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Many organisms form colonies for a transient period of time to withstand environmental pressure. Bacterial
biofilms are a prototypical example of such behavior. Despite significant interest across disciplines, physical
mechanisms governing the formation and dissolution of bacterial colonies are still poorly understood. Starting
from a kinetic description of motile and interacting cells we derive a hydrodynamic equation for their density on a
surface, where most of the kinetic coefficients are estimated from experimental data for N. gonorrhoeae bacteria.
We use it to describe the formation of multiple colonies with sizes consistent with experimental observations.
Finally, we show how the changes in the cell-to-cell interactions lead to the dissolution of the bacterial colonies.
The successful application of kinetic theory to a complex far from equilibrium system such as formation and
dissolution of living bacterial colonies potentially paves the way for the physical quantification of the initial
stages of biofilm formation.
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I. INTRODUCTION

Colony formation is a pervasive phenomenon in living
systems and is crucial for the survival of many species [1–6].
One of the well-known examples where colony formation is
essential are biofilms. A bacterial colony can grow from a
single cell via multiple cell divisions [1,5]. However, there
is another mechanism, which relies on successive encounters
of individual, motile bacteria, as also occurring in the initial
stages of biofilm formation. This scenario of a kinetic for-
mation of colonies dominates over proliferation if individuals
are highly motile and their encounters drive the assembly of
cells on a time scale much shorter than the characteristic cell
division time. N. gonorrhoeae or N. meningitidis on biotic
or abiotic substrates such as glass [7], plastic [Fig. 1(a)],
or epithelial tissue [3] are prototypical examples for such a
scenario. Motility of these and many other bacteria originates
from long and thin filaments, called pili, which grow out of
the cell, attach to a substrate, retract, and thereby actively pull
the cell forward [8–11]. Pili are also used to mediate attractive
displacements between cells [7,11–13] with a characteristic
interaction scale given by the mean pili length. Colonies
begin to form within thirty minutes, which is significantly
smaller than the characteristic cell division time scale (N.
gonorrhoeae: approximately 3 h [14]). Bacterial colonies are
in general reversible structures. Under certain conditions, for
example, the lack of nutrients or oxygen, they can dissolve
and recolonize their surroundings [15–17]. Specifically, N.
meningitidis and N. gonorrhoeae bacterial colonies have been
shown to dissolve by effectively lowering the strength of the
pili-mediated interaction [16,17].

However, so far, the physical mechanisms governing the
formation and dissolution of bacterial colonies are poorly
understood. Since motility and interactions are driven by active
retractions of pili, fundamental concepts from equilibrium
statistical mechanics are in general not applicable. The
inherent nonequilibrium nature of this system suggests con-
sideration of a kinetic approach reminiscent of the Boltzmann
equation, which has been successfully employed to describe
the order-disorder transitions in several active systems far from
equilibrium [18–28].

Here we propose a kinetic description as a general frame-
work of how living colonies form and dissolve, which keeps
track of the length scales and the specific properties of the
interactions between individuals. By a coarse-graining pro-
cedure we derive the corresponding hydrodynamic equation
and find an ordering instability for a choice of parameters
relevant to N. gonorrhoeae. It belongs to a class of instabilities,
where the diffusion constant is negative and originates from
attractive pili-mediated interactions. As most of the parameters
can be estimated based on available data for N. gonorrhoeae,
we analytically compute the corresponding phase diagram
and find a characteristic colony size that is consistent with
experimental observations.

Our theory can also be used to compare the effects of
different cell-cell interactions and investigate their interplay.
We show that pili interactions are more effective regarding
clustering than cell adhesion. Moreover, when both interac-
tions keep the cells together in the colony, a more efficient
and robust way to dissolve the colony is to lower the strength
of pili-mediated interactions. This suggests that pili play an
essential role not only in cell motility and assembly of colonies,
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FIG. 1. (Color online) (a) N. gonorrhoeae colonies three hours
after sedimentation on a plastic substrate. (b) Typical snapshot of
the cell density ρ(x,y) as a function of the spatial coordinates x

and y, which is obtained from a numerical solution to Eq. (2a). The
snapshot corresponds to the regime where colonies grow only very
slowly (see Sec. IVB). For a video, please refer to the Supplemental
Material [29].
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but also in the dissolution of matured colonies. Our results
demonstrate that kinetic theory can be applied to quantify the
process of colony formation in living systems and is able to
provide insights about the underlying physical mechanisms.

