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In this work, we study the diffusion of admixture particles in a one-dimensional velocity field given by a
gradient of a random potential. This refers us to the case of random compressible flows, where previously only
scaling estimates were available. We develop a general approach which allows to solve this problem analyti-
cally. With its help we derive the macroscopic transport equation and rigorously show in which cases transport
can be subdiffusive. We find the Fourier-Laplace transform of the Green’s function of this equation and prove
that for some potential distributions it satisfies the subdiffusive equation with fractional derivative with respect
to time.
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I. INTRODUCTION

Diffusion of particles in a random environment is a gen-
eral physical problem which continuously receives attention
in the context of a wide range of phenomena. Various
anomalousscompared to the classical diffusiond types of be-
havior were discovered and investigatedf1–4g. Of course,
one tries to find a universal language for the description of
such kinds of processes. One of the possibilities is a lan-
guage of fractional derivatives which have already proved to
be a useful and flexible tool for the description of a number
of stochastic processes. In this paper we employ this lan-
guage to address the question of anomalous diffusion in
static random compressible flows. The influence of convec-
tion on molecular diffusion has been studied in many theo-
retical worksssee cited reviews and Refs.f5,6gd. As a rule,
incompressible velocity fields are considered. We should es-
pecially mention the work of Vergassola and Avellanedaf7g
on the scalar transport in compressible flows, which is
closely related to the subject being considered here. Their
work showed that static potential one-dimensional flow can
deplete the diffusion due to the trapping of particles, while in
the majority of cases, convection leads to enhanced diffu-
sion. The case of random potential, which is particularly in-
teresting, was only mentioned. By their analogy with Sinai’s
problemf8g ssee also Ref.f3gd the authors of Ref.f7g antici-
pated the scaling of the subdiffusion regime.

In our work, we show rigorously that, under some condi-
tions on the velocity potential, transport is subdiffusive. The
analytical expression for the Fourier-Laplace transform of
the Green’s function of the macroscopic transport equation is
the central result of this paper. Moreover, for some particular
classes of velocity distributions, transport is governed by the
subdiffusion equation with fractional derivative with respect
to time, which means that the exact analytical solution of the
problem in usual time and space coordinates can be found. It
is remarkable, that the general method used for this deriva-
tion is also applicable to the problem of the diffusion on

comblike structures, and, in simplified form, to the periodic
potential case. The contents of this paper is organized in the
following way. First, we consider the case of a periodic ve-
locity field and recover the result of Ref.f7g on the depletion
of the transport. In Sec. III, we solve analytically the prob-
lem of subdiffusion of a passive scalar in a one-dimensional
compressible random velocity field. The averaging procedure
and fractional derivative equations are also briefly consid-
ered there. In the last section, we conclude and discuss open
problems.

II. PERIODIC POTENTIAL

We will consider the advection-diffusion equation and
first restrict ourselves to the one-dimensional case,

]n

]t
+ ¹ snvd = DDn,

n = nsx,td, v = vsxd, D = const. s1d

The velocity field is static and its characteristic scale is much
smaller than the scale of the gradients of the macroscopic
density of particles. Nontrivial influence of advection on the
particle diffusion could be found even for the simplest case
of the periodic velocity fieldv=−¹w, wherewsxd is a peri-
odic potential with periodl, wsx+ ld=wsxd. One can bear in
mind the following example,wsxd=bfsins2px/ ld−1g, where
b is the well depth. Equations1d can be rewritten in terms of
flow q,

]n

]t
= − ¹ q,

q = nv − D
]n

]x
.

One can find the stationary solution ofs1d,

]n

]t
= 0, q = q0 = const,
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nstsxd = SE
x0

x q0

D
ewsyd/D dyDe−wsxd/D s2d

from which it is easy to see that wells collect an exponential
number of particles leaving rarefied regions in between.

Now we will look for small perturbation of the stationary
solution and substituteq0 by slow varying ssee belowd
qsx,td,

]n

]t
= − ¹ qsx,td.

