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Modeling a self-propelled autochemotactic walker
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We develop a minimal model for the stochastic dynamics of microorganisms where individuals communicate
via autochemotaxis. This means that microorganisms, such as bacteria, amoebae, or cells, follow the gradient
of a chemical that they produce themselves to attract or repel each other. A microorganism is represented as a
self-propelled particle or walker with constant speed while its velocity direction diffuses on the unit circle. We
study the autochemotactic response of a single self-propelled walker whose dynamics is non-Markovian. We
show that its long-time dynamics is always diffusive by deriving analytic expressions for its diffusion coefficient
in the weak- and strong-coupling case. We confirm our findings by numerical simulations.
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I. INTRODUCTION

The motion of biological organisms ranging from the
microscopic world of bacteria to larger cells up to social
insects represents an interesting area of current research
where the interdisciplinary link between biology and statistical
physics manifests itself. In this article we propose a model for
microorganisms whose motion is governed by chemotactic
signaling [1]. Unlike a diffusion process that is characterized
by unbiased movement, chemotaxis results in a directed flow
of particles (“taxis”) to spatial regions of higher or lower
concentration of a chemical [2–4]. The first case is called
positive chemotaxis due to a chemoattractant and the latter
negative chemotaxis due to a chemorepellent. To be more
precise, chemotaxis denotes the ability of a microorganism
to orient its velocity direction along the chemical’s gradient
[4]. Chemotaxis is ubiquitous in systems of bacteria and
eukaryotic cells: Wound healing in the human body is enabled
by the directed motion of granulocytes to the region of injury,
chemotaxis makes sperm cells find their way to the ovum,
and almost all kinds of animals can smell and detect food
sources [4]. If the chemical is produced by the microor-
ganisms themselves, the system exhibits “autochemotaxis,”
which serves as a possible mechanism for communication
between them. Two preeminent and well-studied examples
showing autochemotaxis are the social amoeba Dictyostelium
discoideum as well as the intestinal bacterium Escherichia
coli [5,6].

An additional motivation to study chemotaxis is to describe
the clustering of bacteria into microcolonies, which contributes
to the early stage of biofilm formation [7,8]. There is a huge
scientific concern to understand biofilm characteristics, for
instance, in bacteriology, where the knowledge of bacterial
survival strategies seems essential to prevent the formation of
biofilms in clinical devices [9].

The first quantitative chemotaxis model by Keller and
Segel takes a continuum approach and has been variously
generalized [10–13]. One of the classical derivations of the
Keller-Segel model applies the framework of continuous-
time random walks [14]. A derivation of this type requires
assumptions for statistical properties on a microscopic level,
such as run length or velocity turning distributions. In contrast,
we explicitly describe the Langevin dynamics of individual

microorganisms. In our approach, the microorganisms are
considered as entities with constant speed, independent of
the chemical’s gradient or concentration itself. This fact
constitutes a major difference to the models in Refs. [15,16]
where the particles are not active per se as only the presence of
a concentration gradient induces a nonzero mean speed. In our
model, the particle speed represents an additional parameter
and chemotaxis only influences the velocity direction.

Due to the complexity of a nonequilibrium system consist-
ing of self-propelled microorganisms, one can only address a
few averaged macroscopic quantities of interest. Accordingly,
calculating the long-time diffusion coefficient of interacting or
self-propelled particles has been the key purpose of numerous
publications; see, for instance, Refs. [15–23].

The main goal of this article is to investigate the influence of
autochemotaxis on a particle’s long-time diffusion coefficient.
To obtain analytical results, we restrict ourselves to the study
of a single particle. In contrast to several approaches using
perturbation theory [15,18], our results also hold for strong
chemotactic interactions. In the case of positive autochemo-
taxis, it is clear that the particle will be attracted to recently
explored regions where it has emitted chemoattractant. As a
consequence the particle’s motion will be restricted in com-
parison to a freely diffusing nonchemotactic microorganism.
So the question arises whether the particle will eventually be
trapped, in the sense that the long-time diffusion coefficient
vanishes, as is the case in a two-dimensional model by Tsori
and de Gennes [24], or whether the motion becomes diffusive
in the long-time limit where the mean-squared displacement
grows linearly in time [16,19,25]. Note that recent experi-
mental results also inspired the study of chemotaxis models
with anomalous subdiffusion and superdiffusion [26]. We
will show that in our model even for strong chemotactic
coupling the particle motion will be diffusive. We will derive
analytical expressions that approximate its long-time diffusion
coefficient.

This article is organized as follows. In Sec. II A we
introduce in detail our model for the dynamics of self-propelled
chemotactic microorganisms and illustrate it for the special
case of a constant external chemotactic field in Sec. II B.
The autochemotactic field is modeled in Sec. II C. A short
summary of pure rotational diffusion in absence of chemotactic
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interactions is presented in Sec. II D. Section II E shortly
generalizes our model to an ensemble of autochemotactic
walkers. In Sec. III we derive analytic expressions for the
long-time diffusion coefficient of a single walker and confirm
the findings numerically. Finally, we summarize our results in
Sec. IV and provide an outlook, where we describe possible
extensions of our model.

II. MODEL OF THE AUTOCHEMOTACTIC WALKER

A. Dynamic equation for the velocity direction

We model the time evolution of single trajectories of
microorganisms that only move in two dimensions. The
two-dimensional approach is justified because, aside from
swimming, various forms of bacterial motility occur on sur-
faces [27]. The stochasticity in the motion of microorganisms
is apparent [28]. An effective description therefore includes
random forces and torques. Contributions to the stochastic
terms originate from biochemical processes within a cell, e.g.,
when a cell detects and reacts to a chemical field, as well as
from stochastic interactions of the microorganisms with their
environment. An example of the latter is ordinary thermal
noise, which leads to Brownian motion of a micron-sized
colloid and originates from collisions with the much smaller
fluid particles. However, in our case we cannot assume the
fluctuation-dissipation theorem for the noise [29]. Note that
our model particles should not be considered as swimming
microorganisms since they move on a surface. Nevertheless,
including details of the propulsion mechanism lies beyond the
scope of our coarse-grained approach.

