-diagonalization
procedure, the pair state with swapped quantum numbers for each pair state has to be
included in the diagonal part of the total block Hamiltonian. this leads to the following
decomposition of the total Hamiltonian,

ĤD =
X

|xi
Ĥx ,x ⌦ |xi hx | + Ĥx ,T (x ) ⌦ |xi hT (x ) | , (E.23)

V̂ =
X

|xi,|x 0i:
x 0,x ,T (x )

V̂x ,x 0 ⌦ |xi hx0| , (E.24)

such thatH = HD+V . The expansion of the generators in the pair state basis yields

Ĝ (� ) =
X

|xi,|x 0i:
x 0,x ,T (x )

Ĝ
(� )
x ,x 0 ⌦ |xi hx

0| . (E.25)

Note that the generators, Ĝ (� ) , are anti-Hermitian operators. The perturbation order
is given by the number � . The generators have vanishing entries for the diagonal part,
which is Ĝ (� )

x ,x = Ĝ
(� )
x ,T (x )

= 0. The commutator for two general operators, Â and B̂ with
matrix elements Âx ,x 0 , B̂x ,x 0 in the pair state basis {|xi} is given by

f
Â, B̂

g
=

X

|xi,|x 0i

*.
,
X

�:|�i
Âx ,� B̂�,x 0 � B̂x ,� Â�,x 0

+/
-
|xi hx0| , (E.26)

where in the braket on the rhs we �nd the matrix element
f
Â, B̂

g
x ,x 0

. With this we
can evaluate the lhs of Eq. (E.3) - Eq. (E.5), which gives

f
ĤD, Ĝ (� )

g
x ,x 0
= (Ex � Ex 0 )Ĝ (� )

x ,x 0 + Ĥx ,T (x )Ĝ
(� )
T (x ),x 0 � Ĝ

(� )
x ,T (x 0)ĤT (x 0),x 0 (E.27)

= �x ,x 0Ĝ
(� )
x ,x 0 + V̂x ,T (x )Ĝ

(� )
T (x ),x 0 � Ĝ

(� )
x ,T (x 0)V̂T (x 0),x 0, (E.28)
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where we introduced the notation for the energy detunings with

�x ,x 0 := Ex � Ex 0 . (E.29)

We restrict ourselves to the evaluation of equation Eq. (E.3) and abbreviate Ĝ ⌘ Ĝ (1) ,
Ĝx ,x 0 ⌘ Ĝ (1)

x ,x 0 . For a �xed transition from x ! x0 we get four equations from Eq. (E.28)
and Eq. (E.3), which can be presented in the following compact form,

�x ,x 0Ĝx ,x 0 + ÂxĜx ,x 0 �
✓
ĜT
x ,x 0B̂

T
x

◆T
= �Ẑx ,x 0, (E.30)

with

Ŷx ,x 0 :=
⇣
Ŷx ,x 0 Ŷx ,T (x 0) ŶT (x ),x 0 ŶT (x ),T (x 0)

⌘T
, Y 2 {G,Z} (E.31)

and

Âx :=
*.....
,

0 0 V̂x ,T (x ) 0
0 0 0 V̂x ,T (x )

V̂ †
x ,T (x )

0 0 0
0 V̂ †

x ,T (x )
0 0

+/////
-

(E.32)

B̂x 0 :=
*.....
,

0 V̂ †
x 0,T (x 0) 0 0

V̂x 0,T (x 0) 0 0 0
0 0 0 V̂ †

x 0,T (x 0)

0 0 V̂x 0,T (x 0) 0

+/////
-
. (E.33)

Solving Eq. (E.30) perturbatively by starting with in�nite energy detuning and iterate
then the �x point equation with the start Ĝx ,T (x 0) = 0, yields up to second order

Ĝx ,x 0 ⇡ ��2x ,x 0

 
Âx Ẑx ,x 0 �

✓
ẐTx ,x 0B̂

T
x 0

◆T !
� ��1x ,x 0Ẑx ,x 0, (E.34)

which is equivalent to write for each component

Ĝx ,x 0 ⇡ ��2x ,x 0
⇣
V̂x ,T (x )V̂T (x ),x 0 � V̂x ,T (x 0)V̂T (x 0),x 0

⌘
� ��1x ,x 0V̂x ,x 0 (E.35)

Evaluating the �rst correction given in Eq. (E.8) with this expression we get up to �rst
order in the inverse detunings the following block-diagonalized interactions:

Ĥ 0x ,x 0 ⇡

8>>>>>>><>>>>>>>:

Ex 1̂x +
P

|�i:E�,Ex
��1x ,�V̂x ,�V̂

†
x ,�, x0 = x

V̂x ,T (x ) +
P

|�i:E�,Ex
��1x ,�V̂x ,�V̂�,T (x ), x0 = T (x )