We will look for the time-dependent solution in the form

nsx,td = SE
x0

x qsy,td
D

ewsyd/D dyDe−wsxd/D.

We are interested in the macroscopic concentration of par-
ticles, which corresponds to the average over several charac-
teristic lengths speriodsd of the potential knl
=s1/Ldex−L/2

x+L/2nsy,tddy, L@ l. Now it is desirable to connect
the gradient of macroscopic density distribution with the
flow q,

]knl
]x

=
]

]x

1

L
E

x−L/2

x+L/2 SE
z0

z qsy,td
D

ewsyd/D dyDe−wszd/Ddz.

Taking in account the slow variation ofqsx,td on the aver-
aging scaleL and the periodic property of the potential we
arrive at

]knl
]x

=
qsx,td

D Sconst +
a

L
E

0

L

e−wszd/D dzD , s3d

wherea defined as

E
z0+x

z+x

ewsyd dy. asz− z0d.

The first term in the parentheses ins3d is of the order of
unity, whereas the second one is of the order of expsb/Dd
swhereb is the depth of the potential welld and is therefore
dominant. Finally we can write

qsx,td = D* ]knl
]x

,

]knl
]t

= D* ]2knl
]x2 , D* ~ e−b/D.

The macroscopic transport would still be diffusive but with
an exponentially smallsdepending on the potential well
depthd effective diffusion coefficient. This result was recov-
ered in several previous worksssee Refs.f3,7gd and it could
be anticipated based on the very simple physical picture of
the process. Each potential well is a trap which attracts an
exponentially large number of particles, but the macroscopic
transport is only due to the diffusion of particles between
these wells, whose population, respectively, is exponentially

small, compared to the total amount of admixture being
transported. This leads to the exponential decrease in the
diffusion constant.

III. DIFFUSION IN A RANDOM VELOCITY FIELD

Now consider the case of the random velocity field, given
by a random potential. We notice from the previous example,
that the basic property of the potential, which is important
for transport, is the capacity of wells and the distance be-
tween them, which gives one of the characteristic space
scales of the problem. For the simplicity of the intermediate
calculations, we choose a model potential with symmetric
triangular wells of equal width 2a, separated by equal dis-
tancesl but with random distribution of depthsb ssee Fig. 1d.

First, we reformulate the approach, which we have al-
ready implicitly applied for the periodic potential, for the
case of the random velocity field. The essential point here is
the separation of the particlesnsx,td into two groups, diffus-
ing between the wellsnxsx,td and wondering inside them
nwsx,td. The concentration of particles, as well as their total
number inside each wellNwstd, depends on thenxstd, taken
on its boundaries, and on the well depth. The idea now is to
connect the two concentrations and write the macroscopic
transport equation for the total concentration of particles tak-
ing into account that only a part of them is actually respon-
sible for the transport.

We are in a typical situation of the quenched disorder
f3,4g when the motion of particles in a fixed but random
environment is considered. That is why inevitably we are
faced with an averaging procedure, which helps us to pass to
the macroscopic transport equation.

We have a fixed realizationbsxd=bsxnd=bn of a random
processswell depthsd with the probability distributionPsbd.
There are several ways how to simplify this problem. The
first and the most common is the ensemble averaging, or
averaging over the realizations of the random potential. This
does not fit our purposes, as we are trying to predict the
macroscopic dynamics in a fixed sample, but not its statisti-
cal properties. This is why we use another approach which
incorporates the “self-averaging” feature of our random vari-
able. There are discussions on the different ways of averag-
ing f9,10g, some of which lead to paradoxical and nonphysi-
cal results. The method suggested below seems to be natural
from the physical point of view and correctly recovers all

FIG. 1. Random potential of the velocity fieldwsxd.
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limiting cases. We are looking for the macroscopic dynamics
on scales reasonably exceeding characteristic potential scale
l. Quantities which are physically important or measured val-

ues would characterize an area of the sizeL̂ around pointX
containing a large number of wellsN,

fsXd = s1/Ndo
n=0

N

fsbnd,

wherebn is a subset of the realization of the random process,
bm andbk are independent ifmÞk. If N is sufficiently large,
for the typical realizationbn we can write

f̄ =E
0

`

fsbdPsbddb. s4d

Here we used the law of large numbers. This transition can
also be called self-averaging. Now we can finally state the
hierarchy of scales in our problem,

l ! L̂ ! X, s5d

whereL̂ is the averaging window, andX is the scale of the
macroscopic change of the concentration of particles.

