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The free cooling behavior of a wet granular gas is studied in one dimension. We employ a particularly
simple model system in which the interaction of wet grains is characterized by a fixed energy loss assigned
to each collision. Macroscopic laws of energy dissipation and cluster formation are studied on the basis of
numerical simulations and mean-field analytical calculations. We find a number of remarkable scaling
properties which may shed light on earlier unexplained results for related systems.
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Aside from its exceptional significance for technical
applications, granular matter possesses remarkable and
unusual physical properties [1–3]. These comprise a diver-
sity of aspects, such as self-organization in vibrated gran-
ulates [4–6], soil dynamics [7], evolution of sand dunes
[8,9], and large scale structure formation in the Universe
[10]. The common feature of these systems is the inelastic
nature of the collisions between particles. Up to now, two
extreme cases have mostly been studied: the dry granular
gas, in which the fraction of kinetic energy lost in a
collision is fixed [3], and the so-called sticky gas [10], in
which impact partners lose their entire relative kinetic
energy, and thus stick together. It has recently been dem-
onstrated that in the framework of free cooling (i.e., in the
absence of any external energy source), the two models are
closely related and share a number of remarkable scaling
laws [11,12]. In the present Letter, we investigate the free
cooling scenario for the wet granular gas, which represents
a wide class of inelastic systems, containing the sticky gas
as a limiting case [13]. Quite remarkably, some features of
special cases studied earlier are found to persist throughout
the whole class.

Consider a gas of hard spheres, each of which is covered
with a thin liquid film. At each collision, a liquid bridge
forms between two spheres and induces an attractive force
by virtue of the surface tension of the liquid. As the spheres
withdraw from each other and their separation s increases,
the bridge continues to exert a capillary force, F�s�. Only at
some critical distance, sc, the bridge ruptures and liberates
the particles. Thus there is a hysteretic interaction between
the grains, such that each rupture of a liquid bridge be-
tween two adjacent particles requires a fixed amount of
energy, Eloss �

Rsc
0 F�s�ds. It introduces dissipation into

the system without referring to viscosity or friction. Note
that during each collision the total momentum of the
impact partners is conserved. If the density of the gas is
not too high, the whole process of bridge formation and
rupture may be considered as a single event (i.e., pointlike
in time and space), and thus can be characterized solely by
a single number, Eloss. As a consequence, all energy in the
system is kinetic energy due to the absence of explicit
forces. More specifically, if the relative velocity of the

impacting particles is insufficient to rupture the liquid
bridge, v < vcrit �

������������������
2Eloss=�

p
(where � is the reduced

mass), they form a bounded state, lose all their relative
kinetic energy and continue their motion with the center of
mass velocity. If the average kinetic energy of the spheres
is well below Eloss, this model will be equivalent to the
sticky gas. However, for large temperature the system will
resemble the inelastic gas [14].

In order to ease comparison with earlier studies of
related systems, we study the macroscopic properties of
our system during free cooling [11,12,15–18]. In particu-
lar, we discuss the number of clusters N�t�, their average
size (or mass) m�t�, the temperature T�t�, and the total
energy E�t�. The granular temperature is related to the total
kinetic energy by [3] E�t� � kBN�t�T�t�=2. Boltzmann’s
constant, kB, is henceforth set to unity. As we will show by
comparing simulations with a mean-field treatment, the
velocity distribution and nearest neighbors velocity corre-
lations seem to play a key role in this class of systems,
which is yet far from being understood.

We start from N�0� � 107 effectively pointlike particles
of mass m � 1 and temperature T�0� � 1. The size of the
system, which we consider as one dimensional, is set
numerically equal to the initial number of particles L �
N�0�. We impose periodic boundary conditions, equivalent
to confining the motion to a ring. Initial positions are
chosen at random, with a Maxwellian velocity distribution
corresponding to T � T�0�. We use a deterministic event-
driven algorithm, where collision events are calculated
from linear equations of the free motion. They are se-
quenced by using a heap structure which significantly
accelerates computations [19]. At each collision, appropri-
ate rules are applied which represent momentum conser-
vation and the energy decrement of Eloss.

In Fig. 1(a), the total energy is plotted as a function of
time for different values of Eloss. The overall picture is very
similar to the analogous plot for the inelastic gas [11]. The
most striking common feature is that all E�t� curves, with
Eloss varying over 2 orders of magnitude, come very close
to the same asymptotic, which is represented by E�t� ’
�t�2=3 and well known from the sticky gas (we will call
this the ‘‘sticky limit’’ below). According to our data, the
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latter provides a lower bound to all E�t� curves. Further-
more, we performed extended simulations for Eloss � 0:01,
for which E�t� bends noticeably off the sticky gas limit for
large times. We found that in fact it bends back later,
approaching the sticky limit again. It seems that the latter
provides a universal asymptotic for the full class of models.
While the asymptotic exponent�2=3 follows from general
considerations, it is not clear a priori why the prefactor �
also should be universal.