In two dimensions we write the velocity vector v(t) of
a bacterium at time t in polar coordinates, specified by the
absolute value, the speed v(t) � 0, and the angle ϕ(t) ∈
(−π,π ] relative to the x axis:

v(t) = v(t)

(
cos ϕ(t)
sin ϕ(t)

)
. (1)

Experiments have demonstrated for different kinds of cells
like granulocytes, monocytes, or fibroblasts that the functions
v(t) and ϕ(t) are independent of each other [30]. Though this
property has to be checked for each experimental setup, it
is reasonable to assume it [31]. In addition, we will make
the simplifying assumption that the speed v of our model
particle is constant. In contrast to the fast fluctuating stochastic
variable of the velocity direction, the speed is a slow stochastic
variable. As long as the microorganisms have a sufficiently
large energy supply that enables them to move there exists a
speed distribution with a pronounced mean [32–34]. In the case
of granulocytes this distribution was even found to be Gaussian
[30]. The motility of E. coli bacteria is determined by the
well-known “run-and-tumble” dynamics, i.e., the alternating
sequences of “run” and “tumbling” processes: During a “run”
the bacterium moves along a nearly straight line with almost
constant speed, whereas “tumbling” results in the random
reorientation of the velocity direction [35]. In summary, ex-
pressing the velocity vector in polar coordinates seems to be the
natural choice for describing the motion of microorganisms.
In contrast, most models for chemotactic bacteria have used
Cartesian velocity components [15,16,36,37].

In the following we derive the equation of motion for the
velocity direction of a single microorganism in response to
chemotaxis. The shape of our microorganism is arbitrary,
e.g., spherical or rodlike. However, the particle is polar and
possesses an intrinsic direction of motion that is characterized
by a unit vector e, e.g., parallel to its long axis. Furthermore,
we assume that the particle always moves along this direction,
so that v(t) = v e(t). Though this connection between velocity
direction and particle orientation seems rather evident for an
isolated microorganism, it is no longer valid in a suspension
of microorganisms as a consequence of hydrodynamic inter-
actions [38].

To account for chemotaxis, we introduce the potential

V (e) = −e · E. (2)

It aligns the velocity direction e with the chemotactic field
E that is detected at the surface of the microorganism
[39,40]. We will specify this chemotactic field in Sec. II C
as the concentration gradient of a chemical. In microfluidic
devices, the chemotactic field E is imposed externally [41,42].
For a wide range of bacterial strains the guiding field E is real-
ized by various stimuli. Whereas for chemotaxis the stimulus
is a chemical substance, galvanotaxis refers to electric fields,
phototaxis to light, and thermotaxis to temperature [4]. Hence,
in Eq. (2) E describes the guiding field for any kind of taxis.

Some microorganisms use a spatial sensing mechanism
to detect the gradient of a chemical field instantaneously
without performing a temporal average. It is primarily found
in eukaryotic cells but in bacteria as well [43,44]. By applying
the rotational operatorR ≡ e × ∂

∂e to the chemotactic potential
of Eq. (2) [45], one arrives at the chemotactic torque Mext =
−RV (e) = e × E that acts on the velocity direction e.

We now derive the dynamic equation for e(t) using
Newton’s equation of motion for the angular momentum L,

d

dt
L = −γR� + Mext + �(t), (3)

and the kinematic relation

d

dt
e = � × e, (4)

which connects the angular velocity � to e. In Eq. (3) we
have introduced a frictional torque −γR� where γR > 0 is
the rotational friction coefficient. The stochastic torque �(t) is
modeled as Gaussian white noise whose Cartesian components
are independent of each other. Its noise strength will be
specified below.

Similar to swimming microorganisms that move at low
Reynolds numbers, we will also work in the overdamped limit
and neglect inertial terms [46]. This corresponds to Aristotelian
dynamics where any motion immediately stops when forces
and torques are not applied. The dimensionless Reynolds
number Re compares inertial to viscous forces. Typical values
for swimming microorganisms in water are Re ≈ 10−5 − 10−4

for bacteria such as E. coli, Re ≈ 10−2 for human spermatozoa,
and up to Re ≈ 10−1 for larger microorganisms like ciliates
[46].

We therefore employ the Debye approximation [47], which
neglects the inertial term in Eq. (3). Taking the cross product
of Eq. (3) with e, eliminating � with Eq. (4), and using
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Mext × e = (e × E) × e = (1 − e ⊗ e) E, we arrive at a
Langevin equation with multiplicative noise, still valid in two
and three dimensions,

d

dt
e = 1

γR
(1 − e ⊗ e) E + 1

γR
�(t) × e, (5)

where 1 denotes the unit matrix and ⊗ specifies the dyadic
product. To formulate Eq. (5) in two dimensions, we
parametrize the unit vector e by e = (cos ϕ, sin ϕ,0)T and
let both Mext and �(t) = [0,0,�(t)]T point along the z axis.
We still have to choose an interpretation of the stochastic
differential equation (5) to give it a well-defined meaning
(see Refs. [48,49] for mathematical details). We employ
the Stratonovich interpretation since the Gaussian white
noise approximates real colored noise with finite correlation
time [48]. As a practical consequence, the common rules
of classical calculus apply. In particular, we have d

dt
e =

ϕ̇ (− sin ϕ, cos ϕ,0)T . With E = (Ex,Ey,0)T , Eq. (5) becomes(− sin ϕ

cos ϕ

)
ϕ̇ = 1

γR

(
sin2 ϕ Ex − sin ϕ cos ϕ Ey

− sin ϕ cos ϕ Ex + cos2 ϕ Ey

)