Thus the total concentration can be written as

nsx,td = nxsx,td +
N̄w„nxsx,td…

l
.

But the macroscopic transport is only due to the free par-
ticles nx, that is why in principle it can be slower than clas-
sical diffusion,

]n

]t
= D

]2nx

]x2 . s6d

For the periodic potential we knows2d that Nw is simply
proportional to thenx, but the coefficient of the proportion-
ality is exponentially big, then froms6d it follows directly
that transport is diffusive but depleted. The situation be-
comes entirely different when allowance for the deep wells
changes the time behavior ofNw. We will now consider this
case.

We must find the capacity of the wellNwstd as a function
of time and boundary conditions. To do this analytically, we
have chosen the simplest form of the potential well—
triangular and symmetric. Then the velocity of particles is
equal tov=b/a=const on the left slope and −v on the right
slope of the well, whereb and 2a are the depth and width of
the well, respectivelyssee Fig. 1d. We choose the left bound-
ary of the well as an origin for the frame of reference. At the
left sx=0d and right sx=2ad boundary, the concentration of
particles in the wellnw is equal tonxstd svariation of the
macroscopic concentration on the size of the well is negli-
gibled, in the center of the wellsx=ad we set the zero flow
condition because of the symmetry of the problem,

unwux=0 = nxstd, q = qsx = a − d + qsx = a + d = 0,

qsx = ± ad = 7 nwv + UD
]nw

]x
U

x=a±
.

Other physically reasonable boundary conditions could be
set up as well, but in the calculation of the total number of
trapped particles they give the same asymptotic result. The
transport equation in the well itself is

]nw

]t
± nwv = D

]2nw

]x2 . s7d

We use the Laplace transform method to solve it. Starting
from initially empty wells unwsxdut=0=0 we can get the an-
swer for the Laplace component of the concentrationse.g., in
the left part of the welld

nw,p = c1e
xsv+qd/2D + c2e

xsv−qd/2D, q = Î4Dp + v2.

One can subtract the stationary solution ofs7d and consider
only the perturbation to it. In any case what one needs to
know is how fast the well reacts on the change of boundary
conditions and how many particles it is able to swallow. The
coefficientsc1 and c2 are found from the boundary condi-
tions,

c1 =
− sq + vdnx,p

eqa/Dsv − qd − v − q
, c2 =

eqa/Dsv − qdnx,p

eqa/Dsv − qd − v − q
.

Then the total number of particles in the well,Nw,p, is

Nw,p = 2E
0

a

nw,psxddx= 2
nx,p2Ds1 − eaq/Dd

− q − v + eaq/Dsv − qd
.

As we are interested in the asymptotic behavior for large
time scales corresponding to smallp we can make the ex-
pansion,

Nw,p = 2
nx,pDs1 − eav/Dd

− v −
D

v
seav/D + 1dp

= nx,pgpsvd. s8d

In ordinary time, the expression forgstd is

gstd = 2
seav/D − 1dve−v2t/Dseav/D+1d

eav/D + 1
.

To follow the rate of the filling and the capacity of the well
we impose the constant condition on its boundariesnxsx
=0d=nxs2ad=n0,

Nwstd =
n0D

v
seav/D − 1ds1 − e−v2t/Ds1+eav/Ddd.

