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1. INTRODUCTION

In the past years, considerable attention has been
given to anomalous stochastic transport described by
fractional differential equations. Mathematical and
physical aspects of this phenomenon have been dis-
cussed in numerous review papers (e.g., see [1–5]) and
original publications. A very convenient and widely
used proving ground for analyzing characteristics and
laws of fractional transport are comb structures, which
provide simple and graphic explanations for deviations
from classical diffusion and are amenable to theoretical
treatment. They were among the first physical systems
for which transport equations were rigorously derived
rather than inferred from scaling laws for the mean
square displacement 

 

〈

 

x

 

2

 

〉

 

 

 

∝

 

 

 

t

 

α

 

, where 

 

α

 

 

 

≠

 

 1 (see the pio-
neering study in [6] and derivation of a scaling law with

 

α

 

 = 1/2 in [7]). Furthermore, permanent interest in
these systems (e.g., see [8–10]) is stimulated by their
importance in physics of heterogeneous materials with
inclusions of arbitrary geometry. The purpose of this
paper is twofold. First, several generalized comb struc-
tures are introduced in order to diversify their observed
properties. Second, they are used as illustrative exam-
ples for analyzing important problems involving
mutual influence between fractional and classical diffu-
sion. As a starting point, we use a comb structure to
expose one rarely discussed qualitative aspect of frac-
tional differential models used in physical applications,
which was pointed out in [11].

2. STANDARD COMB STRUCTURE

We present a rigorous and systematic derivation of
an effective transport equation for the system shown in
Fig. 1. The simplest comb structure consists of an infi-
nite cylinder of cross sectional area 

 

S

 

1

 

 (backbone) cen-
tered on the 

 

x

 

 axis and an array of infinite cylinders

(branches) of cross sectional area 

 

S

 

0

 

 connected thereto
with a spacing of 

 

l

 

 between them. Particle transport
along each element of the structure is characterized by
diffusion coefficient 

 

D

 

; i.e., unusual behavior of the
overall transport is entirely due to geometry rather than
to microscopic particle dynamics.

The particle concentrations on the backbone and the
branch emanating from a point 

 

x

 

 are denoted by 

 

n

 

1

 

(

 

x

 

, 

 

t

 

)
and 

 

n

 

0

 

(

 

x

 

, 

 

y

 

, 

 

t

 

). Since we analyze macroscopic behavior
of particles, particle concentration is hereinafter inter-
preted as the concentration along the horizontal axis
averaged over scales much larger than 

 

l

 

. We also
assume that the distribution of particle concentration is
sufficiently smooth that its variations across the cylin-
ders and along any particular element of the structure
are negligible. This assumption is obviously valid at
sufficiently long evolution times, when 

 

Dt
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.
We write equations for the particle concentration
defined as the total number of particles per unit length
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of the backbone,

(1)

This does not make our derivation essentially different
from that given in [6], where evolution of 

 

n

 

1

 

 was ana-
lyzed. However, we believe that the use of 

 

N 

 

is better
suited for analyzing the effective transport along the 

 

x

 

axis.
To describe the variation of particle concentration

on the branches, we write the classical diffusion equa-
tion

(2)

where 

 

n

 

00

 

(

 

y

 

) is the initial concentration on a branch,
which is essential for modifying the formulas of [6] so
as to expose the qualitative aspect mentioned in the
Introduction. Note that the role of a boundary condition
for transport in a branch is played by the corresponding
concentration on the backbone. To find a solution, we
consider the Laplace transform of Eq. (2),

(3)

which yields

(4)

where the Green’s function of Eq. (3) is

Substituting (4) into (1), we obtain an expression for
the total concentration required for further analysis:

(5)
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Since the evolution of the total particle concentra-
tion along x is completely determined by diffusion on
the backbone, we have the time-domain and Laplace-
domain equations

. (6)

Of particular interest is the long-time behavior at t �
τS1/S0, when transport is strongly modified by particle
diffusion into the branches. In the Laplace representa-
tion, we have the dual condition pτS1/S0 � 1. By using
the inverted relation (5) between N and n1, evolution
equation (6) in this limit is rewritten as

(7)

According to the standard interpretation of the frac-
tional power of the Laplace variable, this is equivalent
to the time-domain equation

(8)

(erfcx = (2/ ) (–t2)dt). This equation agrees

with that derived in [6] except for the terms containing
the initial concentrations. The difference between the
coefficient of N0 and the factor that multiplies n10 in the
equation derived for n1 is insignificant, being a mere

consequence of the scaling law Np ∝ n1p/  in (5).
However, the complicated integral term containing n00
(generally ignored in previous studies) is of primary
importance, as mentioned above.