II. KINETIC MODEL FOR BACTERIAL
COLONY FORMATION

Our kinetic description is formulated in terms of the particle
density f (r,t). We restrict ourselves to two-dimensional
colonies forming on a planar substrate [30], which do not give
rise to swarms or swirls (see, e.g., Ref. [22]). Therefore, the
spatial coordinates r ∈ R2 suffice as dynamical variables. In
the absence of interactions cells are assumed to move across
the substrate by pili-mediated displacements as in the case
of N. gonorrhoeae or N. meningitidis, leading to a diffusive
behavior at large length and time scales [31]. Interactions
enter the kinetic description via collision rules. A collision
rule R maps the precollision coordinates to the postcollision
positions by means of the δ(·) functions. The corresponding
kinetic equation is

∂tf (r,t) = Cmot(r,t) + Cint(r,t), (1a)

where Cmot describes the cell motility across the substrate

Cmot(r,t) =
∫

dr′[Kr′→rf (r′,t) − Kr→r′f (r,t)] (1b)

and Cint accounts for the cell-cell interactions

Cint(r,t) = 1

2

∫
dr1

∫
dr2 W�(|r12|)f (r1,t)f (r2,t)

×{δ[R1(r1,r2) − r] + δ[R2(r1,r2) − r]

− 2δ(r2 − r)}. (1c)

Kr→r′ denotes the transition kernel to move from r to r′
by a retraction event of an individual pilus. We assume that
retraction events are independent and that the corresponding
rate is isotropic, with a characteristic length scale given by
the pili length �pi. There is experimental evidence that the
pili lengths are distributed exponentially [31]. Therefore, we
consider the transition kernel

Kr→r+b = K0/
(
2π�2

pi

)
exp (−|b|/�pi), (1d)

with K0 denoting the attachment rate of pili to the substrate
and b = r′ − r is the displacement resulting from an individual
pilus retraction.

W�(|r12|) characterizes the isotropic kernel for collisions
between cells with |r12| = |r1 − r2| denoting the relative cell-
cell distance. For pili-mediated attractive displacements, we
consider the following collision rule:

(r1,r2) → (R1,R2) = (r1 − ar12,r2 + ar12), (1e)

where a ∈ [0,1/2] is a measure for the strength of the attractive
interaction. For a = 1/2, cells are maximally attracted, and
displaced to the center-of-mass coordinate R12 = (r1 + r2)/2
between the collision partners, while for a = 0, cells diffuse
freely without interacting. Due to the exponential distribution

of the pili lengths, the interaction rate is

W� ≡ Wpi(|r12|) = γW0/
(
2π�2

pi

)
exp (−|r12|/�pi), (1f)

where �pi sets the characteristic length scale for the attractive
interaction and W0 denotes the interaction rate. Since pili-
mediated cell-cell interactions are intrinsically stochastic [8,9],
we introduce a nondimensional number, γ , accounting for the
number of successful binding and retraction events to the total
number of pili-cell encounter events.

III. DERIVATION OF HYDRODYNAMIC EQUATION

The isotropy of the interaction rates allows us to integrate
Eq. (1) over the center-of-mass coordinates R12 leading to
nonlocal terms [see Appendix A]. These terms are related
to the length scales of the interactions and resemble a phe-
nomenological description for the assembly of active bundles
[32–34]. Since cell colonies typically exhibit sizes noticeably
beyond the interaction length scale, the nonlocal integrands can
be removed by expanding the particle density f with respect
to the spatial coordinates [18,22]. Truncation of this expansion
amounts to coarse graining beyond the interaction length scale.
To obtain a well-defined set of hydrodynamic equations for the
dynamics of bacterial colonies with pili-mediated interactions
we truncate at the fourth order [see Appendix B for details]:

∂tρ(r,t) = α(ρ)∇2ρ(r,t) − β1 |∇ρ(r,t)|2 + κ(ρ) ∇4ρ(r,t)

+β2 [∇2ρ(r,t)]2 − β3 [∇ρ(r,t)] · ∇3ρ(r,t),

(2a)

where ρ = f · �2
pi is the dimensionless density and the kinetic

coefficients are

α(ρ) = G − β1 ρ(r,t), (2b)

κ(ρ) = −(β2 + β3) ρ(r,t), (2c)

β1 = aāc̃2, (2d)

β2 = a2ā2c̃4/4, (2e)

β3 = (aā3 + āa3)c̃4/6, (2f)

where ā = 1 − a. Note that all βi > 0. The numerical con-
stants c̃k are given in Table I. In Eq. 2(a), we rescaled
coordinates by the pili length �pi, i.e., r → r�pi, leading
to a rescaling of time t → t�2

pi/(W0γ ). We introduce the
dimensionless parameter,

G = D

γW0
, (2g)

with D = 3K0�
2
pi denoting the single cell diffusion constant.