+ 1

γR
�(t)

(− sin ϕ

cos ϕ

)
, (6)

from which a single Langevin equation for ϕ(t) is immediately
extracted. It only has additive noise due to the restriction to two
dimensions. We assume that the mean of our Gaussian white
noise is zero. Then we are able to write �(t) = γR

√
2qϕ �̃(t),

where the positive constant qϕ is the noise strength, and
the scaled noise �̃(t) has the properties that 〈�̃(t)〉 = 0 and
〈�̃(t)�̃(t ′)〉 = δ(t − t ′). Dropping again the tilde sign, we end
up with

d

dt
ϕ(t) = −Ex

γR
sin ϕ(t) + Ey

γR
cos ϕ(t) + √

2qϕ �(t). (7)

The chemotactic field E is a space- and time-dependent
function. In particular, it depends on the position r(t) =
[x(t),y(t)]T of the autochemotactic walker, which is deter-
mined by integrating d

dt
r(t) = v(t) = ve(t). We emphasize

that the Langevin equation (7) consists of a deterministic part,
which tries to align e(t) parallel to the chemotactic field,
and a stochastic part, which causes rotational diffusion of
the velocity direction. In Sec. II D some properties of pure
rotational diffusion will be summarized by setting E = 0.

Note that the deterministic part of Eq. (7) can also be
derived by formulating the Euler-Lagrange equation for ϕ(t)
with the potential from Eq. (2) and the Rayleigh dissipation
function W = 1

2γRϕ̇2 [50]. In Ref. [51] Gruler and Franke have
introduced a model with a more general potential V (e,E).
Our potential is the leading term in a Fourier expansion,
linear in E.

B. Constant chemotactic field

To get familiar with Eq. (7), we first consider the special
case of a constant field E in the absence of noise (qϕ = 0). A
constant chemotactic field can be realized with microfluidic
techniques [41]. With E = Eex (E > 0), Eq. (7) reads

d

dt
ϕ(t) = − E

γR
sin ϕ(t), (8)
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FIG. 1. (Color online) Plot in arbitrary units of three deterministic
trajectories in the constant chemotactic field E = Eex according to
Eq. (10). All particles have starting point r0 = (0,0), speed v = 1,
and move during the time interval t ∈ [0,10].

which we solve by separation of variables,

ϕ(t) = 2 arctan[tan(ϕ0/2) e−t/τ ], (9)

with τ = γR/E. The walker starts with an angle ϕ0 at t = 0.
Its velocity direction relaxes toward the x axis and aligns
along E during the characteristic time τ . Remarkably, using
Eq. (9) in d

dt
r(t) = ve(t), one can determine the full trajectory

analytically:

x(t) = x0 + vt + vτ ln

[
1 + tan2(ϕ0/2)e−2t/τ

1 + tan2(ϕ0/2)

]
,

y(t) = y0 + 2vτ

{
arctan

[
et/τ

tan(ϕ0/2)

]

− arctan

[
1

tan(ϕ0/2)

]}
. (10)

This result confirms that in the long-time limit t 	 τ the par-
ticle walks in x direction with speed v while it asymptotically
reaches a constant y coordinate. Three trajectories for different
initial angles ϕ0 and relaxational times τ are presented in
Fig. 1.

For completeness, we briefly discuss the consequences
of the noise term

√
2qϕ �(t) added to Eq. (8) [52]. For

the resulting Langevin equation, we formulate the associated
Fokker-Planck equation for the probability density function
P = P (ϕ,t) [29]:

∂P

∂t
= 1

τ

∂

∂ϕ
(P sin ϕ) + qϕ

∂2

∂ϕ2
P . (11)

In the long-time limit, P (ϕ,t) relaxes toward the stationary
solution [29]

Pstat(ϕ) =
exp

(
1

qϕτ
cos ϕ

)
2πI0

(
1

qϕτ

) , (12)

where the modified Bessel function of first kind I0 has entered
as a normalization factor. Pstat(ϕ) is the von Mises distribution
and is also known as the circular normal distribution. It is
reminiscent of the Boltzmann distribution of dipoles in an
external field in thermal equilibrium. Pstat(ϕ) is symmetric
around the origin with maximum at ϕ = 0 and decays to a
finite value for ϕ → ±π as shown in Fig. 2. We quantify the
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FIG. 2. (Color online) Stationary probability distribution for
different chemotactic fields according to Eq. (12). For E ∝ τ−1 = 0,
the distribution is constant. The inset shows the order parameter
〈cos ϕ〉 as a function of 1/(qϕτ ).

average alignment of the walker along the chemotactic field
by the order parameter

〈cos ϕ〉 =
∫ +π

−π

dϕ Pstat(ϕ) cos ϕ =
I1

(
1

qϕτ

)
I0

(
1

qϕτ

) , (13)

where I1 denotes the modified Bessel function of first kind. For
strong chemotactic fields or weak noise, τ � 1/qϕ , the order
parameter approaches one (inset of Fig. 2), and the velocity
vector is completely oriented parallel to the external field.
For a small chemotactic field, τ 	 1/qϕ , the order parameter
increases linearly in 1/(qϕτ ). The average drift velocity
becomes vdrift = v 〈cos ϕ〉 ex , which vanishes for E = 0 due
to the rotational diffusion of the walker.

C. Chemotactic field of the autochemotactic walker

Next, we model the chemotactic field, which is self-
consistently generated by the walker itself. The walker or
bacterium secretes a chemical substance with a constant
production rate h. We assume that the chemical spreads
through the environment by classical diffusion, with diffusion
constant Dc. Due to enzymatic activity in the environment, the
chemical also decays with a rate k, which we assume constant
for simplicity. The concentration field of the chemical thus
obeys the reaction diffusion equation

∂

∂t
c(r,t) = Dc∇2c − kc + hρ, (14)

where ρ(r,t) = δ[r − ra(t)] is the density of the walker with
trajectory ra(t) and ∇2 is the Laplacian in two dimensions.

