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The memory effects in stochastic transport, namely, the dependence of the form of transport equations on the
macroscopic time are considered. Equations explicitly taking into account the microscopic aspect of the prob-
lem, without which the transfer processes cannot be adequately described, are derived; the methods of their
solution are suggested; and the asymptotic properties of the latter are analyzed. © 2003 MAIK “Nauka/Inter-
periodica”.
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In recent years, growing interest has been shown in
the processes of stochastic transport because of the spa-
tial and temporal nonlocalities inherent in this phenom-
enon [1–4]. The use of an adequate mathematical lan-
guage of fractional derivatives [5, 6] and stable distri-
butions [1, 7] allowed the physical theory of random
transport to be substantially generalized, as compared
to the primitive diffusion picture.

There are many physical reasons that are responsi-
ble for the above-mentioned nonlocalities (fractional
derivatives) in the transport equations (see discussion in
[8, 9]). One of the most frequently occurring phenom-
ena is the presence of slowly damping spatial and time
correlations in the motion of individual particles in a
spreading cloud. Inasmuch as the macroscopic (for
cloud) transport equations are derived from the random
walk model for individual (not necessarily physical)
particles, these equations basically have an asymptotic
character. In our preceding work [8], concerning the
effects caused by the limited walk rate, we drew atten-
tion to the nontriviality of this asymptotic transition and
to the nontrivial dependence of the macroscopic trans-
port on the microscopic details and on the initial condi-
tions. It is our purpose to reveal, in this work, the details
of the physical consequences of this ideological and
mathematical nontriviality.

Evidently, one should expect that evolution is con-
tinuous for any physical process satisfying the causality
principle: if the solution to the equations is functionally
related to the initial state by the Green’s function Gt,
i.e., if n(x, t) = Gt * n(t = 0), then

(1)

In other words, if we consider the state at any time t1 as
a new initial condition, we do not disturb the evolution
continuity. Nevertheless, the equations discussed in all
available works devoted to the nonlocal nondiffusion

Gt1 t2+  * n t 0=( ) Gt2 * n t t1=( )=

=  Gt2 * Gt1 * n t 0=( )( ).
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transport with a fractional time derivative, including a
recent excellent review [4], strictly speaking, do not
possess this property. This unpleasant fact has in no
way been discussed in the literature, though it is pre-
cisely the point that is expected to be helpful in the rec-
ognition of a hidden defect of the above-mentioned
description, namely, of the incompleteness in the
description of a particle cloud only in terms of its mac-
roscopic concentration n(x, t). Interestingly, similar
problems arise for strongly coupled coulombic systems
in the quantum kinetic theory, where the solutions show
a strong dependence on the initial correlations [10].

An attempt to unravel this phenomenon leads to the
paradoxical conclusion that, even in the cases where the
effective equation for macroscopic evolution reduces to
the classical diffusion equation containing the familiar
first-order time derivative (evidently, satisfying Eq.
(1)), the defect is often “hidden under the rug.” In real-
ity, the time for approaching the microscopic evolution
regime strongly depends on the initial condition and
can be much longer than the microscopic time 〈τ〉  char-
acterizing the random walk of individual particles (see
below). This is especially characteristic of the subdiffu-
sion time operators.

Therefore, the memory effects considered in this
work consist not in the familiar temporal nonlocality
(fractional derivative) in the effective transport equa-
tion but in the fact that the form of this equation
depends on the macroscopic time t (see below).

When deriving the transport equations, we will use,
as in [6, 8], the standard random walk model. A one-
dimensional motion of a particle along the x axis obeys
the probability laws g(|x |) and f(t): a particle appearing
at any point (say, x0) may undergo an instantaneous
jump to the neighboring points in such a way that the
probability of finding it in the interval (x0 + x, x0 + x +
dx) equals g(x)dx, and this transfer proceeds after some
waiting process, so that the probability of escaping the
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particle residence in the interval (t, t + dt) is equal to
f(t)dt. For the convenience of intermediate calcula-
tions, we choose, without loss of generality, these func-
tions in the form [6, 8]

(2)

Here, Γ is the Euler gamma function, and the numerical
coefficients are determined by the unity normalization
condition for g and f. The exponents of the power-law
“tails” parameterized by the positive indices β and γ are
only essential for further consideration.

