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The parasite African trypanosome swims in the bloodstream of mammals and causes the highly

dangerous human sleeping sickness. Cell motility is essential for the parasite’s survival within the

mammalian host. We present an analysis of the random-walk pattern of a swimming trypanosome.

From experimental time-autocorrelation functions for the direction of motion we identify two relaxation

times that differ by an order of magnitude. They originate from the rapid deformations of the cell body and

a slower rotational diffusion of the average swimming direction. Velocity fluctuations are athermal and

increase for faster cells whose trajectories are also straighter. We demonstrate that such a complex

dynamics is captured by two decoupled Langevin equations that decipher the complex trajectory pattern

by referring it to the microscopic details of cell behavior.
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Introduction.—The motility of cells in nature is of cru-
cial importance to several processes of their life cycle.
Wound healing, tumor growth, fertilization, infection
spreading—all these processes only function when the
corresponding agents are motile [1]. Whatever these agents
are, cells or bacteria, they are present in multitudes and can
move collectively in complex and heterogeneous environ-
ments, such as tissue or blood vessels. Observing the
trajectory of a single cell in a well-controlled environment
allows us to focus exclusively on its motility.

In this Letter we aim to analyze the motility of the
African trypanosome ( Trypanosoma brucei brucei)—a
parasite that swims in the blood stream and infects mam-
mals often causing fatal diseases [2–8]. Unique features of
trypanosome motility are already visible on the micro-
scopic level. The trypanosome’s elongated cell body has
the shape of a spindle, to which a single flagellum is
attached. The beating flagellum causes the whole body to
deform strongly which results in a complex swimming
pattern [5,6] (see supplemental material [9]: movie 1).
On the millimeter scale, a trajectory of a swimming trypa-
nosome looks like a classical random walk. Previous work
in statistical physics offers a wealth of models to explain
random-walk trajectories and they are successfully used to
analyze the motility patterns of various microorganisms.
For example, random-walk models describe classical and
anomalous diffusion of cells and bacteria [10]; different
types of Langevin equations are also employed [11,12].
However, all of these models appear to be too simplistic to
be applied to swimming trypanosomes.

The most striking feature of the experimental data is the
presence of two characteristic relaxation times in the

velocity autocorrelation function that differ by more than
an order of magnitude. Velocity fluctuations reveal another
level of complexity—faster organisms exhibit larger fluc-
tuations; however, their trajectories are more straight or
persistent. In the following we suggest a theoretical model
which explains all these intriguing features and quantita-
tively describes the large-scale motion of the trypanosome
but also takes into account its distinct body distortions.
Experimental setup.—The bloodstream form of trypano-

somes is found in blood vessels densely populated by red
blood cells where they are subjected to strong shear
stresses [2,5,6]. In order to first concentrate and understand
the motility of a trypanosome itself, we have chosen a
minimal, quasi-two-dimensional setup in which the motion
of cells was confined between two glass plates separated by
a distance of 10 �m. A suspension of trypanosomes in
fresh HMI9 medium (viscosity 1 cP) [13] was monitored at
room temperature with a 10� objective (0:64 �m spatial
resolution). The confinement was required to maintain the
trypanosomes within the focal plane and allowed us to
continuously monitor single cells well separated from
others with a frame rate of 1 Hz. We recorded cell trajec-
tories for up to 30 min from which we realized that the
average speed of the cells slowly decreased on a time scale
of about 20 min much larger than the characteristic
time scales of the system (for further discussion of the
setup see the supplemental material [9]). In order to mini-
mize the influence of this behavior on our data analysis, we
ultimately used the tracking data of the first 150 seconds
from 41 trajectories.
A typical trajectory of the center of mass of the trypa-

nosome is shown in Fig. 1 (see also supplemental material
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[9]: movie 2). On the scale of microns, we see a ‘‘noisy’’
zigzag-like motion generated by the intense and rapid cell-
body deformations. They result from a distortional wave
[6] that runs from the thinner tail to the thicker end of the
elongated cell body. It creates the nonreciprocal body
deformation necessary for locomotion at low Reynolds
numbers [14]. The wave produces large amplitude oscil-
lations of the tail, similar to a recently constructed micro-
swimmer [15], which results in the observed zigzag
motion. Then, on a larger scale the trypanosome follows
a smoother path which exhibits some persistence in its
swimming direction.