Assuming that the walker starts to produce the chemical at
t = 0, the solution of Eq. (14) is the Green function integrated
over all positions ra(t ′) of the walker:

c(r,t) = h

4πDc

∫ t

0
dt ′

e−k(t−t ′)

t − t ′
exp

(
− [r − ra(t ′)]2

4Dc(t − t ′)

)
. (15)

This result reveals the non-Markovian character of our system
since the concentration at time t is influenced by the walker’s
position at times t ′ < t . The numerical evaluation of the inte-
gral is, however, facilitated as the exponential decay admits to

reduce the integration range to times t ′ with k(t − t ′) � 1. We
note that Eq. (14) was already suggested in the basic version
of the Keller-Segel model (with a continuous density ρ). It is
also found in recent chemotaxis models [15,19,37,53,54].

The chemotactic field is now proportional to the gradient
of the chemical:

E(r,t) = κ(c) ∇c(r,t). (16)

The chemotactic factor or chemotactic sensitivity κ(c) de-
termines the coupling strength, and its sign enables one to
distinguish between positive (attractive) and negative (re-
pulsive) chemotaxis. For κ(c) a plethora of possible forms
has been proposed [13]. Prominent examples that confine
the chemotactic field for increasing concentration are the
“logarithmic response” κ(c) = A/c or the “receptor law”
κ(c) = A/(B + c)2 with positive constants A, B. In this
publication, we consider the simplest case of a constant
coupling strength κ(c) = κ . The chemotactic field entering
the Langevin equation (7) for the walker’s velocity direction
is therefore given by E(r,t) = κ∇c(r,t), evaluated at the
walker’s position ra(t).

The integrand in Eq. (15) diverges at the upper bound.
Therefore we introduce a regularization time τdel > 0 such
that the upper bound changes to t − τdel [16]. One can justify
τdel as the delay time before the microorganism starts to feel
the chemical. In our numerical simulations, we do not regard
τdel as a relevant parameter of our model and set it to the
value of the time step. Finally, we point out that there are
other alternatives to circumvent the introduction of τdel when
evaluating the concentration c(ra(t),t) at the cell’s position,
for instance, by taking the finite size of the cell into account.1

D. Pure rotational diffusion

In the absence of a chemotactic field, the walker performs
pure rotational diffusion:

d

dt
ϕ(t) = √

2qϕ �(t). (17)

With help of the corresponding diffusion equation for the
angular probability density, ∂tp = qϕ∂2

ϕp, one calculates the
directional correlation function [45]

〈e(t) · e(t ′)〉 = e−qϕ |t−t ′ |. (18)

On the time scale τrot = q−1
ϕ , directional correlations decay

to zero. In contrast, for |t − t ′| � τrot the random walker is
persistent and moves into the same direction for a persistence
length sper = vτrot. For constant speed v, the mean-squared
displacement yields (see, e.g., Ref. [31])

〈[ra(t) − ra(0)]2〉 = 2v2

q2
ϕ

(qϕt − 1 + e−qϕt ), (19)

from which we extract the diffusion coefficient

D = lim
t→∞

〈[ra(t) − ra(0)]2〉
4t

= v2

2qϕ

. (20)

1One could represent the cell’s observed concentration by the
convolution of c(r,t) with a Gaussian filter whose width is comparable
to the cell size.
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A Taylor expansion of Eq. (19) for qϕt � 1 gives the ballistic
motion for small times.

E. Generalization to an ensemble of autochemotactic walkers

The model introduced so far can easily be generalized to
many autochemotactic walkers. In a system of m individuals,
the ith walker is characterized by its velocity direction ei(t) =
[cos ϕi(t), sin ϕi(t)]T and position ri(t) that is obtained by
integrating d

dt
ri(t) = vi(t) = vei(t). The angle ϕi(t) obeys

the Langevin equation (7), where the Gaussian white noise
�i(t) of different particles is uncorrelated, 〈�i(t)�j (t ′)〉 =
δij δ(t − t ′). The chemotactic field E(r,t) = κ∇c(r,t) mediates
an interaction between the walkers. It is determined from
the reaction diffusion equation (14) using the particle density
ρ(r,t) = ∑m

i=1 δ[r − ri(t)]. As all microorganisms contribute
to the production of the chemical, our model of autochemotaxis
introduces a communication mechanism or signaling between
the cells [1]. In the case of attractive autochemotaxis, cluster
formation can be observed [55].

III. LONG-TIME DIFFUSION COEFFICIENT
OF THE AUTOCHEMOTACTIC WALKER

In the following we consider a single autochemotactic
walker that moves in its self-generated cloud of chemical. Even
for this one-particle problem the non-Markovian property does
not allow a full analytic treatment. We can, however, find an
analytic expression for the walker’s mean-squared displace-
ment for large times, and thereby extract the effective diffusion
coefficient Deff . We will calculate Deff analytically for weak
(Sec. III A) and strong (Sec. III B) chemotactic coupling and
then compare to numerical simulations in Sec. III C.

A. Weak chemotactic coupling

In the following, we perform an approximate treatment of
the chemotactic walker, for which we will show at the end that
it is only valid for sufficiently small chemotactic coupling. Our
treatment is motivated by the work of Grima in Ref. [19]. After
substituting t − t ′ = ut , the gradient of Eq. (15), evaluated at
the walker’s position ra(t), reads

∇c(ra(t),t) = − h

8πD2
c

1

t

∫ 1

τdel/t

du
ra(t) − ra(t − ut)

u2

× exp

(
− [ra(t) − ra(t − ut)]2

4Dctu
− ktu

)
.