This term is responsible for an extremely long-last-
ing effect of the particles that have diffused into the
branches on the system’s evolution. The particles that
have diffused sufficiently far away from the backbone
can contribute to active transport after an arbitrarily
long delay. Under an appropriate choice of n00(y), this
contribution can modify the evolution of N in an almost
arbitrary manner. Fully fractional transport through a
comb structure, characterized by a scaling exponent
α = 1/2 (see below), can develop only when the initial
concentration on the branches is negligible. Otherwise,
macroscopic transport cannot be described by any
equation written in terms of N only. Furthermore, an
appropriate treatment of the initial distribution elimi-
nates the physically questionable “intransitivity” of
evolution equations with fractional time derivatives that

∂N
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makes it impossible to use a profile N(x) that has
already evolved over time as an initial condition for
Eq. (7) with n00 = 0 (routinely discussed in the litera-
ture), because its further evolution will be distorted.
Our systematic derivation makes it clear that diffusion
into initially empty parts of a comb structure must be
taken into account. Similar argumentation regarding a
different physical model was given in [11], where the
onset of time-domain fractional transport was attrib-
uted to microscopic particle dynamics. The new treat-
ment exposes its universal origin (the lack of a macro-
scopic equation) and concomitant circumstances (the
possibility of arbitrary modification of macroscopic
evolution).

Having pointed out a fact of importance for trans-
port in geometrically complex structures, we will not
expand on it any further. Hereinafter, the focus is on
conventional description of fractional transport; i.e., we
assume that n00 ≡ 0. Under this assumption, Eqs. (7) and
(8) reduce to the standard equation with time derivative
of order 1/2 for a subdiffusive stochastic process, which
implies a scaling law with α = 1/2.

3. RAMIFIED COMB STRUCTURE

We now consider possible generalizations of comb
geometry. First, a hierarchical comb structure with ram-
ifying branches can be constructed. Replacing each
branch with the structure discussed above and repeating
this step k times (see Fig. 2), we obtain the kth-order
ramified structure whose branches are structures of
order k – 1 (the simple comb structure is of order k = 1).
To simplify calculations, we assume throughout this
section that all backbones and branches have equal
cross-sectional areas (S0 = S1 in the formulas above).

In the ith-order structure (0 < i < k), the total particle
concentration is determined by the concentrations on
its backbone and branches (cf. expression (1)):

where xi is the coordinate along corresponding back-
bone axis. Accordingly, its evolution is governed by the
equation (cf. Eq. (6))

.

At t = 0, the particles are confined to the backbone of
the kth-order structure. If Nip = fi(pτ)nip , then the formu-
las above yield the simple recursion relation

Using the obvious fact that f0 = 1 (the lowest order
branches do not ramify) and taking the asymptotic limit
of pτ  0 (requiring that particles have penetrated the

Ni ni
1
l
--- Ni 1– xi 1–( ) xi 1– ,d

0

∞

∫+=

pτNip l2d2nip

dxi
2

------------, nip xi 0= ni 1+ p,= =

f i 1
f i 1–

pτ
----------.+=

structure to the lowest order branches), we obtain fk =

 with αk = 1/2k. This leads to the desired equa-
tion of particle transport in a ramified structure:

(9)

where the subscript k of N is dropped and subscript 0
refers to the initial condition.

Thus, particle transport in a hierarchically ramified
comb structure is also a subdiffusive process governed
by a fractional differential equation with exponent α =
1/2k progressively decreasing with increasing order of
ramification. In the ramified structure formally iterated
ad infinitum, there is no transport along the backbone
and the initial distribution is weakly modified (over the
time required for the system to evolve into a fully devel-
oped regime). Accordingly, Eq. (9) becomes

(10)

where the right-hand side is small by virtue of assump-
tions made above. The obvious reason is that the parti-
cle concentration on the “active” part (the backbone)
tends to zero as all particles diffuse into the branches.
Since similar behavior is exhibited by different gener-
alizations considered below, we note that the result
obtained here corresponds to a finite velocity of absorp-
tion of particles with concentration n into the branches.
Indeed, if Eq. (2) for the structure in Fig. 1 is replaced
with

while diffusion along the backbone is retained, then
Eq. (8) is rewritten as

pτ( )
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Fig. 2. Ramified comb structure.
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which reduces to (10) as p  0 and D/v  l.