Experimental results.—We start our analysis with the
time series of the trypanosomes’ center of mass velocity
defined for each time step ti as

v ðtiÞ ¼ ½rðti þ �tÞ � rðtiÞ�=�t: (1)

Clearly the time series depend on the choice of �t. For now
we set �t ¼ 2 s and comment on this choice later. We first
analyze the velocity autocorrelation function by dividing it
into two parts—temporal correlations in the speed jvj and
in the direction of motion v=jvj. Surprisingly, the direction
of motion exhibits two characteristic relaxation times that
differ by an order of magnitude (see graph of C� in Fig. 2).
The short time is less than 1 s and the long time is about
10 s. However, in the speed correlations only the shorter
relaxation time is visible (see graph of Cjvj in Fig. 2). We

determined and confirmed the short correlation time using
additionally recorded high-resolution data (see the inset of
Fig. 2). Its value of 0.12 s obviously gives the decay time
for correlations in the irregular oscillations of the rapid
cell-body motion. This time corresponds to a few oscilla-
tions and is consistent with the reported flagellum beating
period of 50 ms [6]. Having clarified the existence and
origin of the short relaxation time, we will concentrate in
the following on our main data set. These data are suffi-
cient for developing a stochastic model for the large-scale

motion of the trypanosome based on the conclusion that
speed and direction of motion of trypanosomes are de-
coupled on time scales exceeding 1 s [16].
The distribution of speed values for all trajectories ex-

hibits a broad non-Gaussian profile (see Fig. 3). Non-
Gaussian velocity distributions have been reported and
explained for other types of cells and microorganisms
[11,12,17]. In our case the reason for the broad distribution
is rather natural and also mentioned in literature (see, e.g.,
Ref. [18]): intrinsically, the cells are not identical and each
trypanosome trajectory can be characterized by its mean
square velocity hv2i, where h� � �i means average over one

trajectory. The distribution Rðhv2i1=2Þ characterizes our set
of trajectories. It is itself quite broad (see inset in Fig. 3)

FIG. 1 (color online). A typical trajectory of a swimming
trypanosome (scale bar is 10 �m). Note a persistence in straight
motion perturbed by strong fluctuations. The inset shows the
snapshot of a Trypanosoma brucei brucei (scale bar is 5 �m).

FIG. 2. Velocity autocorrelation function: angular part C� ¼
eðt0 þ tÞ � eðt0Þ with eðt0Þ ¼ vðt0Þ=jvðt0Þj and speed correlations

Cjvj ¼ jvðt0 þ tÞjjvðt0Þj=v2ðt0Þ. Symbols and solid lines repre-

sent data from experiments and simulations, respectively.
Averaging is performed over all trajectories and over the refer-
ence time t0. Inset: Cjvj determined from data with high temporal

resolution of 10�3 s. After an initial decay to �0:4 due to the
tracking algorithm, an exponential with correlation time 0.12 s
can be fitted (dashed line).

FIG. 3 (color online). Distribution of speed values PðjvjÞ for
all trajectories. The histogram of the inset illustrates how the
trypanosome’s mean velocity varies from cell to cell by showing
the distribution R for the root mean square velocity hv2i1=2
calculated for each trajectory.
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and results in the broad velocity distribution for the en-
semble of cells.

Besides the distribution of mean values, more informa-
tion about the ensemble of trajectories is obtained from
fluctuations around these mean values. For each trajectory
we calculate the standard deviation of velocity squared,

�v2 ¼ hðv2 � hv2iÞ2i1=2, and the average directional ‘‘per-
sistence’’ hcos��i ¼ hvðtþ �tÞ � vðtÞ=½jvðtþ �tÞjjvðtÞj�i
(�t ¼ 2 s), and then check how they depend on the trajec-
tory’s mean square velocity. Faster trypanosomes display
larger velocity fluctuations �v2 as the approximately qua-

dratic dependence on hv2i1=2 shows, but their trajectories
are more straight, since consecutive velocity directions are
more aligned (see Fig. 4). This remarkable fact indicates
that the increasing speed makes the cells more persistent.