In order to investigate this phenomenon in more detail,
let us now set up a simple system of equations which

captures the qualitative behavior of the wet granular gas.
We use a mean-field approach and suppose that at any time
there is only one dominant typical size of clusters with a
typical mass m�t�. Two types of collisions, defined as
sticky and rupture events, give rise to a separation of
time scales. The first one is the mean collision time, �col,
which is proportional to the mean distance between clus-
ters divided by their typical relative velocity:

 �col ’ l=v � L=�Nv� ’ Lm1=2=�NT1=2�:

Using mass conservation, N�t�m�t� � M � const, this can
be rewritten as

 �col�t� ’ LM1=2N�t��3=2T�t��1=2:

This is independent of the microscopic details of the
system.

The second is the mean sticking time, �st, which is the
inverse of the frequency of sticking events, �st � ��1

st . It is
determined by the probability of the relative velocity to be
below the sticking threshold:

 �st�t� � �col�t�f1� exp��Eloss=T�t��g
�1:

In the sticky limit �st ! �col.
The change in the total energy after a time � yields the

first balance equation

 E�t� �� � E�t� � �E�t; ��N�t�=2: (1)

The average energy �E�t; �� lost during the (short) interval
� is given by:

 �E�t; �� � �f�st�t��Est�t� � ��col�t� � �st�t��Elossg; (2)

where �col;st�t� � ��1
col;st�t�, and �Est�t� is the ensemble

average kinetic energy of sticking pairs h�v2=2iv<vcrit
.

For calculating averages we use a Maxwellian velocity
distribution. This is another crucial assumption of the
mean-field model.

As a next step, the balance equation for the total number
of clusters can be written down

 N�t� �� � N�t� � ��st�t�N�t�=2: (3)

The number of clusters is reduced due to the sticking of
particles, which happens on a scale of the sticking time.
The complete system is composed of the above two bal-
ance Eqs. (1) and (3), with energy dissipation given by (2),
and the expression for the energy itself E�t� � N�t�T�t�=2.
Expanding these into a Taylor series with respect to small
�, we obtain the following system for the temperature and
the number of clusters:
 

dT�t�=dt � �st�t�T�t�
�
1

2
�

1

��st�t�
�E�t; ��
T�t�

�

dN�t�=dt � ��st�t�N�t�=2:

(4)

In what follows, we use nondimensionalized variables ac-
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FIG. 1. Numerical results for (a) the energy decay, (b) tem-
perature, and (c) next neighbor velocity correlations. For the
correlation coefficient � we use the standard definition: � �
�hvi�1vii � hviihvi�1i�=�hv

2
i i � hvii

2�. The inset in (b) shows
the asymptotic temperature (at t � 5� 106) as a function of
Eloss. Each curve represents an average over 50 runs.
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cording to: N!N=N�0�, T ! T=T�0�, Eloss ! Eloss=T�0�,
�col ! �0N�3=2T�1=2, with �0 � LM1=2N�0��3=2T�0��1=2.

The system (4) is quite general, and with appropriate
choice of �E�t; �� it easily gives answers for the inelastic
and sticky limits. Here we concentrate on the wet granular
gas. For weak liquid bridges, we make use of the smallness
of Eloss=T 	 1. In this case, rupture dominates over stick-
ing, and we have �E�t; �� ’ Eloss�col�t��. The solution of
(4) has then a very simple initial scaling N�t� / T�t� /
�1� Elosst=2��1, which yields Haff’s law for the energy
decay.

It should be noted in passing that the Haff’s law in the
inelastic gas [20], E�t� / T�t� � �1� A�1� r2�t��2 (r is
the restitution coefficient and A is a numerical constant),
finally breaks down due to the clustering instability [21–
23], thus invalidating the mean-field approach from which
it was derived. Correlated particles then form loose
bunches which can be considered as clusters. When two
such bunches collide, one bunch of bigger size results,
reminiscent of the sticky gas. In the wet granular gas,
however, clusters are ‘‘real’’ because they are generated
in sticky collisions and form compact objects.

Before we proceed to the late stage, a few words are in
order about the velocity distribution in the wet granular
gas. Although it still has a single peak (see inset in Fig. 2),
after some time its shape starts to deviate from Maxwellian
towards an exponential profile. In Fig. 2 we plot the
kurtosis of the velocity distribution, �2 (cf. [12]), which
is defined as the ratio of the forth moment to the square of
the second moment of the distribution. For a Maxwellian,
�2 � 3. We see that the kurtosis deviates noticeably from
this value only at intermediate times, resulting in a pro-
nounced peak. Quite surprisingly, the same seems to hold
for both the wet and the sticky case. An analogous effect
was pointed out before for numerical simulations of the
free cooling two-dimensional inelastic gas [12]. Although

it has been claimed that in the sticky gas the velocity dis-
tribution is asymptotically different from the Maxwellian
[17], the kurtosis does not provide sufficient information to
judge this. The fact that the kurtosis returns close to 3
indicates that the Maxwellian distribution may be taken as
a reasonable approximation in the late stage.

