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Abstract—Weak and strong nonlinearities that determine the evolution of regular ensembles of electron vorti-
ces in a magnetized plasma are analyzed. Qualitative differences in behavior between such a medium and stan-
dard nonlinear media are revealed. © 2004 MAIK “Nauka/Interperiodica”.
In recent years, it has become rather popular to rep-
resent magnetized plasma as a medium filled with two-
dimensional vortices, vortex filaments, or other vortex
structures (see, e.g., [1]). Therefore, investigation into
the dynamics of large chaotic or regular vortex ensem-
bles seems to be a very interesting and challenging
problem. In [2], the following equation describing the
evolution of long-wavelength nonlinear perturbations
in a triangular lattice (the only one that is stable) of
identical electron-type two-dimensional point vortices
was derived:

(1)

where x = {ξx , ξy} is the two-dimensional deformation
(displacement) vector of the vortex crystalline medium
treated as a continuous medium and summation is per-
formed over repeated Greek indices. Equation (1) can
be regarded as an analog of the acoustic equation for
ordinary crystals. In [2], its linear properties were
mainly analyzed. Below, we will study specific nonlin-
ear properties of Eq. (1).

First, we will comment on this basic equation (see
[2] for details). It is derived through a series expansion
in the vortex displacement from the lattice points.
Therefore, Eq. (1) is valid when the deformation is
small (|x | ! a, where a is the distance between the
neighboring lattice points; more precisely, it is the dif-
ference between the displacements of the neighbors
that must be small) and, accordingly, the nonlinearity is
small. By the point vortex, we mean a vortex whose
core (a domain with a nonzero curl of the generalized
electron momentum) is small compared to a. Micro-
scopic vortices are characterized by their (identical)
intensities q0 and the screening-type flux function
ψ(|r |/b) with the screening scale b @ a. Both these
parameters describe the flow produced by each vortex
(for a vortex located at r = 0, we have v = q0ez × —ψ)

and the vortex interaction energy % = (ri – rj),
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where summation is performed over the entire lattice.
In the continuous medium approximation adopted here,
the sum is replaced with an integral over a plane (see
[2]). The local nature of Eq. (1) (although, as follows
from the form of the function ψ, the motion of each vor-
tex is determined by its neighbors, which are ~(b/a)2 in
number) is associated with the fact that the characteris-
tic perturbation wavelength meets the inequality λ @ b.
The lattice elasticity moduli, which characterize the
response of the lattice to uniform compression and tor-
sion (shear), are time-independent (depend on its
unperturbed structure alone),

and differ significantly from each other: D ~ R(a/b)2.
The reason is that the discrete lattice demonstrates poor
compressibility in vortex flows. For electron vortices in
the electron magnetohydrodynamics [3], using the
results of [2] and the pioneering work on vortex lattices
[5], we obtain

(the same behavior is typical of vortexes in supercon-
ductors [4], in which ψ is the Macdonald function
K0(rωpe/c)).

It can be seen that, within Eq. (1), nonlinear waves
can be analyzed in terms of the normal coordinates of
shear and compression deformations, ez · (∇  × x) and
∇  · x.1 For nonlinear effects, it turns out to be more con-
venient to consider potentials of these deformations by
representing the displacement vector as x = ez × —φ + —ϕ.

1 The fact that only one type of waves that interrelate these defor-
mations exists in two-dimensional media (unlike ordinary crys-
tals, in which they evolve independently) is caused by Cartesian
rather than Newtonian vortex mechanics (the position of a parti-
cle determines its velocity rather than acceleration). As a result,
the two-dimensional vortex problem is, in a sense, equivalent to
an ordinary one-dimensional problem (see [2]).
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Interestingly, the Schrödinger character of the phonon
spectrum of a triangular electron vortex lattice (ω ∝ k2)
can be emphasized by combining these potentials into

the wave function Φ = φ + , which reduces the
linear portion of Eq. (1) to:

(removing the ∇  operator from both sides of the equa-
tion produces constant terms, which are hereafter set
equal to zero; this, however, has no effect on the physi-
cally observed quantity x). This expression also clearly
demonstrates that, since in linear waves the ratio D/R is
small, shear deformations dominate over uniform com-
pression: φ ~ b/aϕ (cf. [2]).