(21)

This expression cannot be evaluated in general. However, as we
are interested in the mean-squared displacement for large times
t 	 1/k, we perform an asymptotic analysis with kt 	 1.
The integral in Eq. (21) is then dominated by the exponential
function calculated at u � 1. With the Taylor expansion up to
second order in u,

ra(t) − ra(t − ut) = ut ṙa(t) − (ut)2

2
r̈a(t) + O(u3), (22)

we calculate

[ra(t) − ra(t − ut)]2 = (vut)2 + O(u4). (23)

Here we used ṙa = ve, e2 = 1, and ṙa · r̈a = v2e · ė = 0. In
contrast to Grima’s model in Ref. [19], we will need the
second-order term in Eq. (22) for further analysis. We use
Eqs. (22) and (23) to expand ∇c(ra(t),t) from Eq. (21) up to
second order in u and derive from Eq. (7) a Langevin equation
for the velocity direction, valid at large times,

d

dt
ϕ(t) =

√
2qeff

ϕ �(t) (24)

with

qeff
ϕ = qϕ/fch, fch =

(
1 − κhv exp(−ζ τdel)

16πγRD2
c ζ

)2

(25)

and ζ = v2/(4Dc) + k. Details of the derivation are presented
in Appendix A. Equation (24) shows that in the long-time
limit the particle performs diffusive motion with the effective
diffusion coefficient

Deff = v2

2qeff
ϕ

= v2

2qϕ

fch. (26)

Note that even in the limit for vanishing delay time τdel → 0
the expression for Deff remains finite.

In Sec. III C we will present numerical investigations in
unitless quantities by using characteristic quantities of the
diffusing chemical. We rescale time by the inverse decay
rate, tc = 1/k, and length by lc = √

Dc/k, the distance
the chemical diffuses during its lifetime tc. Our rescaled
model then contains three essential parameters: The effective
chemotaxis strength

� = hκ
t2
c

γRl3
c

(27)

is proportional to coupling constant κ and production rate h,
the noise strength q̃ϕ = qϕtc, and the speed of the walker ṽ =
vtc/ lc. In addition, the rescaled delay time is τ̃del = τdel/tc.
The diffusion coefficient D̃eff = ṽ2/(2q̃eff

ϕ ) is measured in
units of the chemical’s diffusion coefficient Dc = l2

c t−1
c . In the

following, we will drop all the tilde signs to ease the notation.
Then the rescaled diffusion coefficient from Eq. (26) becomes

Deff = v2

2qϕ

(
1 − �

16π

v

1 + v2/4
e−(1+v2/4)τdel

)2

. (28)

For large delay times τdel 	 1, the diffusion coefficient
(28) equals the free diffusion coefficient D = v2

2qϕ
, since the

chemical has already decayed to zero before the walker reacts
on it. Also, for v 	 1, we find Deff = D, since the particle
moves faster than the diffusive spread of its own chemotactic
field.

In the case of large attractive or repulsive chemotactic
coupling, Eq. (28) predicts a quadratic scaling Deff ∝ |�|2. For
negative autochemotaxis this result is conceivable, whereas it
is obviously wrong for attractive chemotaxis since a strong
attraction of the particle by its own secretion should reduce the
diffusion coefficient. We therefore have to restrict the validity
of Eq. (28) to � < �0, where

�0 = 16π
1 + v2/4

v
e(1+v2/4)τdel (29)
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is the coupling constant with Deff = 0. Indeed, for 0 < � <

�0, Deff decreases with increasing �, as expected. The validity
of Eq. (28) breaks down for large � since in Eqs. (22) and
(23) we neglected higher-order terms in u when calculating
the chemotactic field. This will become clearer in the next
subsection.

B. Strong chemotactic coupling

To treat the case of strong chemotactic coupling, we rewrite
the Langevin equation (7) as

d

dt
ϕ(t) = (t) + √

2qϕ �(t), (30)

where the time-dependent frequency or angular drift velocity
(t) is given by

(t) = −Ex(ra(t),t)

γR
sin ϕ(t) + Ey(ra(t),t)

γR
cos ϕ(t). (31)

We now consider a sufficiently strong attractive chemotactic
field and neglect noise for a moment. The walker emits
the chemical and thereby creates a concentration gradient
opposite to the direction of motion, with which the walker
always tries to align. Hence for strong positive chemotaxis, we
expect circular trajectories with a constant circling frequency
(t) = ω. This scenario is confirmed as the trajectory on the
left of Fig. 3 demonstrates. One might have expected that for
strong chemotactic coupling the walker rests in the center of a
stationary concentration profile. However, this is not possible
since the self-propelled particle always moves with constant
speed.

In the following we calculate the circling frequency ω self-
consistently for qϕ = 0. We describe the circular trajectory of
the walker around the origin by

ra(t) = r0

(
sin ωt

− cos ωt

)
, (32)

q 0
q 0.005

0.13 0.12 0.11 0.10 0.09 0.08 0.07
0.40

0.41

0.42

0.43

0.44

x

y

4000 v 0.05 τdel 0.008

FIG. 3. (Color online) Trajectories for strong attractive chemo-
taxis simulated with the full model of Eq. (7) or (30). Left:
Deterministic motion (qϕ = 0) toward a limit cycle (shown as circle
in bold line). Right: With noise (qϕ = 0.005) the circular motion is
perturbed and the circle’s center diffuses.

where r0 is the radius and positive or negative ω leads to
anticlockwise or clockwise circling, respectively. The velocity
reads

v(t) = ṙa(t) = v

(
cos ϕ(t)
sin ϕ(t)

)
, (33)

with

ϕ(t) = ωt and v = r0ω, (34)

consistent with our model. After substituting Eq. (32) into the
chemotactic field E = E(ra(t),t) = κ ∇c(ra(t),t) with c from
Eq. (15) and using some trigonometric identities, we obtain