Theoretical model.—We now formulate a model which
accounts for all of the aforementioned observations. The
body deformations of the trypanosome on a time scale of
less than 1 s are the primary source of fluctuations. In
addition, correlations of the average swimming direction
decay much slower. To capture this behavior, we split the
velocity of the trypanosome into two parts: v ¼ wþ u.

The fast velocity fluctuations are described by w and the
component u ¼ u0ðcos’; sin’Þ with the constant swim-
ming speed u0 slowly changes its direction through the
polar angle ’. We describe the time evolution of the two
dynamic variables, w and ’, with the help of Langevin
equations.

The polar angle ’ diffuses on the unit circle and,
therefore, obeys _’ ¼ g’�ðtÞ. Here �ðtÞ is the standard

delta-correlated additive white noise with zero mean and
variance h�ðtÞ�ðt0Þi ¼ �ðt� t0Þ. The noise amplitude g’
determines the longest correlation time �’ ¼ 2=g2’ � 10 s

visible in Fig. 2. Note that this value clearly indicates that

the rotational diffusion of the average swimming direction
is a result of active rather than thermal motion of the
trypanosome. When we estimate the corresponding ther-
mal relaxation time �th at room temperature in water
by assuming that the trypanosome is a hard rod of length
L ¼ 20 �m and diameter d ¼ 2 �m, we arrive at �th ’
1000 s, much larger than �’.

The fast velocity fluctuations w are described by a
standard Langevin equation [19]:

_w ¼ �w=�w þ gw�ðtÞ= ffiffiffiffiffiffi

�w
p

; (2)

where �ðtÞ ¼ ð�1; �2Þ is a two-dimensional vector with
independent white noise components, h�iðtÞ�jðt0Þi ¼
�ij�ðt� t0Þ, and gw is the strength of noise. Our experi-

mental data also show that faster cells exhibit larger ve-
locity fluctuations. Therefore, we assume that gw is a linear
function in the cell’s average speed u0: gwðu0Þ ¼
g0 þ �u0. Qualitatively we understand this behavior. The
athermal noise generates the body distortions which ulti-
mately propel the trypanosome. Now, if the trypanosome
swims faster, the friction with the solvent increases and,
therefore, the stochastic force has to increase. With re-
corded swimming speeds & 15 �m=s, the trypanosome
is a low Reynolds number swimmer (Re< 10�4) where
inertia is completely negligible [14]. However, Langevin
Eq. (2) conventionally describes the thermal diffusion of a
Brownian particle with inertia. In our case, the inertial term
is due to the active cell motion and Eq. (2) provides the
short relaxation time �w in the trypanosome’s velocity
correlations.
The speed u0 characterizes a single trypanosome. For

each trajectory hv2i ¼ u20 þ hw2i, where hw2i ¼
ðg0 þ �u0Þ2, which allows us to solve for u0 for each value
of hv2i. However, the time step �t used in Eq. (1) for
calculating velocity from experimental data, is larger
than the short relaxation time �w in Eq. (2).
Consequently, the experimental value hw2iexp is smaller

than the ideal or instantaneous value hw2i ¼ ðg0 þ �u0Þ2
predicted by theory. We are able to link both values in the
following relation (see supplemental material for deriva-
tion [9]) [20]:

hv2iexp ¼ u20 þ hw2i 2�w
�t

�

1� �w
�t

�

1� e��t=�w

��

: (3)

It recovers the ideal relation in the limit �t � �w. We use
Eq. (3) to determine the distribution of u0 from the experi-

mental Rðhv2i1=2Þ. To complete our model, we take into
account the aging of the cells due to illumination by

introducing exponential decay laws u0ðtÞ :¼ u0e
�t=T and

gwðtÞ :¼ gwe
�t=T with T ¼ 1100 s.