G is reminiscent of the inverse Péclet number and can be

TABLE I. The numerical numbers c̃k [as defined in Appendix B,
Eq. (B6)] corresponding to pili-mediated interactions and adhesion
[refer to Eq. (1f) and Eq. (7) for the respective collision kernels].

k 0 1 2 3 4

c̃k,pi 1 0 3 0 45
c̃k,ad 1 0 1

2 0 3
4
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interpreted as a measure for the rate of diffusive particle
transport relative to the frequency of interactions. In other
words, given a time period between two successive collisions,
G quantifies how much distance is traveled (on average) by
diffusion with respect to the mean-free path.

An equation similar to Eq. (2a) but phenomenologi-
cally constructed appeared in the context of laminar flames
and propagation of concentration waves referred to as the
Kuramoto-Sivashinsky equation [35,36]. It has also been
pointed out as an appropriate framework to study instabilities
in growing yeast colonies [6]. However, Eq. (2a) is distinctively
different because the kinetic coefficients depend on density
[Eqs. (2b) and (2c)]. Moreover, Eq. (2a) exhibits an alleged
similarity to the Cahn-Hilliard equation studied in the context
of liquid-liquid demixing [37]. Though both equations have
terms of similar orders in O(∇ρ), they are fundamentally
different with respect to the saturation of droplet or colony
growth. The Cahn-Hilliard equation exhibits an instability of
the homogeneous state, which saturates because the effective
diffusion constant in front of the Laplace operator decreases to
zero. Equation (2a) also exhibits an instability but it saturates
due to a different mechanism as discussed in the next section.

IV. COLONY FORMATION DUE TO PILI-MEDIATED
INTERACTION

A. Onset and saturation of colony formation

Equation (2a) becomes unstable for α(ρ) < 0 marking a
critical density, ρc = G/β1. For ρ0 > ρc, the homogenous
state of density ρ0 is unstable. The instability enhances small
density modulations around the homogenous density ρ0 with a
dispersion relation w(q) = −α(ρ0)q2 − κ(ρ0)q4. ρc depends
on the nondimensional parameter G and the interaction
strength a, ρc = G/(aāc̃2). We find that ρc decreases for
stronger attractive interactions, a → 1/2, and smaller values
of G; see Figs. 2(a), 2(b).

The instability is opposed by fluxes related to the spatial
curvature of the density field, which can be qualitatively
understood by splitting the flux j in

∂tρ = −∇ · j (3a)

into three contributions:

j = jinst + jcu + j∇cu. (3b)

jinst = −α(ρ)∇ρ denotes the instability flux, which acts for
α < 0 like negative diffusion thus driving particles to the
center of a density spot [see Fig. 2(c) for an illustration].
There the instability current is opposed by the curvature
flux, jcu = −β2(∇2ρ)∇ρ, and the gradient-curvature flux,
j∇cu = (β2 + β3)ρ∇(∇2ρ). Both are directed outwards of the
density spot since curvature is negative and increases.

B. Numerical analysis

Our findings on the instability and its saturation can
be scrutinized by numerically [38,39] solving Eq. (2a). A
representative snapshot of a state at large time scales is shown
in Fig. 1(b) (Videos in the Supplemental Material [29]), which
appears to be similar to N. gonorrhoeae colonies three hours
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FIG. 2. (Color online) (a), (b) Critical density ρc as a function of
the nondimensional parameter G and interaction strength a. Each line
separates the parameter space, where colonies develop or the system
remains homogeneous. In (a), three values of interaction strength a are
displayed: (0.5,0.25,0.1) = (solid, dashed, dash-dotted), and (b) de-
picts three values of G: (0.1,0.2,0.5) = (solid, dashed, dash-dotted).
(c) Illustration of how the instability is balanced: For initial densities
ρ(t = 0) > ρc, the instability flux jins drives the emergence of a
spatially inhomogeneous density profile. Depending on the location
along the density profile, the curvature flux jcu and/or the gradient
curvature flux j∇cu acts against the instability flux jins and thereby
balances the instability. (d) Maximal density minus minimal density,
ρmax − ρmin, as a function of time t , where ρmax(t) = maxrρ(r,t) and
ρmin(t) = minrρ(r,t), for numerical solutions to Eq. (3) with and
without curvature flux jcu.