4. GARLANDS

We can also consider structures where the backbone
is furnished with multidimensional objects, such as
disks or balls making up garlands similar to those used
to decorate the Christmas tree. Since “branches” of this
kind absorb particles more easily, the evolution of N
along the axis should be slower than in finite hierar-
chies. These unusually shaped “branches” can serve as
models of real (e.g., fractal) structures that have suffi-
cient capacity to absorb particles, as suggested by the
limit case considered at the end of the previous section.

We begin with the structure where disks of infinite
radius and thickness d are “spitted” on a backbone of
radius r0 (see Fig. 3). As in the classical case, diffusion
with coefficient D is assumed to take place both along
the backbone and in the disks. Then, analysis reduces to
technically simple modifications of the formulas
obtained for the standard comb structure: Eq. (1) is
replaced by

(11)

Eq. (3), by

(12)

whose solution is (cf. expression (4))

(13)

where K0 is the MacDonald function; and Eq. (6) holds.
As a result, relation (5) becomes

(14)

p
v
l
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d2N p

dx2
------------ N0 1 v
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-----+⎝ ⎠
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N n1
2d
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2
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2d
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leading to the following evolution equation in the

asymptotic limit of pτln(pτ) � dl/ :

(15)

Note that it does not contain the diffusion coefficient.
The operator 1/lnp in Eq. (15) can be interpreted as

the logarithm of the time derivative. It should be used
with care because, unlike pα, it changes sign at p = 1,
implying an unphysical high-frequency instability in
(15). Even though the trivial regularization –lnp 
ln(1 + 1/p) [12] does eliminate the problem (recall that
long-time regime of slow diffusion is of actual interest),
the result is hardly tractable since this function does not
have an analytical Laplace inverse. Note also that the
model at hand admits the subtle use of an asymptotic
limit only for K1(ξ) ≈ 1/ξ when ξ � 1, whereas the func-
tion K0(ξ) associated with lnξ is preserved (it has the
correct sign on the entire half-line (0, ∞)). The resulting
time-domain equation is

(16)

Formally, Eq. (16) corresponds to the zeroth order of
the fractional derivative, but the fact that it differs from
Eq. (10) implies nontrivial behavior in the limit of
α  0. This behavior is intermediate in the sense that
the concentration continues to evolve (in contrast to the
case of ball garland discussed below), but the evolution
is infinitely slower than predicted by any power law.

The transport of particles with concentration N in a
ball garland (see Fig. 4) is described by the equations

(17)

(18)

and the ubiquitous Eq. (6). Equation (18) yields

r0
2

N p

pln
---------–

r0
2l

2d
------

d2N p

dx2
------------

N0

p pln
------------.–=

N x t,( ) N0 x( )
r0

2l
4d
------ ∂2

∂x2
--------+=

× N x t t '–,( )
t '

--------------------------
r0

2

4Dt '
-----------–⎝ ⎠

⎛ ⎞exp t '.d

0

t

∫

N n1
4

lr0
2

------ n0 r( )r2 r,d

r0

∞

∫+=

pn0 p D
1

r2
---- d

dr
----- r2dn0 p

dr
-----------⎝ ⎠

⎛ ⎞ , n0 p r r0= n1 p= =

d

2r0

Fig. 3. Disk garland.

l

2r0

Fig. 4. Ball garland.
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(19)

Therefore, Eq. (17) can be rewritten as

(20)

Substituting this expression into (6) and taking the limit
as p  0, we obtain the time-independent (degener-
ate) evolution equation

(21)