The particles at point x “remember” their time of
arrival at this point, so that their spatial density n is the
integral of a certain distribution N over the “lifetime” τ:

Let us define the transition to the subsequent motion in
terms of “probability of surviving to time τ,” which is
simply related to the function f as

Then, the particle flux Q(x, t) leaving (on both sides and
at all distances) a given point can be expressed using
the formula for the conditional probability (see [6])

(3)

We can now write the balance equations for the particle
at a given time and a given point:

(4)

The last term on the right-hand side of this equation
accounts for the effect of initial particle lifetime distri-
bution N0(x, τ) ≡ N(x, 0, τ). The set of Eqs. (3) and (4)
completely describes the situation and, obviously, sat-
isfies condition (1). Note that, if N0 = n0δ+(τ) (“shifted”

Dirac delta function:  = 1), then, after the

arrival of new particles at each point (at any t > 0), the
self-similar profile

(5)

g x( )
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t
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δ+ τ( ) τd
0

∞∫

N t τ,( ) θ t τ–( )P t τ–( )F τ( )=
forms instantaneously with the correlated dependence
on t and τ, where P is the incoming flux and θ(t) is the
Heaviside step function. In this case, one can pass from
the set of Eqs. (3) and (4) to a single basic equation for
the macroscopic density n [6]:

(6)

The Green’s function of this equation reads

(7)

where the symbol [·]k, p denotes the Fourier and/or
Laplace component of the corresponding function.

The transport equation can also be written in terms
of only n if f = µexp(–µt) (µ = 1/〈τ〉 ); then F and f (and,
hence, Q and n) are proportional to each other. The rea-
son for setting off the exponential law is quite clear,
because only in this case does a fixed percentage of the
sitting particles leave the point, irrespective of the time

of their arrival at this point; i.e., all particles 

in a “common bag” are in the same conditions. In all
other cases, the “reel game” depends on the waiting
time τ, and one cannot ignore the details of the N(τ) dis-
tribution.

In the majority of works, Eq. (6) is written without
any substantiation, which should imply that either one
of the two above-mentioned conditions is fulfilled or a
certain model is used (the authors of those works did
not discuss this issue). In the general case, Eq. (6) is
valid only for a certain asymptotic meaning: a time
must be elapsed (see below) until the self-similar
dependence (5) covers the larger part of the N(τ) profile
and becomes dominating Q, as compared to N0. One
can readily verify that condition (1) is met for Eq. (6)
only if f = µexp(–µt). In all other cases, one should use
the initial set of Eqs. (3) and (4) to adequately describe
the transport process. In what follows, we propose a
method for solving this set exactly and show that the
initial particle lifetime distribution influences the sub-
sequent evolution.

To begin with, it is convenient to divide N(x, t, τ)
into two terms (see Eq. (4)):

(8)

(9)

n x t,( ) g x'( )

∞–

+∞

∫=

× f t'( )n x x'– t t'–,( ) t'd x'd

0

t

∫ F t( )n0 x( ).+
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τ t.<
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The term N1 describes the particles living at the time
point τ > t, i.e., those particles of the initial distribution
N0 which survived up to time t. The term N2 is the par-
ticle profile formed by the flux Q(x, t), to which both N1
and N2 make a contribution. The equation for N2 is anal-
ogous to Eq. (4) and follows from Eq. (3) for the flux:

(10)

Let us substitute Eqs. (8) and (9) in Eq. (10) and per-
form the Laplace and Fourier transforms with respect to
time and spatial variables, respectively, to get rid of
convolution integrals. After this, we again use Eq. (9)
and set off the term N2p, k on the right-hand side of the
resulting expression. By solving the linear equation for
this term, we get

(11)

The particle density can also be written as the sum of
two terms n = n1 + n2, where

Since N2 depends on its variables in the self-similar
manner (9) (cf. Eq. (5)), we can write

(12)

Now, using Eqs. (8) and (11) and the relationship fp(t +
t ') = F(t ') – pFp(t + t ') (hereafter, the index p denotes the
Laplace transform with respect to t), we obtain, after
simple mathematics,

(13)

Note that the first term in braces is the solution to
Eq. (6) for the density (see [6]), and, hence, the second
term demonstrates the dependence of the solution on
the initial lifetime distribution. Note again that the sec-
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ond term becomes zero for F(t) = exp(–µt); i.e., the
dependence on the microscopic distribution vanishes.

To demonstrate the distinctions between Eqs. (13)
and (6), we consider an example with the initial condi-
tion N0(x, τ) = n0(x)δ+(τ – t0), where t0 is a certain non-
negative delay time. In this case, the solution can be
written in a different and more compact form. By sub-
stituting the initial condition into Eq. (11) and using
Eq. (12), we obtain

Finally, we write the expression for the particle density
n(x, t)

where n(x, t) stands for the already known solution to
Eq. (6), towards which  tends at large t’s. How-
ever, the initial stage of density evolution at t < t0,
which, depending on t0, can be rather prolonged, pro-
ceeds in a different way. For clearness, let us consider
the situation with β, γ > 1. In this case, the function f has
a nonzero first moment 〈τ〉  (mean waiting time) and the
function g has a finite or noninfinite second moment
〈x2〉  (mean square displacement). Hence, after expand-
ing the integrand in Eq. (6) with allowance for the

smallnesses t @ 〈τ〉  and x @ , we should arrive at
the standard diffusion equation with the coefficient D =
〈x2〉/2〈τ〉 . In our situation, this is not the case. After
expanding the expression for n1 in powers of the small
parameter t/t0 ! 1, we see that the number of such par-
ticles decreases linearly with time following the law

(14)

which leads, correspondingly, to a linear increase in the
number of particles n2, so that the evolution of density
n2 at t @ 〈τ〉  obeys the diffusion equation with a con-
stant source on the right-hand side:

(15)
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Its solution has the form (see, e.g., [11])

(16)

Denoting by x0 the characteristic width of the func-

tion ϕ(x) and by tD = /D the corresponding diffusion
time, one can replace ϕ by the delta function if the ine-
qualities tD ! t ! t0 are fulfilled and arrive, after inte-
grating with respect to the coordinate, at an even sim-
pler expression.