after sedimentation on a plastic substrate [Fig. 1(a)]. Using
parameter values consistent with the experimental system we
observe multiple colonies developing quickly for densities
above the critical value. We checked numerically that for
all parameter values lying within the colony phase of the
analytic phase diagram [Figs. 2(a), 2(b)] give rise to the
formation of colonies. After the onset of the instability,
colonies exponentially grow with a growth speed that is higher
the larger the difference of the homogeneous density ρ0 to the
critical density ρc; see Figs. 3(a), 3(b). Thus, for ρ0 ↘+ ρc, we
observe a colony growth rate decreasing to zero; a phenomena
reminiscent of critical slowing down in phase transitions [40].
Subsequent to the initial growth, there is a regime where
colonies grow only very slowly [Fig. 2(d), solid red line] and
vanishes when there is only a single colony left in the system
[see Figs. 3(c), 3(d)]. The slow growth is due to a weak interac-
tion between the colonies via some evaporation-condensation
mechanism qualitatively reminiscent of Ostwald ripening in
liquid-liquid phase separation [37]. Interestingly, at the onset
of the instability the nonlinear curvature flux jcu vanishes
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FIG. 3. (Color online) (a), (b) Maximal density minus minimal density, ρmax − ρmin, as a function of time t , where ρmax(t) = maxrρ(r,t) and
ρmin(t) = minrρ(r,t). In (a) we divide through the mean density, ρ0 = L−2

∫
drρ(r,t), where L is the system size (here we used L = 20). Note

that for all numerical runs, ρ is conserved. For the numerical results (a)–(d) we used a = 0.5, G = 0.1 and consider pili-mediated interactions
(c̃2 = 3), implying a critical density of ρc = G/β1 = 2/15 = 0.133̄. (a) Consistently, realizations with ρ > ρc exhibit an instability, i.e.,
ρmax − ρmin grows as a function of time, whereas for ρ0 < ρc, weak initial spatial perturbations around ρ0 decay exponentially. The growth
roughly follows an exponential with a speed strongly dependent on the difference of ρ0 to the critical density: The larger this difference, the
faster the initial growth speed. Please note that for densities slightly above the critical threshold (e.g., ρ0 = 0.2), the instability grows too slowly
to capture the long time behavior. However, for large enough densities [e.g., ρ0 = (0.4,0.6,1.0)], ρmax − ρmin clearly indicates a saturation.
(b) The behavior at very large time scales is very hard to capture numerically: Interestingly, if the system has developed to a single colony,
ρmax − ρmin becomes flat [see ρ0 = 0.4 and snapshot (c)]. If there are two or more colonies in the system [e.g., ρ0 = (1.0) and snapshot (d)],
ρmax − ρmin still changes as a function of time, though very weakly.

suggesting that it might play an essential role for developed
colonies at large time scales. Running the system without
curvature flux, jcu = 0 in Eq. (3), we find that the subsequent
ripening is absent leading to a stable state consisting of
multiple colonies [see Fig. 2(d), dashed line]. This implies that
interactions between colonies are driven by the curvature flux,
while the gradient curvature flux suffices for the saturation.

C. Estimation of quasistationary colony size

Based on this insight we can analytically estimate the
colony size at the time when the system crosses to the very
slow ripening regime [vertical line in Fig. 2(d)] by neglecting
the curvature flux, jcu = β2 (∇2ρ)∇ρ in Eq. (3). Note that
the curvature flux also vanishes after linearization of Eq. (3)
around ρ0 with ρ = ρ0 + δρ. Assuming quasistatic conditions,
j = 0, leads to

0 = [α(ρ0) + κ(ρ0)∇2]∇δρ. (4)

Within this quasistatic approximation there are two stationary
states: The homogenous density field ρ = ρ0 with ∇ρ = 0 and
an inhomogeneous state (∇ρ �= 0) that supports periodic solu-
tions suggesting the coexistence of several colonies. Since our
simulations indicate that droplets are of very similar size when
the system crosses from the fast initial growth to the slow
ripening phase (see video material), let us approximate the
droplet size distribution to be infinitely narrow and extract a
single length scale, referred to as quasistationary colony size
ξ . Writing ∇ → iq and ξ = π |q|−1, one finds for ∇ρ �= 0:

ξ 2(ρ0) 	 π2 κ(ρ0)

α(ρ0)
. (5)

For large densities, ρ 
 ρc, one gets

ξ (ρ0 → ∞) 	 π

√
β2 + β3

β1
, (6)

which gives approximately 5 pili length for a = 0.5; a value
that is consistent with N. gonorrhoeae [Fig. 1(a)].

D. Biological relevance

In principle, all parameters entering the kinetic description
Eq. (1) can be measured or estimated for living colonies
forming on a substrate and thereby all kinetic coefficients
in Eq. (2a). In particular, for N. gonorrhoeae, �pi ≈ 1 μm
[9,30] and colony formation is observed for densities of
ρ ≈ 0.2. The attachment rate to the substrate can be ob-
tained from measurements of the single cell diffusion con-
stant, K0 = D/(3�2

pi) ≈ (6s)−1 with D ≈ 0.5 μm2/s [4] and
the cell-cell interaction rate can be roughly estimated from the
experimental value of the mean next-neighbor distance and the
mean pili number per cell to W0/�

2
pi ∼ 5s−1 (see Appendix D

for more information on the estimate). Therefore, a typical
value for the dimensionless parameter for N. gonorrhoeae
is G ∼ 0.1γ −1. Recently, the attachment probability of pili
to a substrate has been determined by fitting a model to
experimental results [9], finding an approximate value of 0.5.
We expect a roughly similar, maybe lower, value for γ since
successful binding to another cell can be hindered by other
moving cells. So far an appropriate estimate for the interaction
strength a is missing because the synchronous visualization of
pili and cell movement is not feasible for large enough time
scales. Thereby, we consider a as an unknown parameter.