From the above expression we can see that the filling process
is exponentially slow and the capacity is exponentially big.
This is the crucial feature of the system. Each well represents
a trap which swallows almost all particles approaching it. In
principle, it can terminate all transport. This is the specific
side of the quenched disorderscompared to the annealed
oned. Once a realization of the potential with one extremely
deep well is given, it would collect all of the particles and no
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transport would be possible. This property is hidden in Eq.
s4d, when we pass from the sum to the integral we use the
notion of typical realization of the random process and con-
vergence in the probabilistic sense. The question of conver-
gence for exponential fluctuations is particularly delicate and
requires additional mathematical treatment in the context of
quenched disorder phenomena. Meanwhile we leave this
problem for future investigations.

Nevertheless if one assumes that the distribution of depths
is decaying fast enough to prevent the appearance of ex-
tremely deep wells, one can proceed with calculating macro-
scopic transport equations according to the suggested ap-
proach.

Moving onto the macroscopic description we perform the
averaging ofs8d fscaling relationss5d should be kept in
mindg with a distribution function of depths of wellsfsbd
ffsvdg and find its asymptotic at smallp or larget. We choose
fsbd in the form

A

D2

be−ab/D

s1 + b/Ddb , s9d

whereAsa ,bd is a normalizing factor. The averaging integral
reads

2aE
0

` sex − 1de−ax

x2 +
a2p

D
sex + 1d

x2

s1 + xdbdx. s10d

In casea.1 deep wells are suppressed and the transport, as
we showed before, is purely diffusive. But fora,1 the
above integral diverges asp tends to zero due to the expo-
nential growth of the integrand at largex. The accurate cal-
culation of thep asymptotic of this integral is quite a delicate
problem and we do it in a detailed manner in the Appendix,
which gives us the following result:

gp = OS psa−1d

lnb+2sa−1d p
D . s11d

Choosingb=2s1−ad one can have purely fractional power
law divergence at smallp.

Now it is the right time to remember Eq.s6d. After
Laplace and Fourier transformation with respect to time and
coordinatex, respectively,s6d reads

pnp,k − n0 = − k2Dnw,k,p. s12d

From s8d we know the connection between total number of
particles and the concentration on its boundaries, thus

nk,p = nx,k,p + N̄w,p/l = nx,k,ps1 + gp/ld, s13d

wheregp is given bys11d. Combinings12d and s13d we ob-
tain the answer for the Fourier-Laplace transform of the con-
centration of particles,

np,k =
n0klpa−1

slpa + Dk2d
,

a , 1, l =
2a

l
p cscfps1 − adgSa2

D
Da−1

. s14d

This formula gives the analytical solution of the problem. It
is remarkable thats14d represents a standard form of writing
an anomalous diffusion equation with fractional derivatives
in Fourier-Laplace spacef11–13g. Transforming it back to
normal space and time coordinates we obtain

]an

]ta =
D

l

]2n

]x2 +
n0sxd

ta . s15d

Complete information about anomalous diffusion equations
in fractional derivatives, their properties, solutions and appli-
cations can be found in a number of excellent reviews
f2,11,14,15g. Subdiffusion equations are of particular interest
because in fewer cases they can be rigorously derived from
the underlying physical problem. In addition to those being
discussed in the current paper, Refs.f6,16–18g should also
be noted in this connection. We will mention here only the
basic features ofs15d f12,13g. The solution ofs15d has self-
similar form

Gsr,td =
1

ta/2FS x

ta/2D . s16d

This self-similarity, which in general drastically simplifies
the problem, here is self-attracting. It means that for any
initial distribution after some time the profile of the Green’s
function of the equation would be formed. The spreading of
the cloud is governed by slower than classical diffusion scal-
ing law x̄~ ta/2. Here the question of memory effects arises
f19g. Besides obvious memory included in the nonlocal time
derivative operatorswhich is a convolution type integral with
a power law functiond, there exists a strong dependence on
the initial condition. One can easily check thats15d does not
possess the semigroup property or, in other words, breaks the
continuity of the evolution. It was shown in Ref.f19g that
only by taking into account microscopic details of the trans-
port, one can have a complete and exact description of the
problem. Moreover, by special choice of the initial micro-
scopic distribution evolution can differ froms15d on micro-
scopic times. In the case of the diffusion in a random com-
pressible flow, it is the initial filling of wells which plays the
role of microdistribution. That is why setting them to be
empty in the beginning is a quite critical assumption.