With this in mind, let us proceed to the sticky gas limit
Eloss=T 
 1 within the mean-field model. In this case, all
collisions are sticky and the first term in (2) dominates, and
only one time scale survives in the system, �col � �st. The
mean energy lost in a collision is the mean relative kinetic
energy T=2 that results in zero time derivative of tempera-
ture in (4). The sticky gas is dissipative and it loses its
energy, but its temperature remains constant. The decay of
the number of clusters (the typical mass growth) is easily
found from the second equation of (4) to be N�t� / t�2=3

[m�t� / t2=3], which is a well-known sticky gas self-similar
regime. For constant temperature, this directly yields the
energy dissipation law, E�t� / t�2=3. Actually, Eq. (4) can
be solved analytically.

The energy decay obtained from the mean-field model is
plotted in Fig. 3 for different values of Eloss. The most
striking difference to the numerical results [cf. Fig. 1(a)] is
that as Eloss is reduced, the asymptotes swing well below
the sticky limit. Neither does the latter serve as a general
asymptote, nor as a lower bound, as observed in the nu-
merics. This strongly suggests that correlations play a
crucial role in our system. They somehow seem to conspire
such as to prevent the energy decay curves to reach below
the sticky limit for smaller energy loss. In the inelastic gas,
despite its significant difference on the microscopic level, a
similar effect exists [11]. To the best of our knowledge, this
phenomenon does not have any physical explanation yet.

In the mean-field model, the sticky gas regime is estab-
lished only when sticky collisions become dominant,
whereas in the real system we observe an intrinsically joint
effect of sticky collisions and correlations. Nearest neigh-
bors’ velocity correlations reduce the collision frequency,
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FIG. 2. Numerical results for the kurtosis of the velocity
distribution, �2 � hv4i=hv2i2. The inset shows the velocity
distribution, f�v�, for Eloss � 0:3 at different times. FIG. 3. Mean-field results for the energy and temperature.
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thus slowing down the energy dissipation. This transition
takes place at the intermediate stage, together with the
velocity distribution changing its shape. In the sticky re-
gime, the temperature reaches a constant value just when
correlations build up in the system [see Fig. 1(b) and 1(c)].
Correlated nearest-neighbor velocities are the character-
istic of the analytical self-similar sticky gas solution ob-
tained in Ref. [17]. It is remarkable that even in the
completely sticky limit Eloss ! 1, there is a transition
period where the temperature decreases, and correlations
grow up constructing the self-similar solution. This tran-
sition corresponds to the peak in the kurtosis as described
above. Furthermore, correlations must develop between
mass and velocity, because it is obviously impossible to
have many fast and heavy clusters and preserve a given
temperature at the same time. Thus, distribution functions
of velocities and masses also become coupled [17].

Another intriguing feature of the wet granular gas is that
the asymptotic temperature becomes smaller for decreas-
ing Eloss [see Fig. 1(b), insets therein and in Fig. 3]. Both in
theory and numerics we can see that with the decrease of
the liquid bridge energy, the temperature decreases more
mildly, but finally reaches a smaller asymptotic value
[cf. the intersection of the temperature curves in Fig. 1(b)
and 3]. The explanation of this phenomenon is quite
straightforward. The strength of the liquid bridge deter-
mines the dissipation rate at the initial stage of the free
cooling. This results in a slower decay of the temperature.
On the other hand, it determines the level of the tempera-
ture at which sticky events become dominant. Thus the
asymptotic regime is reached at a lower temperature for
smaller Eloss. It should finally be noted that the typical
cluster size curves,m�t�, in log-log scale are also approach-
ing the sticky limit with an inclination of 2=3, as predicted
by the theory of the sticky gas (not shown).

Thus we have demonstrated that the wet granular gas,
which represents a particularly simple model covering a
wide class of inelastic gas systems, exhibits a rich structure
with some surprising features which have no explanation
yet. It suggests that all systems known so far with collision
rules conserving the momentum and mass are asymptoti-
cally bounded to the sticky gas limit. There is no clear
reasoning in the literature why this should be the case, but
we showed that correlations must play the key role here.
Memory effects are present in the system as well. They
manifest themselves in different asymptotic values of tem-
perature and correlations [cf. Fig. 1(c)] in the sticky regime
for different liquid bridge energies Eloss. Maybe the key to
understanding these phenomena lies in mapping the dis-
cussed systems to the Burgers equation [24], which is a
continuous description of pressureless gases with such

collision rules, but giving one-to-one correspondence
only for the case of the sticky gas. So far this remains a
challenging open problem.
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