V. COMPETITION OF PILI-MEDIATED
AND ADHESIVE INTERACTIONS

A. Competition during colony formation

The proposed kinetic description, Eq. (1), can also be used
to include other attractive interactions such as adhesion. Since
cell-cell adhesion constitutes a local interaction on the scale of
the cell diameter, an appropriate weight function is for example
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FIG. 4. (Color online) (a), (b) Critical density ρc as a function
of the non-dimensional parameter G and interaction strength a for
pili-mediated interactions (blue, lower right corner) and adhesion
(red, upper left corner). In (a), three values of interaction strength a are
displayed: (0.5,0.25,0.1) = (solid,dashed,dash-dotted), �pi ≈ 2 · �ad

and in (b), G = 0.1.

a Gaussian of the form

W� ≡ Wad(|r12|/�ad) = W0/
(
π�2

ad

)
exp

(−r2
12/�

2
ad

)
, (7)

where �ad denotes the characteristic length scale, which is in
the order of the cell size. Comparing both interactions we find
that pili allow for a significantly more pronounced affinity
for colony formation compared to adhesive interactions, i.e.,
colonies already form at smaller initial density of cells
[Figs. 4(a), 4(b)]. The reason is that the pili length distribution
exhibits a more pronounced tail than the localized Gaussian
distribution (characterized by larger c̃2) and also a larger
characteristic length as for N. gonorrhoeae (�pi > �ad).

B. Colony dissolution

Many bacteria are known to interact simultaneously by
adhesion and pili. It is hypothesized that these bacteria
are able to switch off either adhesion or the pili-mediated
interaction without affecting their ability to move [16,17,41].
Now we address the question: Can colonies dissolve by
switching off either one of these interactions? In other words,
given the phase diagram of a specific bacterial system, we
discuss some possible means of leaving the colony phase by
api → 0 or aad → 0. We now include both interactions by
adding a term for pili-mediated interactions Cint,pi and a term
corresponding to adhesive interactions Cint,ad on the right-hand
side of Eq. (1a), i.e., Cint = Cint,pi + Cint,ad. In addition to the
already introduced different length scales �pi and �ad, we also
distinguish the corresponding interaction strengths, denoted as
api and aad (values for adhesion and pili-mediated interactions
are denoted as c̃k,ad and c̃k,pi). We rescale coordinates, density,
and time by the adhesive interaction length �ad (or cell size),
i.e., r → r · �ad, f → f/�2

ad ≡ ρ and t → t�2
ad/W0, thereby

introducing a ratio of these length scales, ε = �pi/�ad. For the
case where cells interact with both adhesive and pili-mediated
interactions, we find the following effective diffusion constant
(for further coefficients see Appendix C):

α(ρ) = G − ρ(aadāad c̃2,ad + apiāpi c̃2,pi γ ε2). (8)
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FIG. 5. (Color online) Critical density ρ∗
c (aad,api)/G as a func-

tion of (a) adhesive strength aad (with api = 0.5) and (b) pili-mediated
interaction strength api (with aad = 0.5). In both plots, G = 0.1 and
each solid line corresponds to γ ∈ (0.4,0.3,0.2) from top to bottom.
Black line corresponds to γ = 0.3. The horizontal black dashed line
[plotted only for γ = 0.3 in (a)] marks the dissolution boundary:
Below, dissolution (horizontal red arrow) is possible, above not. Blue
shaded areas correspond to the colony phase.

Setting this equation equal to zero marks a critical density

ρ∗
c (aad,api) = G

aadāad c̃2,ad + apiāpi c̃2,pi γ ε2
(9)

that depends on the strength of both interactions, aad and api.
In order to study the impact of both interactions for

dissolution of colonies we choose the parameters (ε, γ )
relevant to N. gonorrhoeae. Figure 5(a) shows ρ∗

c (aad) as a
function of aad for api = 0.5 and G = 0.1, while Fig. 5(b)
depicts ρ∗

c (api) as a function of api for aad = 0.5 and G = 0.5,
both for several values of γ . For a given γ , there are two
qualitatively distinct regimes for the case where adhesive
interactions are switched off [Fig. 5(a)]: For small enough
ρ∗