Theoretical modeling vs experiment.—Based on our
model, we use computer simulations [21] to generate
numerical data for the velocity time series. By finding
the best match [20] between the numerical and experimen-
tal results for the autocorrelation functions, velocity distri-
bution, and the amplitude of velocity fluctuations, we

FIG. 4. Velocity fluctuations �v2 as a function of the root mean
square velocity hv2i1=2 of an individual cell. Experimental data
are compared with simulated data from a model with isotropic
(dashed line) and anisotropic noise (solid line). The gray dotted
line shows a quadratic fit to the experimental data. Inset: direc-
tional persistence of a trajectory grows with the root mean square
velocity of a single cell.
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determine the four unknown parameters of our model: the
noise amplitudes g’ and gw ¼ g0 þ �u0, and the fast

relaxation time �w. A successful model should not depend
on the choice of the time step �t used in the definition of
velocity (1). Indeed, we checked that simulated and ex-
perimental data could be matched with the same parame-
ters for various time steps �t ¼ 1, 2, and 3 s.

The agreement between simulations and experiments is
excellent, as documented in Figs. 2 and 3. The dashed lines
in Fig. 4 of our current model already indicate that fluctua-
tions �v2 grow with increasing hv2i and faster cells have
straighter trajectories. The latter makes sense since for
increasing mean velocity u0 the average swimming direc-
tion u=u0 is less disturbed by the fast fluctuating compo-
nent w.

To further advance the model, we introduce anisotropic
noise in Langevin Eq. (2) by distinguishing between the
respective noise components parallel and perpendicular to
the average swimming direction u, gk ¼ g0 þ �u0 and

g? ¼ g0 þ ��u0. The coefficient � characterizes the an-
isotropy of noise. The friction coefficient perpendicular to
the body axis of the trypanosome is larger than the one
along its elongated cell body. Therefore, we expect fluctu-
ations generated by g? orthogonal to the body to be
weaker, meaning that � 2 ½0; 1�. Indeed, both fits in
Fig. 4 are improved by the anisotropic model.

The fit parameters of our model assume the following
values: �w ¼ 0:3 s and �’ ¼ 2=g2’ ¼ 11:3 s; for the iso-

tropic noise, g0 ¼ 1:5 �m=s and � ¼ 1:8, while for the
anisotropic noise, g0 ¼ 1:8 �m=s, � ¼ 1:9, and � ¼ 0:45
indicates a pronounced anisotropy. Note that our model is
not only consistent with experimental data, but also pro-
vides a prediction for the short relaxation time �w ¼ 0:3 s,
beyond the chosen experimental resolution of 1 s and in
good agreement with our additional measurements.

As already stated, the tail of the cell body performs
irregular oscillations with angular amplitude �’ around
the average swimming direction u. Correlations in the
oscillations decay within �w ¼ 0:3 s and u performs an
angular random-walk step �’ during �w. Finally, temporal
correlations in u vanish after time t’ meaning 	2 ’
�’2t’=�w. This gives a reasonable estimate �’ ’ 	=6

and links t’ to the rapid cell motion.

Conclusions.—We modeled the trypanosome’s swim-
ming path using two decoupled Langevin equations for
the average swimming direction and the rapid fluctuations
in velocity consistent with experimental observations. The
stochastic forces involved are athermal and a result of the
actively moving trypanosome. Properties of individual
cells vary strongly, with faster cells having larger velocity
fluctuations and straighter trajectories. The second
observation motivated an anisotropic extension of our
model with stronger velocity fluctuations along the swim-
ming direction that improved the modeling. In this Letter

we demonstrated how the variability of properties in an
ensemble of cells and also finite time resolution of experi-
mental data can be treated. These are typical features of
any experiment with microorganisms. Therefore, the
model and analysis presented in this Letter will be useful
for any study that investigates the swimming strategies of
microorganisms by monitoring their stochastic trajectories.
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