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The propagation of an initially localized perturbation via an interacting many-particle Hamiltonian

dynamics is investigated. We argue that the propagation of the perturbation can be captured by the use of a

continuous-time random walk where a single particle is traveling through an active, fluctuating medium.

Employing two archetype ergodic many-particle systems, namely, (i) a hard-point gas composed of two

unequal masses and (ii) a Fermi-Pasta-Ulam chain, we demonstrate that the corresponding perturbation

profiles coincide with the diffusion profiles of the single-particle Lévy walk approach. The parameters of

the random walk can be related through elementary algebraic expressions to the physical parameters of the

corresponding test many-body systems.
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The transport properties of many-particle systems are of
salient interest in diverse contexts, ranging from founda-
tions of thermodynamics to the transduction of information
on the nanoscale. The collective evolution of N � 1 inter-
acting particles creates a dynamical ‘‘tissue,’’ whose prop-
erties depend not only on the Hamiltonian of the system,
but also on the state of the system itself. An objective of
primary interest is how the system responds to the pertur-
bation that locally affects its dynamics. The answer then
provides direct insight into collective energy, correlation,
and information transport in extended nondissipative
media [1–7].

Consider the situation of a many-particle system at
microcanonical equilibrium, when at the initial time
t ¼ 0 one of the particles receives some external local
perturbation. The system gains a small amount of pertur-
bation energy, which is conserved due to Hamiltonian
evolution of the system. However, the perturbation does
spread as the perturbation energy is shared by a constantly
growing number of particles. One of the main features of
the spreading is the finite velocity of perturbation propa-
gation, v0 <1 [4,6,7]. Therefore, similar to relativistic
diffusion theories [8], an effective ‘‘light cone’’ occurs [9],
such that at the given time t the perturbation is almost
completely confined to the interval ½�v0t; v0t� [10]. The
fundamental fact of the cone’s existence assumes the char-
acteristics of a mathematical existence theorem [9,11]; its
strength therefore is the generality when dealing with
many-particle systems in rather arbitrary situations. A
pronounced weakness of this mathematical approach, how-
ever, becomes evident whenever one attempts to imple-
ment the theory for a particular system to obtain qualitative
results on an analytical level of description. Therefore,
more applied approaches, like the diffusion formalism,
might become of beneficial use. Indeed it is appealing to
consider the said perturbation spreading as a certain (not
yet known) one-dimensional diffusion process, and to

quantify it with the mean square displacement and
other related attributes [1,5–7]. As it is known, however,
it is impossible to describe this process by any known
macroscopic, norm-preserving normal diffusion equation.
Conventional diffusion equations knowingly lead to
infinite propagation speeds [8] and therefore are incompat-
ible with the existence of a causal cone. Thus the pertur-
bation kinetics should be ultimately considered on the
microscopic level corresponding to the random walk
approach.
With this Letter we employ the microscopic single-

particle random walk process in order to evaluate the
evolution of perturbations in one-dimensional, ergodic
many-particle systems. In doing so we address the two
challenges: (i) How is the perturbation distributed within
the cone, and (ii) what are the shapes of the cone fronts? By
using two renowned many-particle chains we demonstrate
that the random walk model accurately describes the per-
turbation spreading in these interacting many-body sys-
tems. We show that the walker-media interactions are
responsible for the observed shape of the causal cone and
predict the universal scalings for the perturbation profile
and its corresponding fronts.
Model setup.—The continuous-time random walk

(CTRW) formalism [12] has found applications to a wide
range of phenomena, ranging from financial markets dy-
namics [13] to single molecule spectroscopy [14]. Here, we
use one specific CTRW model [15,16], where a walker
moves ballistically in between successive ‘‘turning
points.’’ During a single flight event, the walker travels at
constant speed v0, and at the turning points it randomly
changes the direction of motion (see the particle flying
above the slab in Fig. 1). Hence, the velocity probability
density function (PDF) reads hðvÞ ¼ ½�ðv� v0Þ þ �ðvþ
v0Þ�=2. The flight times, �n, are independent and identi-
cally distributed random variables drawn from a PDF c ð�Þ
that is described by a power law [5,16–19],
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c ð�Þ / ð�=�0Þ���1; (1)

where �0 is a characteristic time scale, and 1<� � 2. This
choice guarantees a finite average flight time, h�i ¼R1
0 �c ð�Þd�, and provides access to different diffusion

regimes with the scaling of the mean squared displacement
�2ðtÞ / t3��. The corresponding Lévy walk (LW) ap-
proach [16] has been successfully used for the description
of diffusion of particles in chaotic systems [17–19], tracers
in turbulent flows [20], or ultracold atoms in optical po-
tentials [21]. For the standard LW process, the PDF of
finding a particle in x at the time t, Pðx; tÞ, provided it
was initially localized at x ¼ 0, exhibits a sharp cutoff
marked by the ballistic peaks at jxj ¼ v0t [19].

A first step towards the implementation of the LW
formalism for the description of the perturbation dynamics
in many-particle systems has been attempted in [5].
Although this approach provided an adequate description
for the perturbation spreading process, it failed to capture
the dynamics of the cone fronts. The observed ballistic
humps displayed smooth, Gaussian-like profiles, with a
scaling that was incompatible with the scaling behavior
of deltalike peaks of the LW propagator [18].