(E.36)

This result has no assumption about the interaction between the atoms so far. Let
us in the following assume that the atoms are dipole-dipole coupled. We specify the
pair state |xi = |�� ,��i, where �k = (�k , `k ) are the principal and azimuthal quantum
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number of atom k = � , � . The resonant interactions can be evaluated by Eq. (1.54)
and the dipole selection rules apply for these interactions, such that for each atom the
azimuthal quantum number has to change its value by one for nonvanishing transi-
tions. If we set |�i = |�̃� , �̃�i, with �̃k = (�̃k , ˜̀k ), k = � , � , the product V̂x ,�V̂ †x ,� is only
nonvanishing, when the following selection rules are ful�lled:

˜̀
k = `k ± 1, k = � , � . (E.37)

The product V̂x ,�V̂�,T (x ) is nonvanishing for the selection rules

˜̀
p = `p + sp, (E.38)
˜̀
p = `q + sq, (E.39)

with sp, sq 2 {�1, 1} and q , p = � , � . Substracting Eq. (E.39) from Eq. (E.38), we get

`p � `q !
= sq � sp =

8><>:
0, sp = sq

±2, sq = �sp = ±1.
(E.40)

For pair states |xiwith a di�erence in the azimuthal quantum number of one, the prod-
uct V̂x ,�V̂�,T (x ) vanishes and we get no corrections for the transition |xi ! |T (x )i in �rst
order, such that Ĥ 0

x ,T (x ) ⇡ Ĥx ,T (x ) .
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associated Laguerre polynomials, 11
atomic number, 9
atomic orbital, 10

Bell inequalities, 41
Bohr magneton, 83
Bohr radius, 10
Born-Oppenheimer surface, 27

charge distribution, 16
Clebsch-Gordan coe�cient, 12, 99
concurrence, 63
conical intersection, 2, 32, 37, 41, 49, 74,

76, 117
branching plane, 118
seam space, 118

dipole-dipole interaction, 16
binary
isotropic, 39
operator, 39
operator, general, 18

operator, entire system, 39
resonant, 29, 31–33, 39
van-der-Waals, 2, 8, 39–41, 51
two state model, 20

dispersion coe�cient, 21, 40, 102

electric potential, 16
far �eld approximation, 17

entanglement of formation, 55, 56, 63,
66

exciton, 27
Frenkel, 41
pulse, 37, 41

Förster resonance energy transfer, 3
fewest-switches surface hopping, 46
�nestructure, 83, 84, 86, 88, 89

constant, 13

generalized spherical harmonics, 12

Hamiltonian
electronic, 39
total, 44

Hartree energy, 13
Hydrogen, 8–13

interaction picture, 114

light-harvesting complex, 3, 91

microwave, 38, 69, 72–74, 78–80

purity, 52, 55, 56, 61, 62

Rabi frequency, 26, 113
Rabi oscillation, 26
reduced matrix element, 16
resonant energy transfer, 2, 23
rotating wave approximation, 115
Rydberg constant, 11

Schrödinger equation
electronic, 46
time-independent, 8
total, 44

spinor, 11

wave function, 43
adiabatic representation, 44
diabatic representation, 44
electronic, 46
nuclear, 72

Wigner-Eckart theorem, 15





Nomenclature

Physics Constants

aB Bohr radius 0.529 Å

e elementary electric charge 1.6021766208(98) · 10�19 C

�fs �nestructure constant 0.007297352533(27)

µB Bohr magneton 9.27400968(20) · 1024 J/T = 1.4 MHz/G

Ry Rydberg constant 13.60569253(30) eV

Eh Hartree energy 27.21138505(60) eV

me electron mass 9.10938291(40) · 10�31 kg

mp proton mass 1.672621777(74) · 10�27 kg = 1836.2me

Symbols and abbreviations

�̂ electronic density matrix

Ĥ notation for an Hamiltonian

|�� ,mi singly excited electronic aggregate state, for the use with anisotropic interac-
tions

|�� i singly excited electronic aggregate state, for the use with isotropic interactions

N+ set of natural numbers excluding 0

Z set of all integers

P purity

H.c. Hermitian conjugate

Ĥdd resonant dipole-dipole Hamiltonian

Ĥel electronic Hamiltonian
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Ĥvdw van-der-Waals Hamiltonian

b asymmetry parameter, quanti�es the asymmetry of single trajectories relative
to the x axis

qa quantization axis

BO Born-Oppenheimer

CI conical intersection

EPR Einstein-Podolsky-Rosen

FRET Förster resonance energy transfer

FSSH fewest-switches surface hopping

LHC light-harvesting complex

RET resonant energy transfer

vdW van-der-Waals
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