For the general casefother possible values ofb in s9d and
s11dg, evolution is still subdiffusive and its Green’s function
can be found in the spirit ofs14d with a more complicated
susually logarithmicd dependence onp, although it cannot be
represented in the language of fractional derivatives,

np,k =
n0ks1 + gp/ld

fps1 + gp/ld + Dk2g
, s17d

wheregp is given by the average ofs8d. Thus for any given
velocity distribution the problem reduces to the calculation
of the averages8d and inverse Fourier-Laplace transform of
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s17d which, with a power of modern numerical techniques, is
not at all difficult.

It should be noted, that the approach developed and used
in this paper can be successfully applied to the problem of
the diffusion on comblike structuresf9,10,16,20–23g. It al-
lows to derive macroscopic equations in a natural way as
well as to establish a connection to the continuous time ran-
dom walk modelf15g. The results perfectly reproduce recent
theoretical worksf9,22g and numerical simulationsf10g, but
the more detailed description of this topic is beyond the
scope of this paper.

IV. CONCLUSIONS

We have proposed a simple approach, which is based on
the separation of particles into two classes, resting and wan-
dering in trapsswells of the potential of the velocity fieldd
and working as carriers in between resting points, which
drive the transport of the whole population of both classes.
Capability of traps to accept and accommodate particles
plays the essential role in the overall transport. The analytical
solution for this problem was found in terms of the Fourier
Laplace transform of the Green’s function of the effective
transport equation. It was shown that random potential field
of velocities can lead not only to the depletion of the diffu-
sion, but also to the slower subdiffusion behavior with dif-
ferent self-similarityx̄~ tg, 0,g,1/2. In these cases, the
transport can be described in terms of fractional derivative
equations. We believe that using the language of fractional
derivatives, which naturally appear in various physical prob-
lems, significantly simplifies them and visualizes their solu-
tions and properties. It was also noted that the averaging
procedure and results obtained with its help, should be re-
ferred to the real experimental conditions carefully. To the
best of our knowledge, the mathematical side of this proce-
dure in the context of the quenched disorder was scarcely
investigated and remains an open problem.
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APPENDIX

To estimates10d we note thatx2 in the nominator allows
us to replaceex−1→ex without creating discontinuity in 0
fthis convenience is the reason for the choice of the distribu-
tion function s9dg. We also substituteex+1→ex,

E
0

` exe−ax

x2 + p8ex

x2

s1 + xdbdx=E
0

` e−ax

x2e−x + p8

x2

s1 + xdbdx,

where p8=sa2p/Dd→0. By the change of variablesy
=e−x/p8 it is converted to

p8sa−1dE
0

1/p8 ysa−1d

y ln2sp8yd + 1

ln2sp8yd
f1 − lnsp8ydgbdy.

The asymptotic of this integral at smallp is determined by a
small region in the vicinity of 0. Let us split it into two parts

I =E
0

1/p8
=E

0

p8
+E

p8

1/p8
= I1 + I2.

Then, in the first integral, we can neglect lnp8 compared to
ln y and vice versa in the second,

E
0

p8 ysa−1d

y ln2 y + 1

ln2 ydy

s1 − ln ydb +E
p8

1/p8 ysa−1d

y ln2 p8 + 1

ln2 p8dy

s1 − ln p8db .

The first integral is obviously small asOspd. Introducing a
variablez=y ln2 p8 we can rewriteI2 in the following way:

E
p8 ln2 p8

ln2p8/p8 zsa−1d

z+ 1

ln2s1−ad p8

s1 − ln p8dbdz.
1

lnb+2sa−1d p8
E

0

` zsa−1d

z+ 1
dz

=
− p cscfpsa − 1dg

lnb+2sa−1d p8
,

which is the leading term and gives the asymptotic ofgp,

gp = OS psa−1d

lnb+2sa−1d p
D .
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