In order to resolve this issue, we here extend the con-
ventional CTRW setup by assuming that the walker per-
forms a random walk through an active medium.
Conceptually, it means that while moving, the walker
interacts with the surrounding medium (the slab in
Fig. 1). This interaction causes fluctuations of the walker’s
velocity (note the noisy trajectory of the particle moving
inside the slab in Fig. 1). The term ‘‘active’’ means that the
medium is not solely dissipative and the particle not only
continuously loses but also gains energy from its environ-
ment. Both processes are in balance, yielding unbiased
fluctuations of the walker’s velocity around v0.

Model dynamics.—We start out by considering a single
flight event. The position of the walker is defined by a
Langevin equation _x ¼ v0 þ �ðtÞ, where �ðtÞ is a delta-
correlated Gaussian process of vanishing mean and finite
intensity Dv, i.e., h�ðtÞ�ðsÞi ¼ Dv�ðt� sÞ. This consti-
tutes a well-known biased Wiener process with drift v0

[22]. After an integration over a time interval � we obtain

xðtþ �Þ ¼ xðtÞ þ v0�þ wð�Þ; (2)

where the new stochastic variable wð�Þ ¼ R
tþ�
t �ðsÞds is

characterized by the Gaussian PDF pðw; �Þ with the dis-
persion �2

� ¼ h½xð�Þ � v0��2i ¼ Dv�. The propagator can
be calculated numerically by sampling long enough a
single-particle trajectory [23] (see Fig. 2).
To gain analytical insight into the generalized LW dy-

namics, we follow a standard reasoning [18,24] and derive
the transport equations governing the evolution of the
particle density, Pðx; tÞ (see supplemental material [25]).
Below we present the major results for the scaling proper-
ties of the central part of the density profile and provide the
explicit expression describing the ballistic humps. The
asymptotic analysis of the central part of the density profile
reveals the scaling of the standard LW propagator [18],
namely,

Pðx; t0Þ ’ 1

Ku1=�
P

�
x

Ku1=�
; t

�
; jxj � vt; (3)

where K / �1�1=�
0 v0 and u ¼ t0=t (see Fig. 2).

The salient difference between the dynamics of our
model and the standard Lévy walk becomes apparent in
the regions of cone fronts. The ballistic humps are formed
by the particles which were flying from t ¼ 0 to the
observation time t (see supplemental material [25]):

Phumpðx; tÞ ¼ �ðtÞ½pðxþ v0t; tÞ þ pðx� v0t; tÞ�=2: (4)

Here, �ðtÞ denotes the probability of not changing the
direction of flight during the time t and has a power-law
behavior �ðtÞ / ðt=�0Þ1�� [18]. Consequently, the area
under the ballistic humps (4) also scales as t1��. During
flights, the particles undergo random fluctuations caused
by the flight’s velocity variations. The flight length is
proportional to t; thus the dispersion of the Gaussian-like
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FIG. 2 (color online). Rescaled propagators of Lévy walk
process with exponent � ¼ 5=3 for different times, t ¼ 100,
300, 600. The dashed line depicts the propagator for the standard
Lévy walk with the constant flight velocity v0 ¼ 1. For the
simulations of the random walk in the active medium we
employed the map (2) with Dv ¼ 0:03. The inset shows the
ballistic front regions after the scaling transformation (5), where
�x ¼ x� v0t.

FIG. 1 (color online). The standard continuous-time random
walk (above the slab) and random walk through an active
medium (in the slab). The first walker performs flights with
constant velocity �v0, while the second one is subjected to
constant scattering, so that its velocity fluctuates. The duration of
single flight, �n, is a random variable drawn from the probability
density function c ð�Þ.
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humps grows as
ffiffi
t

p
, and we arrive at the following scaling

for the particles’ density in the hump regions:

Phumpð �x; t0Þ ’ u�1=2Phumpð �x=u��1=2; tÞ; (5)

where u ¼ t0=t and �x ¼ x� v0t (see inset in Fig. 2).
Note that this scaling distinctly differs from the scaling
in Eq. (3).

Ergodic many-body systems: Validation of the ap-
proach.—Consider a many-particle system, with a
Hamiltonian

Htotalðfxi; pigÞ ¼
XN

i¼1

Hi; (6)

where Hi ¼ Hðxi; xi�1; xiþ1; piÞ is the energy attributed to
the ith particle. At the time t ¼ 0 the system is locally
affected by the perturbation. The initially localized pertur-
bation energy, Ep, starts to spread, such that the distribu-

tion of the local excess energy 4Eði; tÞ of the i particle
evolves in time [26], while keeping the perturbation energy
constant; i.e., �N

i¼1 4 Eði; tÞ ¼ Ep. The spreading can be

quantified with a normalized probability distribution func-

tion %ði; tÞ ¼ 4Eði; tÞ=Ep, where � � � denotes a microca-

nonical average.
The main finding of this study is that the profiles of the

spreading perturbation in many-particle Hamiltonian sys-
tems, %ði; tÞ, in the corresponding asymptotic regime [27],
are determined by the propagator Pðx; tÞ of the generalized
Lévy walk model, Eqs. (3) and (5). In order to validate
this claim we use two archetype systems, namely, (i) a one-
dimensional scattering dynamics of a hard-point gas
composed of two unequal masses [28] and (ii) a Fermi-
Pasta-Ulam (FPU) �-lattice dynamics [29].

