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Abstract In the present paper the microscopic approach to random walk models is intro-
duced. For any particular model it provides a rigorous way to derive the transport equations
for the macroscopic density of walking particles. Although it is not more complicated than
the standard random walk framework it has virtually no limitations with respect to the initial
distribution of particles. As a consequence, the transport equations derived with this method
almost automatically give answers to such important problems as aging and two point prob-
ability distribution.

Keywords Continuous time random walk model · Aging · Two-point probability function ·
Coupled random walks

1 Introduction

Random walk models are known almost to any scientist independent of his field of research.
The random walk of drunk sailors is the microscopic model of the classical diffusion. The
continuous time random walks (CTRW) [1–4] extended our knowledge into the field of
anomalous diffusion, connected to the fractional diffusion equations (FDE) and generalized
the central limit theorem [5–7]. The fractional diffusion equations are now applied for de-
scription of a wide variety of phenomena in physics, biology and finance [8–12]. Usually
one uses them as the classical diffusion equation without getting into the details of their
derivation. However, when more delicate and particular questions require an answer, the
whole derivation of corresponding transport equations has to be done from the very begin-
ning. There are several types of such problems. The first one is the aging in anomalously
slow evolving subdiffusive systems. Its physical examples are glasses, granular and colloidal
systems, transport in random environments [13–18]. Several papers were devoted to the de-
tailed study of this process [19–23]. Another nontrivial and very recent work is related to the
analysis of the two-point probability distribution of random walks important for the analysis
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of the real experimental data. Multi-point correlation functions can be measured experi-
mentally and provide indispensable information on the underlying stochastic process which
could not be recovered from a single point data. Two independent methods were suggested
to address this problem [24, 25].

In this article we demonstrate that after the exact and general transport equation for a
random walk model is derived, the solution of the above mentioned problems of aging and
two-point distributions follows automatically. That gives a clear and complete understanding
of their nature.

The structure of the paper is as follows. We first introduce the standard continuous time
random walk model. On its basis we show how the macroscopic transport equations are de-
rived by using microscopic distributions. Then, these general transport equations are applied
to the problem of aging and the two-point probability distribution. We discuss the results in
the concluding section.

2 Standard CTRW Model

First we describe the standard CTRW [1–4] setup. Although the analysis below is one-
dimensional, its generalization to higher dimensions is quite straightforward. Consider a
particle or an ensemble of independent particles performing jumps which are alternated
by some waiting periods. The distribution of jump lengths is governed by the probability
density function g(x) and the distribution of waiting times by ψ(τ). We assume that the
waiting times are independent of the jump lengths (decoupled) and both are independent of
the particle’s position and current time. PDFs g and ψ characterize the random walk system
and determine its asymptotic properties. Our goal now is to derive the transport equation
for the macroscopic density of particles n(x, t). The time evolution is of course determined
by the initial distribution of particles. However, before defining the initial condition in the
most general form a short comment is necessary. Consider some point on a line where the
particles perform their random walk. At any given moment of time there are particles which
arrived at this point some time before. Note that for each particle this time can be different.
As a consequence, the time, when a particle leaves this point, is also different. Therefore,
the outgoing flow of particles from a given point in general can not be described just by
the total number of particles in this point. This observation motivates us to introduce the
microscopic distribution of particles with respect to the times they spent in a given point
until the observation time: N(x, t, τ ). The quantity N defines how many particles in the
point x at the moment of time t have arrived there time τ ago (i.e. at the time t − τ ). We
will also call the time τ the “life time” of the particle in a given point. The total number
of particles in the given point is obviously given by the integral of N over all possible life
times [26]:

n(x, t) =
∫ ∞

0
N(x, t, τ )dτ. (1)

Note the infinite limit of integration. If the system of particles was created at t = 0, the upper
limit should be set to the current observation time t . We, however, will keep the infinity for
the sake of generality. Now we are in a shape to define the most general initial condition
for the system of walking particles. Assume that when the observation is started (t = 0)
the particles have some distribution of life times N0(x, τ ). The corresponding macroscopic
initial condition is given by:
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n0(x) =
∫ ∞

0
N0(x, τ )dτ. (2)

This initial distribution could be artificially created or could be a result of the previous
evolution, for example. The simplest initial condition for the system created at t = 0 would
be N0(x, τ ) = n0(x)δ+(τ ). We continue, however, with a general form.