Consequently, the introduction of a delay time t0
into the initial lifetime distribution brings about a devi-
ation from the standard picture on the interval 〈τ〉  < t <
t0 even for the parameters β and γ corresponding to the
conventional diffusion. The particles in the initial distri-
bution decrease in number, according to Eq. (14), and
serve as a source for the formation of the self-similar n2
profile (16). This is so because of the absence of any
internal scale in a power function. For instance, the
exponential law is characterized by the time 〈τ〉 , which
indicates that the function at t = t0 + 〈τ〉  decreases by e
times compared to its value at t = t0, irrespective of the
chosen t0. One can easily verify that such is not the case
for a power function. Moreover, as t0 increases, one is
forced to wait an even longer time t1 ~ t0, after which
the function decreases, e.g., twofold, and t1  ∞ for
t0  ∞.

Let us now turn to the property (1). This problem
differs from the preceding one in that the initial distri-
bution N0 is now not arbitrary but arises from the pre-
liminary evolution of δ+(τ) during time t1 according to
Eqs. (3) and (4). In the case where the transport process
is described asymptotically by the conventional diffu-
sion equation, the time it takes for establishing the self-
similar solution is determined by the microscopic time
〈τ〉 ; i.e., Eq. (1) is fulfilled even at t1, t2 @ 〈τ〉 . This is not
the case for the subdiffusion regime. Let us apply the
Laplace transform with respect to variables t1 and t2 to
Eq. (1) and use the property

Then the relationship

must be fulfilled. One can easily verify that it is valid
for the Green’s function of the form (7) only if p2 ! p1
or t2 @ t1. This signifies that, depending on the duration
t1 of the first evolution stage, the time t2 ~ t1 is required
for establishing the previous self-similar solution. The
real transport process at times t2 ! t1 can be described

n2 x t,( )
ϕ ξ t,( )

4πD t τ–( )
----------------------------- x ξ–( )2

4D t τ–( )
-----------------------– 

 exp ξd τ .d
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∫
0

t
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x0
2

f t1 t2+( )[ ] p1 p2,

f t1( )[ ] p1
f t2( )[ ] p2

–

p2 p1–
---------------------------------------------.=

Gp1
Gp2

–

p2 p1–
---------------------- Gp2

Gp1
=

using the equations with a source on the right-hand
side, as was done for the model problem with time
delay (see above). However, in contrast to the example
considered, a decrease in n1 in this case and, corre-
spondingly, an increase in the number of particles n2

would be more rapid (at small t), because N0(τ) is no
longer concentrated at the far boundary τ = t1 but is
extended over the entire interval (0, t1). For example,
the source q(x, t) in the equation for n2 (cf. [12])

brings about an increase in n2 according to the law

In summary, we have demonstrated that the micro-
scopic features of the initial distribution have a sizable
effect on the process of stochastic transport. These fea-
tures should be explicitly taken into account in the
transport equation because they are responsible for the
memory effects, specifically, for the dependence of the
form of the equation on the macroscopic time. This
additional degree of freedom allows the first stage of
system evolution to be modified. This stage can be
rather prolonged, as we have demonstrated by a model
example where the effective equations are different
from the classical diffusion equation even for the diffu-
sional parameters of the problem (for the functions of
class (2)). The number of particles in the initial condi-
tion linearly decreases with time to form a profile
whose evolution is described by the diffusion equation
with a constant source. The reason is that a power func-
tion describing the waiting time at any point for a par-
ticle executing random walk has no internal scale. Tak-
ing account of the initial distribution allows one to
remove the main drawback consisting in the violation
of evolution continuity in the asymptotic equation and
use the subdiffusion equation with a time-independent
source for the description of the transient process of
profile formation by the particles of the initial distribu-
tion. We can say that the zero moment of a distribution
function, i.e., the total number of particles, is insuffi-
cient for a correct description of the process. This func-
tion must be represented as a sum of terms, each corre-
sponding to its own type of particles. A simple illustra-
tion of this approach is provided by the initial lifetime
distribution in the form of a comb of shifted delta func-
tions. However, it turns out that the division of particles
even into two classes and the inclusion of the next
moment of the distribution function (transition time
from one sort of particles to the other) appreciably
improves the accuracy of equations.

∂γn2 x t,( )

∂tγ----------------------
1
2
---

∂2n2

∂x2
---------- q x t,( )+=

n2 x t,( ) xd
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