We start with a hard-point gas, a many-body
Hamiltonian system with an ergodic dynamics governed
by the conservation of kinetic energy and momentum [28].
We use a chain of N ¼ 1:6� 104 pointlike particles with
alternating masses, . . .mMmM . . . , of the length L ¼
1:6� 104, and periodic boundary conditions. Without
loss of generality we set the mass ratio M=m ¼ 2. The
energy per particle, " ¼ hmiv

2
i i=2,mi ¼ m orM, serves as

a tunable parameter. Figure 3 depicts the evolution of the
infinitesimal perturbation %ði; tÞ [5]. The scaling ansatz (5)
with the exponent � ¼ 5=3 is beautifully validated (see the
inset in Fig. 3(a)). We also found that the perturbation
profiles for different values of energy per particle parame-
ter � are matched by assuming that the perturbation veloc-
ity and the fluctuation variance both scale as

v0; D� / ffiffiffi
"

p
: (7)

Consequently, the profile scales as

%"ðx; tÞ ¼ %"0 ðx; t=s0Þ; (8)

where s0 ¼ ffiffiffiffiffiffiffiffiffiffi
"0="

p
(see Fig. 3(b)).

As our second test bed we use a FPU � chain dynamics

[29], defined by the Hamiltonian (6) withHi ¼ 1
2p

2
i þ 1

2 �
ðxiþ1 � xiÞ2 þ �

4 ðxiþ1 � xiÞ4, with N particles of unit mass

and periodic boundary conditions. The energy per particle
is " ¼ Htotal=N. It is not feasible to explore the evolution of
finite perturbations of the FPU system at microcanonical
equilibrium, due to emerging huge statistical fluctuations.
Instead we employed the energy correlation function,
eði; tÞ [6,7], which bears the same information as the
infinitesimal perturbation in the case of hard-point gas
[30]. We performed a massive numerical experiment
[25], yet even these efforts were not sufficient to cope
with the statistical fluctuations [note the thin green lines
in Figs. 4(a) and 4(b)]. Nevertheless, a relatively smooth
shape of the ballistic hump allows for a convincing vali-
dation of the scaling (5). It is interesting to note that the
velocity of the ballistic peaks is determined by the group
velocity of effective thermal phonons [7], which therefore
can be associated with ’’walkers’’ of the CTRW approach.
The perturbation profiles for different values of the

energy per particle " reveal another remarkable feature:
the central part of profiles is independent of ", while the
ballistic humps move as " increases [see Fig. 4(c)]. Such
behavior can be derived from the scaling invariance (3).

Taking into account that K / �1�1=�
0 v0, one can infer that

the central part of the LW propagator is invariant under

variation of v0 when �0 / v�=ð1��Þ
0 .

In conclusion, we demonstrated that the collective pro-
cess of perturbation spreading across two celebrated many-
particle systems, a hard-point gas and a Fermi-Pasta-Ulam
lattice, is reproduced by a single-particle stochastic process.
It is intuitive that an ergodic dynamics is a prerequisite
for the diffusionlike perturbation evolution. In integrable
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FIG. 3 (color online). (a) Rescaled perturbation profiles at
times t ¼ 1000, 2000, 4000, and 6000 (the width increases
with time), for the hard-point gas dynamics with the energy
per particle � ¼ 1. The scaling exponent is � ¼ 5=3. The inset,
similar to the inset in Fig. 2, depicts the ballistic humps after the
scaling transformation (5). (b) Profiles after the scaling trans-

formation (8) for different energy per particle, �, at time t ¼
1500=

ffiffiffiffiffiffiffiffiffiffi
�=�0

p
, with �0 ¼ 1. Each profile is obtained by averaging

over 106 realizations.

PRL 106, 180601 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
6 MAY 2011

180601-3



many-body systems, such as a harmonic chain or the Toda
lattice [31], the perturbation spreading is a deterministic
process, evolving in terms of noninteracting phonons. The
task of exploring the sufficient conditions for the CTRW
kinetics to occur presents a promising challenge, thereby
underpinning the universality of our findings. Thus our
results disclose a pathway to explore propagation of infor-
mation in realistic dissipation-free systems: it allows us to
calibrate the transport characteristics of many-body sys-
tems (which are beyond the region of validity of the clas-
sical Lieb-Robinson theory [11]) by using the parameters of
the corresponding random walk process.

Apart from those theoretical challenges, there is room
for possible applications. A realization that comes to mind
is an array of coupled nanoresonators [32], where a single
unit acts as both the receiver and transducer of excitations,
which transforms this array into an extended sensor via
utilizing the principle of time-of-arrival localization [33].

This work has been supported by the DFG Grants
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