E = − κhr0

4πD2
c

∫ t−τdel

0
dt ′

e−k(t−t ′)

(t − t ′)2
sin

[
ω

2
(t − t ′)

]

×
(

cos[ω
2 (t + t ′)]

sin[ ω
2 (t + t ′)]

)
exp

(
− r2

0 sin2
[

ω
2 (t − t ′)

]
Dc(t − t ′)

)
. (35)

Then we insert Eq. (35) into Eq. (31), set (t) = ω, and
employ Eq. (34). We introduce again our reduced variables, in
particular the effective chemotactic coupling strength �, and
after substituting t − t ′ by ut we arrive at

1 = �v

4πω2

∫ 1

τdel/t

du
1

t

e−tu

u2
sin2

(
ωt

2
u

)

× exp

[
− v2

ω2

sin2
(

ωt
2 u

)
tu

]
. (36)

This is an implicit equation for the unknown circling frequency
ω valid at large times. Note that at short times the particle has
not yet reached the circling motion. It is possible to solve
Eq. (36) numerically for ω = ω(�,v,τdel; t). For t → ∞ we
can also calculate the integral in Eq. (36) analytically since the
exponential in the second line becomes one, the lower bound
of the integral tends to zero, and the upper bound can be set to
infinity due to e−tu. Evaluating the resulting integral yields

1 ≈ �v

4πω2

[
ω

2
arctan ω − 1

4
ln(1 + ω2)

]
, (37)

independent of the delay time τdel. From Eq. (37) we derive a
necessary condition for a solution ω to exist:2

� � 16π

v
, (38)

which we confirm by simulations in Sec. III C. Comparing this
lower bound for � to Eq. (29) shows that the range of validity
is complementary to the case of weak coupling.

We now include noise of strength qϕ in Eq. (30). As the
trajectory on the right of Fig. 3 demonstrates, this perturbs the

2A solution ω satisfies 4π

�v
ω2 = ω

2 arctan ω − 1
4 ln(1 + ω2). For

large ω, the dominant term of the right-hand side behaves as ∝ π

2 ω −
1
2 ln ω. The leading term is thus linear in ω and therefore the function
ω

2 arctan ω − 1
4 ln(1 + ω2) lies below the parabola 4π

�v
ω2 on the

left-hand side. For a solution to exist, both functions have to intersect,
and for small ω the relation 4π

�v
ω2 < ω

2 arctan ω − 1
4 ln(1 + ω2) has

to be fulfilled. With the Taylor expansion ω2

4 for the right-hand side,
we obtain 4π

�v
< 1

4 .
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FIG. 4. (Color online) Mean-squared displacement (MSD) of
a circling particle with noise according to Eq. (40) for different
frequencies ω. Speed v and noise strength q are fixed.

perfect circular motion of the walker. Since ϕ(t) but also the
chemotactic field E(ra(t),t) become fluctuating quantities, the
angular drift velocity in Eq. (31) also fluctuates around ω:
(t) = ω + δω(t). In Sec. III C we will demonstrate that the
fluctuations δω(t) are Gaussian distributed so that we can
replace them by an additional noise strength qω. We therefore
generalize d

dt
ϕ(t) = ω by adding Gaussian white noise of

strength q = qϕ + qω:

d

dt
ϕ(t) = ω +

√
2q �(t). (39)

In Appendix B we calculate the mean-squared displacement
(MSD) using Eq. (39):

〈[ra(t) − ra(0)]2〉
= 2v2qt

q2 + ω2
− 2v2(q2 − ω2)

(q2 + ω2)2
+ 2v2e−qt

(q2 + ω2)2

×[(q2 − ω2) cos(ωt) − 2qω sin(ωt)]. (40)

Figure 4 shows a double-logarithmic plot of the MSD. Initially,
the walker moves ballistically, and then the MSD starts to
oscillate when the walker performs its full circular motion.

TABLE I. Characteristic parameters in real units for E. coli and
Dicty [58–61]. Chemoattractants of E. coli are sugars or amino acids,
their decay rate k is estimated. The chemoattractant of Dicty, cAMP,
is degraded by phosphodiesterase (PDE). The directional correlation
time τrot of E. coli is adjusted such that it gives the measured diffusion
coefficient D = v2/(2qϕ). It equals the duration of three run-and-
tumble events. Other values are calculated from sper = v/qϕ and
lc = √

Dc/k.

size [μm] v [μm/s] τrot = q−1
ϕ [s] D [m2/s]

E. coli 1 . . . 2 20 3.3 6.6 × 10−10

Dicty 8 . . . 12 0.1 500 2.5 × 10−12

sper [μm] Dc [m2/s] D/Dc k [1/s] lc [μm] sper/lc

66 10−9 0.66 10 10 6.6
50 3 × 10−10 0.01 0.09 67 0.7

t2
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1 10 100 1000 104
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time
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v 0.05 q 0.005 τdel 0.008

FIG. 5. (Color online) MSD as a function of time for different
effective chemotaxis strengths � obtained by simulating the full
model of Eq. (7). Negative � correspond to repulsive chemotaxis;
positive � are due to a chemoattractant.

This is confirmed by taking the short-time limit of Eq. (40)
for ω 	 q at t � q−1: 〈[ra(t) − ra(0)]2〉 ≈ 4v2

ω2 [sin2(ω
2 t) +

qt cos2(ω
2 t)]. Finally, at large times, the walker diffuses with

an effective diffusion coefficient

Deff = Deff(q,ω) = v2

2q

1

1 + (
ω
q

)2 . (41)

It is written as a product of the free diffusion coefficient and the
Cauchy-Lorentz function with variable ω/q. For fixed q, Deff

is maximal for ω = 0, i.e., in the absence of any circling. For
given ω, the maximal diffusion coefficient is at q = |ω|. So,
the diffusion coefficient, as the system’s response to noise, is
maximal for a nonzero q. This resembles stochastic resonance,
where a weak signal is amplified by noise of certain strength.