For the following computations we will need an expression for the survival probability,
i.e. the probability not to make a jump before the time t , �(t). It is easily expressed as:
�(t) = 1 − ∫ t

0 ψ(τ)dτ . We have already mentioned the flow of particles from a given point,
Q(x, t), which shows how many particles leave a certain point per unit of time. It was first
introduced in [26], and is given by the following conditional probability formula (probability
for a particle to jump away after a waiting time τ provided that it has survived this time in
the given point) [26, 27]:

Q(x, t) =
∫ ∞

0

N(x, t, τ )ψ(τ)

�(τ)
dτ. (3)

The crucial point here is that the outgoing flow of particles is not simply proportional to
the total number of particles in a given point. It depends on the microscopic distribution N .
The only exception is the exponential waiting time: ψ(τ) = (1/τ0)exp(−τ/τ0). In this case
ψ ∝ � . They just cancel out each over in the above integral and flow becomes proportional
to the number of particles.

By using the expression for the outgoing flow of particles, we can write down the bal-
ance equations. Before doing so, it is convenient to separate the microscopic density into
two parts. The first one, N1, represents particles which survived from the initial distribu-
tion N0(x, τ ) (for such particles τ ≥ t ). The second one, N2, is formed by the evolution of
random walks (for them τ < t ). By using again the conditional probability formula we can
write [28]

N1(x, t, τ ) = N0(x, τ − t)�(τ)

�(τ − t)
, τ ≥ t. (4)

For N2 we use the balance equation. All such particles were created as a result of outgoing
flow of particles from all other points in the past. This flow is weighted by the probability to
make a jump of a current length and by the probability to stay in a point after the arrival.

N2(x, t, τ ) =
∫ +∞

−∞
g(x ′)�(τ)Q(x − x ′, t − τ)dx ′, τ < t. (5)

Now we can have a look on the expression for the outgoing flow. Substituting N = N1 + N2

in (3) and using (4,5) we have:

Q(x, t) =
∫ ∞

t

N1(x, t, τ1)ψ(τ1)

�(τ1)
dτ1 +

∫ t

0

N2(x, t, τ1)ψ(τ1)

�(τ1)
dτ1

=
∫ ∞

t

N0(x, τ1 − t)ψ(τ1)

�(τ1 − t)
dτ1

+
∫ +∞

−∞
g(x ′)

∫ t

0
ψ(τ1)Q(x − x ′, t − τ1)dx ′dτ1. (6)
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The second term has a convolution form and represents the random walks evolution of par-
ticles. The first one is a source term. It depends explicitly on the history of particles at t = 0
which is included into the initial distribution over the lifetimes, N0(x, τ ).

Now we can solve (6) with a help of Fourier-Laplace transform. Indexes k and p denote
Fourier and Laplace components respectively.

Qk,p = (
∫ ∞

t

N0,k (τ1−t)ψ(τ1)

�(τ1−t)
dτ1)p

1 − ψpgk

.

Expression for N2 immediately follows from (5): N2,k,p = gke
−pτ�(τ)Qk,p .

Macroscopic density of particles is given by the integral of N with respect to τ and is
composed of two components n = n1 + n2

n1(x, t) =
∫ ∞

t

N1(x, t, τ )dτ, n2(x, t) =
∫ t

0
N2(x, t, τ )dτ.

After combining all these results and simple arithmetics, we obtain the Fourier-Laplace
transform of the macroscopic density of particles with arbitrary initial distribution over the
lifetimes:

nk,p = �pn0,k

1 − ψpgk

+ 1 − gk

1 − ψpgk

∫ ∞

0
N0,k(τ )

(
�(τ + t)

�(τ)
− �(t)

)
p

dτ. (7)