c below the dissolution boundary (horizontal dashed line),
colonies can dissolve by switching off the adhesive interaction
(aad → 0) and is indicated by an red arrow. However, above the
dissolution boundary, colonies cannot dissolve. Interestingly,
choosing the parameters relevant to N. gonorrhoeae gives a
rather small density regime, where colonies can dissolve, ren-
dering the dissolution scenario through switching off adhesion
as a nonrobust mechanism. This is in stark contrast to the
scenario of switching off pili-mediated interactions [Fig. 5(b)]:
For a given γ , dissolution is possible for all experimental
densities in the colony phase by lowering the pili-interaction
strength, api → 0. These findings suggest that switching off
pili-mediated interactions is a more robust mechanism for the
dissolution of bacterial colonies than switching off adhesion.

VI. CONCLUSION

To summarize, the formation of living colonies is investi-
gated using a hydrodynamic equation derived from a kinetic
description, where most of the parameters can be estimated
from experimental data for N. gonorrhoeae bacteria. Our
results demonstrate that kinetic theory can be successfully
used to describe complex far from equilibrium systems such
as formation and dissolution of living bacterial colonies.
Applications of this theory could pave the way for the physical
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quantification of the initial stages of biofilm formation. Though
biological reasons for colony formation are specific to each
system there are qualitative similarities [1–6]: Colonies form
due to encounters with nearby individuals giving rise to struc-
tures of a characteristic size determined by the intraspecies
interactions and the environment. These similarities suggest
that our kinetic description might be applied to other colony-
forming systems while the kinetic coefficients in the resulting
hydrodynamic equation may differ for each system. Further
open questions concern the role of cell division and stochastic
fluctuations in living colonies [42].
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APPENDIX A: COORDINATE CHANGE DUE
TO ISOTROPY OF INTERACTION KERNEL

Using the collision rule [Fig. 6],

(r1,r2) → (R1,R2) = (r1 − a r12,r2 + a r12), (A1)

the gain term C+ can be written as:

C+ =
∫

dr1

∫
dr2 W�(r1,r2) f (r1,t)f (r2,t)

× 1

2
(δ[(r1 − a · r12) − r] + δ[(r2 + a · r12) − r]).

(A2)

The equation above can be rewritten in terms of relative
coordinates r12 = r1 − r2 and center-of-mass coordinates
R12 = (r1 + r2)/2, i.e., r1 = R12 + r12/2 and r2 = R12 −
r12/2 (Fig. 6):

C+ = 1

2

∫
dr12

∫
dR12 W�(|r12|)

× f (R12 + r12/2,t)f (R12 − r12/2,t)

×
{
δ

[
R12 + r12

(
1

2
− a

)
− r

]

+ δ

[
R12 + r12

(
−1

2
+ a

)
− r

]}
. (A3)

Due to the isotropy of the collision kernel the integration
over the center-of-mass coordinates can be performed, finding

C+ = 1

2

∫
dr12 W�(|r12|)[f (r + ar12,t)f (r − ār12,t)

+ f (r − ar12,t)f (r + ār12,t)], (A4)

where ā = 1 − a. The equation above can be further simplified
for example for the case a = 1

2 :

C+ =
∫

dr12 W�(|r12|)f (r + r12/2,t)f (r − r12/2,t). (A5)

FIG. 6. (Color online) Illustration of collision setup and the
collision rule mimicking attractive interactions. (a) The two col-
lision partners have the spatial coordinates r1 and r2, defining
a relative distance r12 = r1 − r2 and a center-of-mass coordinate
R12 = (r1 + r2)/2. (b) The collision given in Eq. (2) (main text),
which maps the precollision coordinates (r1,r2) to the postcollision
coordinates (R1(r1,r2),R2(r1,r2)) (indicated by green arrows). For
the illustration, a = 0.25.

Similar manipulations can be performed for the loss term:

C− =
∫

dr1

∫
dr2 W�(|r12|) f (r1,t)f (r2,t) δ(r2 − r)

=
∫

dr12

∫
dR12 W�(|r12|) δ[R12 − (r12/2 + r)]

× f (R12 + r12/2,t)f (R12 − r12/2,t)

= f (r,t)
∫

dr12 W�(|r12|) f (r + r12)

≡ f (r,t)
∫

dr12 W�(|r12|)f (r − r12). (A6)

Please note that nonlocal integrands above resemble a phe-
nomenological description for the assembly of active bundles
[32–34].