Again, it does not contain D (cf. Eq. (15)), being fully
equivalent to (10). This result, valid at t � τ, is obvi-
ously explained by the fact that the concentration flux
corresponding to three-dimensional diffusion under a
finite boundary condition is finite rather than monoton-
ically decreasing (as in fewer dimensions), which leads
to an exponential decrease in particle concentration on
the backbone in this model. Since the balls act as pow-
erful “pumps,” steady diffusive influx into the balls
requires substantial gradients in n1 between the ball
inlet points and the midpoints between balls. This
requirement is inconsistent with the assumed slow vari-
ation of n1(x): the actual boundary condition for the dif-
fusive influx is a quantity proportional to, but lower
than, 〈n1〉. Similar effects should obviously be observed
in the models discussed at the end of the previous sec-
tion. An analysis of diffusion between a branch seg-
ment of length l and a ball connected thereto shows that
the corresponding coefficient of proportionality is r0/2l
if r0 � l.

To wrap up this section, we discuss yet another
issue. The linear array of densely packed balls would
seem structureless since particles can diffuse in any
direction. Yet there is diffusive transport along the x
axis even when backbone is embedded in this seem-
ingly structureless medium (e.g., see [13]). The para-
dox is resolved by noting that, since the backbone is
connected to the medium only via widely spaced small
segments and direct particle transfer between balls is
impossible, a particle diffusing from a ball into its
neighbor along the x axis must find its way to the point
where the former ball is connected to the backbone.

5. TYPICAL CONTACT PROBLEMS

In practice, one frequently has to deal with situa-
tions where media having different transport properties
are in direct contact, as in the case of diffusive mass or
heat transfer through a heterogeneous material consist-
ing of regions with different D. This motivates theoret-
ical analysis of effects of local inclusions on global

n0 p r( ) n1 p

r0

r
---- p

D
---- r r0–( )– .exp=

N p n1 p 1 4
l
r0
---- 1

pτ
------ 1

pτ
----------+⎝ ⎠
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N p
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p
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r0l
4

------
d2N p

dx2
------------ N x t,( ) N0 x( )–=

=  
r0l
4

------∂2N x t,( )
∂x2

----------------------.

transport. Whereas simple problems of classical diffu-
sion have long since been solved and included in text-
books on mathematical physics, composite problems of
greater complexity are still the subject of ongoing stud-
ies [13]. However, analysis of the simplest problems in
fractional transport is far from complete, even though it
is a popular research area. We believe that the tractabil-
ity of transport on comb structures makes them a good
proving ground for this line of research.

In this paper, we consider several problems of this
type that are analogous to classical diffusion ones. The
difference in transport properties lies in the scaling
exponent (the order of the fractional time derivative)
rather than in the second-order spatial differential term
(as in classical diffusion). In all generalizations dis-
cussed above, the exponents are lower than 1/2. How-
ever, it is well known that structures where individual
branches have different lengths and the average branch
is infinitely long may serve as models with larger values
of α, depending on the order of divergence of the aver-
age length [8]. Analogous modifications of complex
structures and garlands will lead to similar results.
Now, suppose that two comb structures (hereinafter
referred to as α and β according to the corresponding
scaling exponents), are joined along their backbones;
i.e., different branches “grow” from the same back-
bone. In what follows, we analyze their mutual influ-
ence, using transport equations written in dimension-
less form for simplicity.

5.1. Interaction between Two Finite Structures

Suppose that structures α and β of equal length L are
joined at x = 0 and the initial particle concentration on
their common backbone is constant. The respective
evolution equations are

(22)

The boundary conditions are written in terms of n1,
being determined by the following physical require-
ments: both concentrations are equal on the backbone,
and so are the corresponding fluxes, while the ends of
the heterogeneous structure are impermeable (cf. clas-
sical diffusion):

(23)

It follows from the discussion above that the relation
between N and n1 is nonlocal in time and differs
between the regions x < 0 and x > 0: Np = pα – 1n1p and
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Np = pβ – 1n1p, respectively. In this dimensionless form,
the solution to problem (22), (23) is

where a = pα/2L and b = pβ/2L. For example, it can be
used to calculate the asymptotic regime in which all
particles are absorbed by the more ramified structure β
(if β < α): as t  ∞, performing the inverse Laplace
transform for x < 0 yields

(24)

5.2. Effect of a Finite “Inclusion”

If an initially empty system is to be “soaked” with
particles or heat by injection of a flux q into the back-
bone, then a very important characteristic is the degree
of “screening” of inner regions by more ramified inclu-
sions. Suppose that the structure β (the region x > L) is
separated from the injection point x = 0 by a layer of
structure α. Then, evolution of n1 is conveniently
described by the equations

