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van der Waals–stabilized Rydberg aggregates
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Assemblies of Rydberg atoms subject to resonant dipole-dipole interactions exhibit Frenkel excitons. We show
that van der Waals shifts can significantly modify the exciton wave function, whenever atoms approach each
other closely. As a result, attractive dipole-dipole potentials and repulsive van der Waals interactions can be
combined to form stable one-dimensional atom chains, akin to bound aggregates. Here the van der Waals shifts
ensure a stronger homogeneous delocalization of a single excitation over the whole chain, enabling it to bind
several atoms. When brought into unstable configurations, such Rydberg aggregates allow the direct monitoring
of their dissociation dynamics.
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I. INTRODUCTION

van der Waals (vdW) forces between ground-state
molecules or atoms can lead to the formation of molecular
crystals and noble atom solids, without the need for electron
sharing between the individual constituents. Optical and
electrical properties in these aggregates are dominated by
resonant interactions of transition dipoles which lead to the
appearance of Frenkel excitons [1,2], in which an electronic
excitation can be delocalized in the lattice. Nonresonant
interactions of vdW type lead to a change of the transition
energies, since they affect the excited state differently than
the ground state. This energy shift is homogeneous (i.e., the
same for all monomers) for bulk crystals [3–5] and in this
context is termed the gas to crystal shift. For small structures
of molecules, e.g., oligomers [6] or finite-size domains on
surfaces [7,8], the shift is not homogeneous any more.

Here we show that this inhomogeneity of the vdW shifts
can strongly influence the entire exciton wave function. To this
end we consider assemblies of Rydberg atoms, which have
huge transition dipoles (connecting two highly excited states)
and hence can support Frenkel excitons over large distances
[9,10]. Under conditions of one-dimensional confinement
we further demonstrate the possibility of stable chains of
Rydberg atoms, which form Rydberg “aggregates” similar to
the molecular situation [4]. The stable chain is formed by a
competition between attractive forces generated by resonant
dipole-dipole interactions and repulsive vdW interactions.
This bears some similarities to excimers. For short chains
(e.g., trimers) prepared in unstable configurations, we find
an interesting breakup dynamics, reminiscent of molecular
dissociation. Due to the exaggerated properties of Rydberg
atoms, the dissociation can be directly monitored in real
space.

The basic effect of the inhomogeneous vdW shifts can
be understood by the following simple consideration. For
comparatively large distances between Rydberg atoms in a
chain, resonant dipole-dipole processes of the type ns + np ↔
np + ns are dominant [11,12] and support collective exciton
states [9,10,13] which can have repulsive or attractive character
[10]. If the distances between Rydberg atoms in a chain
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become shorter, off-resonant contributions to the system’s
electronic energies increase and can be modeled by the
addition of vdW potentials. This can give rise to on-site
excitation energy shifts that depend on the geometry of
the atomic assembly. For a trimer, for example, this effect
can shift the central site out of resonance, since it has a
different local environment than the outer sites. In attractive
exciton states, i.e., those that result in attractive dipole-dipole
interactions, with repulsive vdW potentials, the site energy
shifts near the chain center cause a stronger delocalization
of the excitation towards the chain edges. This results in
much more homogeneous attraction throughout the chain,
allowing the stabilization of attractive exciton states [10] by
vdW repulsion. One-dimensional Rydberg chains can then
essentially form bound states with many atoms, resembling the
vdW bound self-assembled molecular aggregates or molecular
crystals. Previous work focused on two and three Rydberg
atoms, which can form bound molecular states in three
dimensions [14–17].

For light alkali-metal atoms, atomic motion in the potentials
discussed here can become relevant on the time scale of
Rydberg state lifetimes [18], resulting in flexible Rydberg
aggregates [10,19–21]. With “flexible” we imply that the atoms
are free to move and their motion is relevant, in contrast to
a frozen-gas approximation. We investigate the behavior of
such a flexible Rydberg trimer and find that it may exhibit
interesting dissociation dynamics that can be monitored in
time and space due to the detailed control afforded by ultracold
Rydberg physics.

This paper is organized as follows. In Sec. II we discuss
exciton states of a static linear aggregate. The atomic motion in
dynamic linear aggregates is discussed in Sec. III. A summary
is given in Sec. IV. Analytical solutions for a symmetric
aggregate are presented in the Appendix.