Here n0(x) is the macroscopic initial condition, n0(x) = ∫ ∞
0 N0(x, τ )dτ . There are now

two terms. The first one gives the standard answer for the CTRW model. The second one is
responsible for the influence of the initial distribution over the lifetimes. If all particles were
created at t = 0, then N0(τ ) = n0(x)δ+(τ ) and this term vanishes. It also vanishes, if ψ is
exponential, as we mentioned before. Then we have the common expression for the Green’s
function of the CTRW model [4, 26]:

nk,p = �pn0,k

1 − ψpgk

. (8)

The general form of (7) does not contain any assumptions about initial conditions or any
other simplifying steps. It is exact. It is well known that the asymptotic form of the (8) for
the subdiffusion regime can be written in terms of the fractional diffusion equation with frac-
tional derivative with respect to time. It is also known that the solutions of this asymptotic
equation do not posses the semi-group property. Since (7) contains the whole pre-history in
its source term, it preserves the semi-group property of its solutions. With this general trans-
port equation (7) we are able to address the problems of aging and two-point correlation
functions.

3 Aging

In a broad sense the aging can be understood as the dependence of the measurement results
on the age of the system. Assume that the system was prepared a time t1 (aging time) ago.
The first measurement was performed after this time elapsed, at t = 0. We would like to
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know how the evolution of the system for times t > 0 depends on the aging time t1. It is
quite clear that for exponential waiting time distribution there is no memory at all. However,
for subdiffusive systems (when the mean waiting time is infinite) the effect of the previous
evolution is dramatic. The reason of the aging effect is a nontrivial distribution of lifetimes
at the moment of the first measurement. It is determined by the previous evolution during
the aging time (source term of (7)). The longer is the aging time, the slower is the dynamic
of N1—particles of the initial distribution which remain sitting. Only in the course of time
the dynamics becomes dominated by walking particles described by N2 and leads to the
expected scaling of diffusion.

In order to solve the aging problem, we need to find the distribution of life times resulted
from the previous evolution during the aging time t1. The following steps are technical and
describe how to reconstruct N(x, t = t1, τ ) by knowing n(x, t1) and t1. We will reuse these
calculations for the next section of the two-point probability distribution.

First we need to reconstruct the initial distribution of particles at t = −t1, when the sys-
tem was created. It is possible due to the following property of the Green’s function. The
solution at any moment of time is given by the convolution of the initial distribution and the
Green’s function. Therefore, after Fourier transform we obtain:

nk(t1) = Gk(t1)ñ0,k.

Here G(x, t) is the Green’s function given by (8) and ñ0,k is the distribution of particles
at preparation. From the above expression we easily find ñ0(x). Since we can reconstruct
ñ0(x) anyway, let us for simplicity of the following calculations assume ñ0(x) = δ(x).

When the system was created, we had N0(x, τ ) = δ(x)δ+(τ ). Therefore the microscopic
density N(x, t, τ ) can be written as (see (4,5)):

N(x, t, τ ) = �(τ)δ(t − τ)δ(x)

+
∫ +∞

−∞
g(x ′)�(τ)Q(x − x ′, t − τ)dx ′

≡ �(τ)B(x, t − τ), (9)

where B(x, t) is some unknown function. We now set t = t1. By using the fact that n(x, t1) =∫ t1
0 N(x, t1, τ )dτ and (9) we find:

n(x)s =
(∫ t1

0
�(τ)B(x, t1 − τ)dτ

)
s

,

where index s denotes the Laplace transform with respect to t1. By using the property of the
Laplace transform of the convolution integrals we are able to find Bs(x):

Bs = ns/�s.

By applying the Laplace transform to (9) we find the expression for the Laplace transform
of N(x, t = t1, τ ):

Ns(τ) = �(τ)e−sτBs = �(τ)e−sτ (ns/�s).