C. Comparison of analytical and numerical results

To check our predictions, we perform simulations of the
full model in Eq. (7) in reduced units by averaging over
at least 1000 different realizations of noise for each set of
parameters. In Table I we list typical experimental or estimated
values for the parameters of the paradigmatic organisms
E. coli and Dictyostelium discoideum (Dicty). We adjust our
reduced parameters introduced in Sec. III A to agree with these
experimental values. In particular, we choose v = 0.05 and
qϕ = 0.005, which yields the free diffusion coefficient D =
v2/(2qϕ) = 0.25 and the persistence length sper = v/qϕ = 10.

In Fig. 5 we plot the MSD as a function of time without
chemoattractant (� = 0), as well as for attractive (� > 0) and
repulsive (� < 0) chemotaxis. For all values of � we observe
diffusive motion at large times, where the diffusion coefficient
decreases with increasing coupling strength. The lowest curve
in Fig. 5 reveals oscillations of the MSD3 reminiscent of Fig. 4.

Figure 6 plots the diffusion coefficient Deff versus the cou-
pling strength � for � < �0 ≈ 1014. The analytic expression

3The oscillations in the MSD for � = 4000 change abruptly since
at time t � 10 we change the time resolution of the graph.
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FIG. 6. (Color online) Diffusion coefficient as a function of
effective chemotaxis strength � for weak coupling. The points with
error bars are obtained by simulating the full model; the full line is
expression (28).

for Deff in Eq. (28) (full line in Fig. 6) agrees very well with the
simulated values. Note that at � ≈ −1000 Deff becomes one.
Since the massive microorganisms should diffuse slower than
the molecules of the chemical [3,56,57], this restricts repulsive
chemotaxis to � > −1000. We further checked our theory by
confirming that the directional correlation function of Eq. (18)
decays exponentially with the time constant 1/qeff

ϕ calculated
from the effective noise strength of Eq. (25).

For large chemotactic coupling we employ the theory of
Sec. III B, which according to Eq. (38) holds for � > 16π/v ≈
1005. Results from theory and simulations are compared in
Fig. 7. When we approximate the effective noise strength q

of our strong-coupling model by the original noise qϕ , the
diffusion coefficient Deff is clearly too small (dashed line in
Fig. 7). We already noted that with noise the angular drift
velocity (t) of the full model reformulated in Eqs. (30) and
(31) becomes a fluctuating quantity. We present the time evo-
lution of (t) in Fig. 8. Without noise, (t) readily converges
to a constant value that agrees well with the theoretical value
ω (dashed line in Fig. 8). With noise, (t) fluctuates around

q q
51

q q

5000 10 000 15 000 20 000

10 7

10 5

0.001

D
ef

f

v 0.05 q 0.005 τdel 0.008

FIG. 7. (Color online) Diffusion coefficient as a function of large
chemotaxis strength �. The dashed curve is the analytic expression
(41) with the effective noise strength q = qϕ . The full line belongs
to q = qϕ + 51/�. Data points are obtained by simulating the full
model.

8.0 8.5 9.0 9.5 10.0 10.5 11.0
0.0

0.2

0.4

0.6

0.8

1.0

p

q 0.005
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FIG. 8. (Color online) Angular drift velocity (t) for chemotactic
coupling � = 4000 as a function of time for qϕ = 0 (thick line).
With noise of strength qϕ = 0.005, (t) fluctuates. For comparison,
the dashed line indicates the self-consistently determined ω from
Eq. (37). The inset shows the distribution p() of (t) values. It is
well described by a Gaussian distribution (solid line).

a mean value close to ω. The distribution p() plotted as
inset in Fig. 8 identifies the angular drift velocity (t) as
Gaussian distributed. Thus the Gaussian distribution of the
original noise qϕ is inherited to the fluctuations of (t). In our
effective description of Eq. (39), we take them into account
by an additional noise strength qω and the total noise becomes
q = qϕ + qω. As Fig. 7 demonstrates, the diffusion coefficient
Deff of Eq. (41) shows a striking agreement with simulations,
when we choose

qω = qω(�) = c �−1, (42)

where c ≈ 51 is a fit parameter. So far, we were not able to
rigorously justify Eq. (42).

We add two remarks. First, at � = 2000 qω ≈ 0.026
exceeds the original noise strength qϕ = 0.005 by a factor
of 5 and therefore determines the total noise q. Second, Deff

increases with increasing noise q since in Eq. (41) we evaluate
Deff at ω 	 qϕ .

1 10 100
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1 10 4
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4000 v 0.05 q 0.005 τdel 0.008

FIG. 9. (Color online) MSD for strong chemotactic coupling � =
4000. The solid line is obtained numerically from simulations of the
full model of Eq. (7), and the dashed curve corresponds to Eq. (40)
with noise strength q = qϕ + 51/�.

041924-8



MODELLING A SELF-PROPELLED AUTOCHEMOTACTIC WALKER PHYSICAL REVIEW E 84, 041924 (2011)

Finally, to further confirm our analytical strong coupling
theory, we compare in Fig. 9 the MSD simulated by the
full model of Eq. (7) with the analytical expression (40). To
obtain the ensemble average for the simulated MSD, we
disregarded the initial parts of the trajectories which had not
reached the stochastic limit cycle. Both curves in Fig. 9 show
the high-frequency oscillations of the MSD at small times and
the diffusive limit at large times.

IV. SUMMARY

Our model describes the dynamics of self-propelled
microorganisms that show chemotactic response to a
chemical substrate, which is produced by the microorganisms
themselves to attract or repel each other. Each particle moves
with constant speed on a surface while its velocity direction
diffuses and tends to align along the concentration gradient of
the chemical.