APPENDIX B: DETAILS OF COARSE GRAINING
AND TRUNCATION

Truncating of the nonlocal distribution function f (r ± ar12)
[cf. Eqs. (A4) and (A6)] at the fourth order leads to

f (r ± ar12) = f (r) ± a(r12 · ∇)f (r) + a2

2
(r12 · ∇)2f (r)

± a3

6
(r12 · ∇)3f (r) + a4

24
(r12 · ∇)4f (r)

+O[(r12 · ∇)5], (B1)

where we omitted the time dependence for reasons of
brevity. Using the truncation above and neglecting all terms
O[(r12 · ∇)5] amounts to an explicit coarse graining of the
system’s dynamics to length scales beyond the characteristic
length scale of the interaction. Therefore, we will refer to the
resulting equation obtained at the end of this section as the
hydrodynamic equation.

1. Single cell motility term

The term modeling the single cell motility across the
substrate, Cmot, can be coarse grained as follows: Defining
the pili-mediated displacement as b = (bx,by) = r′ − r, and
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the transition rate Kr→r′ ≡ K(b; r),

Cmot(r,t) =
∫

dr′[Kr′→rf (r′,t) − Kr→r′f (r,t)]

=
∫

db[K(−b; r + b)f (r′,t) − K(b; r)f (r,t)]

=
∫

db[K(b; r − b)f (r − b,t) − K(b; r)f (r,t)].

(B2)

Expanding the nonlocal integrand with respect to the spatial
coordinates and keeping only the highest nonvanishing order
leads to:

Cmot(r,t) =
∫

db
1

2
(b · ∇)2[K(b; r)f (r,t)]

=
∫

db
1

2
K(b)(bx∂x + by∂y)2f (r,t)

=
∫

db
1

2
K(b)

(
b2

x∂
2
x + b2

y∂
2
y

)
f (r,t)

=
[∫

dbK(|b|)b2
x

](
∂2
x + ∂2

y

)
f (r,t)

= D∇2f (r,t), (B3)

where we assumed that the transition rate does not depend on
the spatial coordinates, K(b; r) = K(b), and that it is an even
[43] and isotropic function, K(b) = K(|b|). Moreover, using
K(|b|) = K0

1
2π�2

pi
exp (−|b|/�pi) one obtains the diffusion con-

stant for pili-mediated motility:

D = K0�
2
pic̃2,pi, (B4)

where c̃2,pi given in Table I and K0 denotes the attachment
rate of pili to the substrate. Restricting to the second order is
validated by the Pawula theorem [44].

2. Interaction term

The interaction term Cint can be split in a gain term, C+, and
a loss term, C−.

Loss. Neglecting all terms above the fourth order, we find
for the loss term:

C− = f (r)
[
c0f (r) + c2

2
∇2f (r) + c4

24
∇4f (r)

]
, (B5)

where the coefficients are given as

ck =
∫∫

dr12,xdr12,y rk
12,x Wad/pi(r12)

= W0

{
�k

ad/pi · c̃k if k even,

0 if k odd,
(B6)

with r12 = |r12| =
√

r2
12,x + r2

12,y and c̃k are dimensionless

numbers given in Table I for the adhesive (ad) and pili-
mediated (pi) interaction. Note that odd powers, thereby also
mixed gradients such as ∂x∂yf , vanish since the integral is
then an asymmetric function with respect to the integration
over e.g. dr12,x or dr12,x , respectively [45].

Gain. Following similar lines for the source term C+, and
neglecting all contributions above the fourth order in the spatial

derivatives, we find only six nonzero contributions:

C+ = c0 f 2(r) + 1
2 [a2 + ā2]c2 f (r)∇2f (r) − aāc2 |∇f (r)|2

+ 1
24 [a4 + ā4]c4 f (r)∇4f (r) + 1

4a2ā2c4 [∇2f (r)]2

− 1
6 [aā3 + āa3]c4 [∇f (r)] · ∇3f (r). (B7)

Gain and loss. Combining gain and loss term, Cint = C+ −
C−, and plugging it in Eq. (1) (main text), leads to the final
hydrodynamic equation:

∂tf (r,t) = D∇2f (r,t)] + 1
2 [a2 + ā2 − 1]c2 f (r,t)∇2f (r,t)

+ 1
24 [a4 + ā4 − 1]c4 f (r,t)∇4f (r,t)

− aāc2 |∇f (r,t)|2 + 1
4a2ā2c4 [∇2f (r,t)]2

− 1
6 [aā3 + āa3]c4 [∇f (r,t)] · ∇3f (r,t). (B8)

Note that in Eq. (B8) the zeroth-order term cancels because of
particle conservation.

As the last step, we use the scaling of the kinetic coefficients,
ck = W0�

kc̃k [see Eq. (B6)], with � ∈ {�ad,�pi} and the
numerical values c̃k given in Table I, and write Eq. (B8) in
a dimensionless form. To this end, we rescale the coordinates
and the density by means of the interaction length �, i.e.,
r → r · � and f → f/�2 ≡ ρ. This implies a rescaling of
the time scale given by t → t�2/(W0γ ); note that γ = 1
for adhesive interactions. Using the aforementioned rescalings
leads to Eq. (2a).