For the ns(x) we can use the Green’s function answer (8) with n0,k ≡ 1, so in the final form:

Ns,k(τ ) = �(τ)e−sτ

1 − ψsgk

, (10)
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where k is the Fourier transform with respect to x. Now we are ready to write down the final
answer for the aging diffusion:

nk,s,p = �p�s

(1 − ψpgk)(1 − ψsgk)

+ 1 − gk

1 − ψpgk

1

1 − ψsgk

([�(t1 + t)]p,s − �p�s). (11)

It is easy to check that the above equation gives the right expression for the density of parti-
cles at the moment of time t + t1. If we start from a delta function at the preparation of the
system, obviously its density at t + t1 will be given by the Green’s function G(x, t + t1) (8).
One has to apply the double Laplace transform and compare it with (11). The following
formula for the double Laplace transform can be used:

[f (t + t1)]s,p = fs − fp

p − s
.

It can be shown that both expressions coinside. Note that in [21] a different solution of aging
(sub)diffusion equation was obtained. The details of this difference are discussed in [29]. In
our setup the whole distribution at the first measurement is assumed to be known. It allows
to reconstruct the microscopic distribution over the life times and therefore the source term
in (7) completely. It means also that the probability distribution of times, when a first jump
after the beginning of the observation occurs, is different from ψ(τ) and explicitly depends
on the position of a particle. In [21] the probability of the first jump after the aging time is
uniform with respect to the coordinate and depends only on the aging time.

Let us briefly discuss the properties of the (11). It is evident that if the aging time, t1,
is zero, (11) turns to the standard transport equation of the CTRW model [4]. This is also
the case for the exponential waiting time distribution function ψ(τ). For any other ψ(τ) the
source term is not zero. The most pronounced effect of aging can be seen for the subdiffusive
regime, i.e. for those ψ(τ) which have infinite mean waiting time 〈τ 〉. A usual form for the
waiting time PDF with an infinite mean is a power law:

ψ(τ) = γ

(1 + t)1+γ
, (12)

with 0 < γ < 1. For this example we show how to work with the general answer (11). We
will be interested in the asymptotic properties of the solution. It means that large temporal
and spatial scales, x, t 	 1, are considered. In Fourier-Laplace space that corresponds to the
small values of k and p. We will also assume that the aging time is large t1 	 1 (s 
 1).
For the distribution of jump lengths we chose such a function, that the mean square of the
jump length is finite. For small k,p, and s instead of the full Fourier and Laplace transforms
we can take their expansions. For the waiting time distribution (12) it has the form: ψp =
1 − �(1 − γ )pγ + O(p). For the symmetric jump lengths distribution with mean square
〈x2〉 the expansion is: gk = 1 −〈x2〉k2/2 +O(k4). By substituting these expansions into the
general formula (11) we get the asymptotic answer in Fourier Laplace space for the density
of particles. Its back transform in real time/space can be represented in the integral form and
is quite involved. It allows however to see that the density is non-negative and normalized,
as it should be. Here we just give the answer for the temporal behavior of the mean square
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displacement. It can be computed without explicit knowledge of the density by the formula

〈x2(t)〉 =
∫ +∞

−∞
x2n(x, t)dx = −(d2/dk2)nk(t)|k=0.

In real time for large t and t1 we get the following asymptotic behavior (cf. [21]):

〈x2(t, t1)〉 = 〈x2〉
�(1 + γ )�(1 − γ )

[(t + t1)
γ − t

γ

1 ]. (13)

Here the aging effect is clearly seen. Only for t1 = 0 mean square displacement follows
the expected subdiffusive scaling tγ . For any other t1 > 0 the dynamics is slower and only
asymptotically tends to the scaling regime. This effect can be qualitatively explained as
follows. In the subdiffusive regime the frequency of jumps decays with time. It is easy
to check that the flow of particles from all points

∫ +∞
−∞ Q(x, t)dx decays as t−1+γ . It means

that for a longer aging time, longer time is required before a particle will make the first jump
after the observation has started. It corresponds to the slower dynamics of the mean square
displacement. Only for t 	 t1 the self-similar profile of subdiffusion starts to dominate.

To conclude this section, we have shown that the general equation taking into account
the microscopic details of random walks is applicable to the problem of aging. It shows that
the microscopic distribution of particles other their life times is responsible for the aging
effect. Now we turn to the closely related problem of the two point probability distribution
in random walks.