(25)

subject to the boundary conditions

(26)

The solution is

(27)
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where a and b are defined above and the coefficients are

It follows that the flux injected into the structure β
asymptotically tends to behave as

Performing the inverse Laplace transform and taking
the limit of t  ∞, we obtain

(28)

Thus, the flux Q transported through a relatively
weakly ramified structure with α > β/2 approaches the
injected flux q with time elapsed. When the opposite
inequality holds, particles are trapped in the more ram-
ified structure α, and further transport vanishes: Q 
0 as t  ∞. This result can be interpreted as follows:
if every branch of the structure characterized by the
exponent α is more ramified than the structure with
exponent β connected to the backbone, then all parti-
cles end up in these branches.

In the intermediate case of α = β/2, the structure on
the right of the backbone can be viewed as just an addi-
tional branch of the structure on the left. It is obvious
that the corresponding asymptotic distribution of the
flux q between all equivalent branches is uniform:

(in dimensionless representation, distance along the
backbone is measured in the units of l). Even though the
approximations used here formally rely on the condi-
tion that L � 1, the result obtained for L ~ 1 also seems
quite reasonable.

5.3. Transport Capacity of Structures

Finally, we consider the effect of an “inclusion” on
transport when the structure on the right adjoins a per-
fectly absorbing medium. Formally, this problem is
equivalent to the previous one in the limit of β  0.
However, we analyze it separately to demonstrate how
easily comb structures can be manipulated in test prob-
lems. The evolution equation on [0, L] has the form of
(25) with a single parameter, 0 < α < 1, while condi-
tions (26) are rewritten as
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x L=

–
q
p
--- pβ/2

pβ/2 pαL+
-------------------------.∼=

Q t( ) q
1

t γ– L
Γ 1 γ–( )
--------------------, γ– α β

2
---– 0>=

tγ

Γ 1 γ+( )L
------------------------, γ 0.<

⎩
⎪
⎪
⎨
⎪
⎪
⎧

∼

Q t( ) q
L 1+
------------ 1 constt α––( )∼
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(29)

The concentration on the backbone increases as

As t  ∞, it approaches the steady distribution

which is similar to the steady profile in the classical dif-
fusion problem. The difference lies in the fact that it is
approached by a power law (rather than exponentially)
when α ≠ 1. The flux –∂n1/∂x|x = L transported through
the structure behaves as

approaching q very slowly (  is divergent). The

shortage is explained by the continuing absorption into
the structure as a whole, where the concentration
increases as

(30)

6. CONCLUSIONS

The results obtained by systematic application of
the fractional differential approach to stochastic trans-
port through comb structures with branches of different
types are summarized as follows.

1. Evolution equations are derived by rigorous treat-
ment of initial conditions. For the simplest structure, an
expression is written out that necessarily depends on
microscopic details of the initial distribution of the total
concentration on the branches, leading to an unconven-
tional time dependence of the right-hand side of the
macroscopic equation. This result demonstrates that the
initial distribution must be taken into account in solving
subdiffusion equations of any form.

2. It is shown that transport through ramified comb
structures is also subdiffusive and is slower than that
through simple comb structures. The order of the time
derivative in the corresponding transport equation
decreases to zero as α = 1/2k with increasing order of
ramification. In the limit of infinite ramification order,
particles diffuse away from the backbone at a constant
rate, which leads to vanishing transport through the
structure.

3. Garland-like structures are proposed where evo-
lution is slower and α = 0. In the intermediate case of a

disk garland, the particle transport along the axis does
not vanish, but is slower than predicted by any power
law. In a ball garland, the transport along the axis van-
ishes over the characteristic time of particle diffusion
between balls, because the balls absorb particles at a
constant rate.

4. Several general problems are stated and solved
for subdiffusive fractional differential equations subject
to boundary conditions that are nonlocal in time. When
two structures characterized by different scaling expo-
nents are joined together, absorption by the more rami-
fied one removes particles almost completely from the
less ramified one. A segment of the structure that has
more ramified branches acts as an effective barrier that
blocks particle transport, absorbing the injected flux.
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