Let us start our nonlinear analysis with the study of
stationary weakly nonlinear traveling acoustic waves. For
these waves, an important effect is that the nonlinearity
depends on the shape of the leading edge. In fact, it can
easily be seen that the terms of Eq. (1) that are quadratic
in x contain both φ and ϕ. However, for plane waves,
x(x – ut), because of the geometrical degeneration, the
much stronger (due to the deformation hierarchy φ @ ϕ
indicated above) nonlinearity φ2 (as well as the weaker
nonlinearity φϕ) does not contribute to the equation

(2)

(here, the prime stands for the derivative with respect to
the independent argument described above), which fol-
lows from Eq. (1). As a result, this equation contains
only the weakest nonlinearity related to ϕ2. Single inte-
gration of Eq. (2) (taking into account the smallness of
the nonlinear term) yields the following equation for
cnoidal waves (i.e., waves that can be represented in
terms of elliptical functions; there are no solitons here):

(3)

The form of this equation is quite typical. However, for
nonplanar wave fronts, nonlinear torsion effects are
“switched on.” These effects, as can easily be seen,
become dominant at λ/r @ (a/b)2, where r is the radius
of curvature of the wave front [cf. Eq. (2) and (4)].
Strictly speaking, a curved traveling wave is unsteady;
however, at λ ! r, the unsteady behavior of the wave is
not pronounced and the evolution of perturbations of
the form x(r – ut) (where r is the radius in polar coor-
dinates) can be studied using the equation

(4)

which follows from Eq. (1) when the above inequalities
are satisfied. Here, the radius r in the coefficient by the
nonlinear term can be considered constant. Unlike
usual equation (2), new equation (4) is sensitive to the
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sign of u (i.e., whether the traveling wave is converging
or diverging) and the sign of q0 (i.e., the twist direction
of microscopic flows in the crystal). Single integration
now yields a more exotic relationship for weakly non-
linear cnoidal waves

(5)

which cannot be reduced to an ordinary Sagdeev potential.
The strongly nonlinear evolution described by

Eq. (1) is of particular interest. The possibility of this
kind of evolution, in spite of the above assumptions
used in deriving this equation, is also associated with
the small value of a/b. In fact, the nonlinearity appears
when quadratic (with respect to the deformation) cor-
rections are taken into account in the first term on the
right-hand side, which is proportional to R. This term
can significantly exceed the second (caused by disper-
sion) linear term, which is proportional to D. For purely
shear deformations (ϕ ≡ 0), the largest term vanishes,
which yields the following equation (D  0):

(6)

which contains the Hessian on its right-hand side and
has a very symmetric form: Eq. (6) remains unchanged
under the scaling transformations x  αx, y  βy,
φ  γφ, and t  α2β2/γt and under any rotation of
the xy coordinate system. Although the approximation
D = 0 is physically justified, it significantly changes the
form of the equation, so that the evolution no longer has
a wave character. For ordinary continuous media, this is
equivalent of completely ignoring the crystal elasticity
(although we partially take it into account here) or the
temperature (i.e., pressure) of an ideal gas (see below).

Equation (6) can be written in terms of the varia-
tional derivative as

where

or, in a more invariant form,

It can easily be seen from these expressions that, since
the density 8 is a homogeneous function with respect
to derivatives in φ, solutions to Eq. (6) satisfy the fol-
lowing evolutionary relationships:
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Further, the right-hand side of Eq. (6) is a meaning-
ful block of the Monge–Ampére equation [6], associ-
ated with the differential geometry of surfaces. This
block vanishes as the Gaussian curvature of the surface
z = φ(x, y) vanishes. In other words, a nonuniform
deformation of the vortex crystal is static if φ describes
a developable surface (a cylindrical or conical surface
or a surface produced by tangents to an arbitrary three-
dimensional curve). The general parametric expression
for such φ has the form [6]

where f(ζ) and g(ζ) are arbitrary functions. In fact,
since the physically observed quantity is the deforma-
tion x itself (rather than its potentials), the configura-
tions for which the Hessian of φ is constant are also
static. They can also be described by a general paramet-
ric expression, but this is only possible when this con-
stant is negative [6].

If we expand the right-hand side of Eq. (6) in a
power series in x and y, then the nontrivial evolution
starts with the emergence of linear terms. Moreover, if
φxxφyy – (φxy)2 = c1x + c2y, then the deformations can eas-
ily be seen to increase by a linear ballistic law:

(7)

There is a very wide range of initial deformation con-
figurations (not only power functions) that produce
such an evolution [6]. For example, at c1 = –1 and c2 = 0
(in view of the symmetries of Eq. (6), this does not limit
the generality of our consideration), a suitable initial
condition in the region x > 0 is

, (8)

where the function f and constant C are arbitrary. Of
course, such deformations grow without limit as x  ∞
(seemingly, such behavior is unavoidable in this case,
because it is only singularities at infinity that can allow
a nonuniformly deformed crystal to be displaced as a
whole). However, because of the local character of the
equations, if condition (8) holds only over a bounded
region, then the evolution described by Eq. (7) can last
here over a fairly long time.