APPENDIX C: KINETIC COEFFICIENTS FOR ADHESION
AND PILI-MEDIATED INTERACTIONS

For adhesive and pili-mediated interactions, only the
effective diffusion constant α(ρ) has been given in the main
text. Reading the coefficients Eqs. (2d)–(2f) as function of
the interaction strength a, i.e., βi = βi(a), the remaining
coefficient is listed below:

κ(ρ) = −{[β2(aad) + β3(aad)] + [β2(api) + β3(api)] γ ε4}.
(C1)

The corresponding length scales, interaction strength and
numerical coefficients for adhesion and pili-mediated inter-
actions are denoted as: �pi,aad,c̃k,ad and �ad,aad,c̃k,ad, respec-
tively, and ε = �pi/�ad. The rescalings used are described
in Sec. VB.

APPENDIX D: ESTIMATES OF PARAMETERS
OF THE N. GONORRHOEAE

1. Estimate of the density ρ0

We considered 20 experimental realizations of N. gon-
orrhoeae bacteria forming colony on a substrate. After
sedimentation to the plastic surface we calculated from
the corresponding binary images the overall area fraction
covered by bacteria cells, finding φ ≈ 0.1. The corresponding
dimensionless density is then: ρ0 = φ�2

pi/(πRcell) ≈ 0.125
with �pi = 1 μm and Rcell = 0.5 μm. Since typically some
small three-dimensional colonies have already formed during
sedimentation process we expect that the determined value
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represents a slight underestimation, thereby we use ρ0 = 0.2
in the manuscript.

2. Estimate of W0/�
2
pi

W0/�
2
pi is a measure for the rate of cell-cell encounters

occurring in an area of �2
pi. A direct measurement of this

quantity requires the sampling of the cell trajectories on
the time-scale of the cell-cell encounters, which is intricate
because bacteria cells are harmed in case of too frequent
light exposure. Therefore, we have to content ourselves with
a rough estimate. If we assume that each pilus per cell acts
independently, we can first estimate the rate of a cell-cell
interaction for a single pilus. For intermediate and large cell
densities with respect to the intersection scales, it is expected
that this rate roughly scales with the number of pili per cell.

The time τ between two interactions using a single
pilus should be roughly given by the time to diffuse the
distance to the next-neighboring cell �NN, τ ∼ �2

NN/(4D),
where D = 0.5 μm2/s. However, this distance is reduced
by the cell-diameter 2Rcell = 1 μm and two times the
typical pili length 2�pi = 2 μm (the factor 2 is based on
very recent experimental observation that pili-mediated
cell-cell interactions occurs via pili-pili bundling) leading
to: τ ∼ (�NN − 2Rcell − 2�pi)2/(4D) ≈ 2 s, where we
determined �NN ≈ 5 μm from the binary images directly
after sedimentation.

TEM-images indicate that the mean pili number is in order
of N ∼ 10 [30]. For intermediate and large cell densities, the
overall interaction rate for for N. gonorrhoeae at surface cov-
erage of φ ≈ 0.1 is approximatelyW0/�

2
pi ∼ N (2s)−1 ≈ 5s−1.

Thereby, G ≈ 0.1.

[1] E. Ben-Jacob, I. Cohen, and D. L. Gutnick, Ann. Rev. Microbiol.
52, 779 (1998).

[2] O. Lejeune, M. Tlidi, and P. Couteron, Phys. Rev. E 66, 010901
(2002).

[3] D. L. Higashi et al., Infect Immun. 75, 4743 (2007).
[4] J. Taktikos, Y. T. Lin, H. Stark, N. Biais, and V. Zaburdaev

[PLoS ONE (to be published)].
[5] L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, Nat. Rev.

Microbiol. 2, 95 (2014).
[6] T. Sams, K. Sneppen, M. H. Jensen, C. Ellegaard, B. E.

Christensen, and U. Thrane, Phys. Rev. Lett. 79, 313 (1997).
[7] A. J. Merz, M. So, and M. P. Sheetz, Nature (London) 407, 98

(2000).
[8] R. Marathe et al., Nat. Commun. 5, 3759 (2014).
[9] V. Zaburdaev et al., Biophys. J. 107, 1523 (2014).

[10] B. Maier et al., Proc. Nat. Acad. Sci. USA 99, 16012 (2002).
[11] B. Maier, Soft Matter 9, 5667 (2013).
[12] L. Craig, M. E. Pique, and J. A. Tainer, Nat. Rev. Microbiol. 2,

363 (2004).
[13] N. Biais et al., PLoS Biol. 6, e87 (2008).
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