Here we concentrated on the analysis of a single autochemo-
tactic walker, which reacts to its own secreted chemical.
We analyzed how the chemotactic coupling determines the
long-time diffusive dynamics. Our main goal was to derive
analytical expressions for the diffusion coefficient and to
confirm their validity by simulations. In particular, we showed
that adjusting the effective chemotaxis strength � enables to
alter the diffusion coefficient by several orders of magnitude.
In nature, a variation in � might arise from environmental
influences that change the production rate of the chemical
or directly the chemotactic coupling κ . Since we can adjust
the speed v and diffusion coefficient Deff independently,
we expect our model to be applicable to a large variety of
microorganisms.

Whereas for weak chemotactic coupling, the walker’s
velocity direction diffuses with a modified noise strength
(Sec. III A), the dynamics for strong coupling corresponds
to rotational diffusion with an additional angular drift velocity
(Sec. III B). However, a rigorous calculation of the effective
noise in the second case could not be achieved.

For attractive autochemotaxis, our model describes the
formation of particle clusters and thus represents a com-
munication mechanism between microorganisms, as it is,
for instance, required for bacterial colonization or biofilm
formation. To make the model more realistic, we plan to
incorporate repulsive interactions between individual walkers
and to study the dynamics of particle collisions and cluster
formation [55].
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APPENDIX A: DERIVATION OF THE LANGEVIN
EQUATION FOR WEAK CHEMOTACTIC COUPLING

In the case of weak chemotactic coupling treated in
Sec. III A, the particle motion is effectively described by the

Langevin equation (24) for rotational diffusion with modified
noise strength. Here we present details of the derivation.

Using ζ = v2/(4Dc) + k the exponential in the expression
of the chemical’s gradient (21) is written as exp[−ζut +
O(u3)]. Up to second order in u, Eq. (21) therefore becomes

∇c(ra(t),t) =
(

− h

8πD2
c

∫ 1

τdel/t

du
e−ζut

u

)
ṙa(t)

+
(

h

16πD2
c

t

∫ 1

τdel/t

du e−ζut

)
r̈a(t), (A1)

so the concentration gradient at position ra(t) is proportional
to the velocity ṙa(t) and the acceleration r̈a(t) of the particle.
To proceed, we only need to take into account the integral in
the second term. Due to kt 	 1 we also have ζ t 	 1 and
thus approximate t

∫ 1
τdel/t

du exp (−ζut) ≈ exp (−ζ τdel) /ζ .
Altogether we have

∇c(ra(t),t) = [· · ·] v e(t) + h

16πD2
c

e−ζ τdel

ζ
v ė(t). (A2)

Now we insert the chemotactic force E(ra(t),t) =
κ∇c(ra(t),t) into Eq. (5) for the unit vector:

de
dt

= 1

γR
(1 − e ⊗ e)

[
[· · ·] e(t) + κ

hve−ζ τdel

16πD2
c ζ

ė(t)

]
+ “noise term.” (A3)

Using the fact that (1 − e ⊗ e) is a projection operator onto the
space perpendicular to e and the property e⊥ė only the second
summand in Eq. (A3) contributes. As it is proportional to ė(t)
we can write the equation of motion as(

1 − κ

γR

hve−ζ τdel

16πD2
c ζ

)
d

dt
e(t) = “noise term.” (A4)

By rewriting Eq. (A4) in terms of the angle we obtain the
Langevin equation given by expression (24).

APPENDIX B: CALCULATION OF THE MSD
FOR ROTATIONAL DIFFUSION WITH CONSTANT

ANGULAR DRIFT

The aim of the subsequent calculation is to work out
an expression for the MSD 〈[ra(t) − ra(0)]2〉 of a particle
whose velocity direction satisfies Langevin equation (39) for
rotational diffusion with constant drift. Let us first compute the
correlation function for the velocity direction 〈e(t) · e(0)〉 =
〈cos[ϕ(t) − ϕ(0)]〉. The formal solution of Eq. (39) with initial
condition ϕ(t = 0) = ϕ(0) is given by ϕ(t) = ϕ(0) + ωt +√

2q
∫ t

0 dt ′ �(t ′). It follows that

〈e(t) · e(0)〉 = cos(ωt)

〈
cos

[√
2q

∫ t

0
dt ′ �(t ′)

]〉

− sin(ωt)

〈
sin

[√
2q

∫ t

0
dt ′ �(t ′)

]〉
. (B1)

For noise �(t) that is a stationary process with Gaussian
distribution and zero mean value, the following relationship
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holds [29]:

〈
exp

[
a

∫ t

0
dt ′ �(t ′)

]〉

= exp

[
a2

2

∫ t

0
dt ′

∫ t

0
dt ′′ 〈�(t ′)�(t ′′)〉

]
. (B2)

Since 〈�(t ′)�(t ′′)〉 = δ(t ′ − t ′′), we can perform the double
integral and obtain by setting a = i

√
2q,

〈
exp

[
i
√

2q

∫ t

0
dt ′ �(t ′)

]〉
= exp (−qt) . (B3)

The imaginary part of (B3) is zero, so that Eq. (B1) becomes
〈e(t) · e(0)〉 = cos(ωt) e−qt . Rewritten for arbitrary times t , t ′,
one has

〈e(t) · e(t ′)〉 = cos(ω|t − t ′|) e−q|t−t ′ |. (B4)

Integrating the velocity direction vector provides the particle
position ra(t) = ra(0) + v

∫ t

0 dt ′ e(t ′) and the MSD is then
calculated as

〈[ra(t) − ra(0)]2〉 = v2
∫ t

0
dt ′

∫ t

0
dt ′′ 〈e(t ′) · e(t ′′)〉. (B5)

Performing the double integral in (B5) gives the final result
from Eq. (40).
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