4 Two-Point Probability Distribution

There are two recent papers considering the two-point probability distributions in CTRW
models. In the first one, by Baule and Friedrich [24], the fractional diffusion equation for the
two-point PDF was derived from the basic Langevin equation for the Brownian particle. In
the second paper of Barkai and Sokolov [25], probabilistic approach was used for the CTRW
model. Both papers reproduce the same result for the two-point PDF. It should be stressed
that in our case this answer immediately follows from the general transport equation.

Let us specify the problem we are aiming to solve. Assume that a particle has started
at the moment of time t = 0 from the point x = 0. We let the particle perform its random
walk during the time t1 and then measure its coordinate x = x1. After letting it to evolve for
another t ′ > 0, at the time t2 = t1 + t ′ we measure its second position: x = x2. The goal now
is to obtain the joint probability distribution function of finding a walker at x1 at time t1 and
at x2 at time t2, provided it has started at zero:

p(x1, t1;x2, t2|0,0). (14)

The same quantity was calculated in [24, 25].
In this section we are going to apply (7) to this particular setup and find the above two-

point PDF (14).
In order to obtain the PDF for the two-point distribution it is now sufficient to choose

the initial data properly. We have two times: t1 and t2. The point t1 will serve as the initial
condition for (7). Namely, after starting at zero (without any history) we are able to calculate
the probability of finding the particle in x = x1 at t = t1, n(x1, t1) by using the simple answer
with the Green’s function (8). This we will take as n0(x). In order to predict the following
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evolution during the time t ′, we need to know the distribution over the life times in the point
x = x1 at t = t1, N(x = x1, t = t1, τ ), which we will use instead of N0(x, τ ). The time t1
we also take as the upper limit of the integration in (7). Now we find N(x = x1, t = t1, τ ).
Actually, the answer was already calculated for the aging problem, so we just reuse it:

Ns,k1(τ ) = �(τ)e−sτ

1 − ψsgk1

, (15)

where k1 denotes the Fourier transform with respect to x1. We note that p(x1, t1, x2, t2) =
p(x1, t1, x2, t1 + t ′) depends on two space and time variables. By taking double Fourier and
Laplace transforms of this expression we will obtain pk1,k2,s,p , with the following correspon-
dence of variables: t1 ↔ s, t ′ ↔ p, x1 ↔ k1, x2 ↔ k2. By substituting the above (15) into
(7) and taking the double Laplace and Fourier transform we obtain:

pk1,k2,s,p = �p�s

(1 − ψpgk2)(1 − ψsgk1)
(16)

+ 1 − gk2

1 − ψpgk2

1

1 − ψsgk1

([�(t1 + t ′)]p,s − �p�s).

The answer (16) represents the Fourier-Laplace transform of the two-point probability den-
sity. It can be checked that it coincides with (23) in [25] (the following relation in the
Laplace space might be helpful for these calculations: �p = (1 − ψp)/p) and (20) in [24].
The calculations of corresponding moments and quantities of interest are of course the same
as in [24, 25].

5 Discussion and Conclusions

In the present paper, an additional step in the microscopic description of random walks was
made. It has allowed us to derive more general transport equations which involve the dis-
tributions of particles over their lifetimes. Such a description provides exact and complete
picture of the random walk dynamics. It was shown that the general transport equation suc-
cessfully described aging phenomena and two-point probability distribution. We argue that
the microscopic approach should be used for the derivation of macroscopic transport equa-
tions each time when a new model or setup is considered. One of the additional examples is
the random walk model with a coupled transition kernel, when the jump lengths and waiting
times are correlated with each other [30]. It should be noted that the above approach was
applied to the standard CTRW model with instantaneous jumps between the trapping points.
There exist however a generalized model taking into account the finite velocity of particles
during their motion from one resting point to another [31–33]. Even more general model
of multistage random walks assumes that a particle can undergo a complicated stochastic
process for a random time until it is trapped again [34]. In these models particles could be
divided into two groups: trapped in a given point and passing through this point. Therefore,
not only the microscopic distribution of sitting particles but also the pre-history of flying
particles determines the following evolution. A possible influence of the initial distribution
of flying particles was only mentioned in [27] and definitely should be studied in greater
detail in the future.
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