As a rule, the greatest amount of information about
the evolution described by nonlinear equations can be
obtained from studying the possible singularities that
exhibit themselves in a finite time. Three types of such
singularities can be distinguished (since Eq. (6) is local,
we expand φ about the singularity point (0, 0)):

(9)
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However, as t  t0, higher order nonlinearities and/or
dispersion effects prevent the deformations from grow-
ing without limit. The last singularity in (9) differs from
the others in that it appears on a line rather than at a
point. It is also of interest because, in the variables ζ =
x – Ay2 and t, the one-dimensional Hessian is autono-
mous with respect to the independent argument and
Eq. (6) transforms to the solvable equation

which reduces to the classical nonlinear diffusion equa-
tion through the simple change of variables φζ = T (it is
relevant to refer here to the excellent handbook [6]):

(10)

Negative values of ART lead to the well-known
monotonic spread of the T profile according to the
attractive self-similarity law, i.e., to the disappearance
of the perturbation, whereas in the case of ART > 0, the
profile collapses in an explosive manner, which gener-
alizes the last local singularity in (9):

(11)

at ζ2 < [2AR(t0 – t)]2/3 and T = 0 outside the indicated
interval. In fact, solution (11) describes both these cases
(at t > t0 and t < t0, respectively). The amplitude of T at
ζ = 0 (i.e., the parameter ζ0) is uniquely determined by
the integral

which remains constant in the course of evolution.
Peaking solution (11) describes the explosive growth of
shear deformation along the lines ζ = const with the
same torsion (clockwise or counterclockwise) as that of
the flow produced by an individual vortex of the lattice.

Let us stress once again that the applicability of
Eq. (6) to real lattices is limited in space (because of
problems arising at |x |, |y |  ∞) and time (because we
ignored lattice rigidity with respect to shear). The
increase in the magnitude of the deformation vector x
and the decrease in its scale length near the singularity
points also violate the approximations of small nonlin-
earity and locality (λ @ b). At the same time, the evolu-
tion described by Eq. (6) is non-Hamiltonian (which
clearly exhibits itself in the case of diffusion described
by Eq. (10)) with a tendency toward single-sided growth
(which is seen from the fact that d(RU)/dt > 0), which
raises the question of the problem of energy conservation
in the system. However, it can be seen that, by the defini-
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tion of this energy for Eq. (6) (taking the unperturbed
state of the lattice as the reference state), it is equal to

because, since ψ simultaneously contributes to the
dynamics and energy of the vortex ensembles, their
energy density is proportional to the term under the
operator ez × — in the dynamic equation for x = ez × —φ.
Since this energy density is proportional to the total
derivative, the total energy of any localized perturba-
tion is identically equal to zero (of course, only within
this approximation). As for the “time arrow” in the
direction of evolution, it is more correct to talk about a
tendency toward the increase in — × x (i.e., ∆φ, which
determines the sign of 8) in accordance with the
microscopic characteristic q0 (which determines the
sign of R), because the preferred rotation direction of
the continuous flow about certain vortexes destroys the
chiral symmetry.2 

2 The change in the type of the equation when two Hamiltonian
variables (φ and ϕ) are reduced to one is not unique. As a crude
analogue of this effect in an ordinary medium, one can consider a
one-dimensional (see above) flow of a compressible gas (for
which these two variables are the potential of the velocity field
and the density) at a zero temperature. The classic dynamic equa-
tion for the velocity ∂v /∂t + ∂(v 2/2)∂x = 0, which remains mean-

ingful, can be rewritten for the potential v  = ϕx as ∂ϕ/∂t = − /2,

which quite clearly defines the time arrow for the functional  =

– :  > 0. Of course, the evolution described by

Eq. (6) is much more complicated and diversified.
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Thus, the above analysis has demonstrated that there
is a qualitative difference between the nonlinear disper-
sion hierarchy of a vortex plasma (more precisely, the
vortex ensemble in plasma) and that of a usual wave
media described by equations like that of Korteweg–
de Vries. Such peculiar behavior and its sensitivity to
the internal chirality would seem to be of particular
interest.
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