II. STATIC RYDBERG AGGREGATE

We first analyze a frozen one-dimensional linear Rydberg
aggregate, in which the positions R1, . . . ,RN ≡ R of the atoms
are assumed fixed, and treat the electronic excited states of
the system, where we use a simple model of N two-level
Rydberg atoms [see Fig. 1(a)]. We define atomic states |nl〉,
with principal quantum number n and angular momentum
l, and concentrate on a lower Rydberg state, |si〉 = |ns〉,
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FIG. 1. (Color online) (a) Single-body states of three Rydberg
atoms are illustrated schematically. We show the |ns〉 and |np〉 states,
with the transition energy EA = Ep − Es , and the absolute ground
state |g〉. (b) The states |πi〉, with (i = 1,2,3), are presented. For large
interatomic distance relative to the crossover distance, R > R0, the
three |πi〉 states are close to resonance, D ≈ D̄, and energy transfer
is permitted among them with transfer parameters J and J ′. (c) For a
small interatomic distance, R0 > R, the states |π1〉 and |π3〉 have the
same vdW shift of D, but |π2〉 experiences a different shift D̄, with
D̄ � D. Hence, the |π2〉 state is no longer resonant with |π1,3〉. Now
energy transfer is allowed only among the |π1〉 and |π3〉 states with
the transfer parameter J ′.

of energy Es and a higher Rydberg state, |pi〉 = |np〉, of
energy Ep. Here the index i = 1, . . . ,N labels the atoms. We
consider the dynamics in the subspace spanned by the states
|πi〉 = |s1, . . . ,si−1,pi,si+1 . . . ,sN 〉, where only the ith atom
is in the (np) state and all others are in the (ns) state. In this
subspace we write the relevant effective Hamiltonian as

Hex =
∑

i

Ei(R)|πi〉〈πi | +
∑
ij

Jij (R)|πi〉〈πj |, (1)

where Jij (Ri,Rj ) ∝ 1/|Ri − Rj |3 is the resonant dipole-
dipole interaction. It is responsible for transfer of excitation
between states |πi〉 and |πj 〉. The diagonal energies Ei contain
the off-resonant vdW interactions. They can approximately be
written as Ei = E0 + E

(vdW)
i (R), with E0 = Ep + (N − 1)Es ,

and

E
(vdW)
i (R) ≈

∑
� 
=i

hC
sp

6

R6
i�

+ 1

2

∑
j 
=i

∑
� 
=i,j

hCss
6

R6
j�

, (2)

where Ri� = |Ri − R�| and h is the Planck constant. Here Css
6

and C
sp

6 denote the C6 coefficients for the vdW interaction
between two atoms in the s state and between one atom in the
s state and the other in the p state, respectively. With Eq. (1)
we employ an effective model that encapsulates the essential
features that would arise from a more complicated Hamiltonian
taking into account all electronic states per atom. The use of
binary C6 coefficients is usually a good approximation and
makes the results particularly transparent. For a discussion of
three-body effects, see Ref. [22].

Note that the magnitude and the sign of the C6 coefficients
depend on the chosen states (and atomic species). We will
come back to this point below. The resonant interaction Jij de-
pends on the magnetic quantum number [9,23,24] which leads
to an anisotropic spatial interaction. For the following con-
siderations (where we restrict ourselves to one-dimensional
geometries, i.e., the atoms form a one-dimensional chain) we

ignore this anisotropy and write

Jij (Ri,Rj ) = hC3

|Rij |3 , (3)

where C3 can be both positive or negative. How this can be
achieved is discussed, e.g., in Refs. [20,21,22].

Diagonalization of the Hamiltonian (1) for fixed positions
R leads to (adiabatic) eigenstates

|ψk(R)〉 =
N∑

i=1

ci
k(R)|πi〉 (4)

and eigenenergies Uk(R). To illustrate the basic electronic
structure, we discuss the case of a finite linear chain of
three Rydberg atoms with equal spacing R between nearest
neighbors. The above excitonic Hamiltonian (1) can then be
written in the basis {|π1〉,|π2〉,|π3〉} as

Hex = E0 +
⎛
⎝

D J J ′
J D̄ J

J ′ J D

⎞
⎠ , (5)

where J = hC3
R3 and J ′ = J/8, with

D = h
(
C

sp

6 + Css
6

)

R6
+ D′, D̄ = 2hC

sp

6

R6
+ D̄′, (6)

where D′ = hC
sp

6 /(64R6) and D̄′ = hCss
6 /(64R6). Note that

D′, D̄′, and J ′ are small and can often be neglected to a good
approximation.

From Hamiltonian (5) it is apparent that the relevance
of the relative shift (D̄ − D) in the site energy of atom 2
is determined by the ratio of J ∼ R−3 and (D̄ − D) ∼ R−6,
which depend differently on the distance between the atoms. In
particular we consider two cases: large and small interatomic
distances relative to the “crossover distance,” R0 ∼ |(Csp

6 −
Css

6 )/C3|1/3, where the magnitude of J becomes of the order
of (D̄ − D). For R > R0 the three states |πi〉 with (i = 1,2,3)
are close to resonance and energy transfer is possible among
them, as presented in Fig. 1(b). Hence the three states can
be coherently mixed to form excitonic states. In the case of
R < R0 the two states |π1〉 and |π3〉 are in resonance but the
state |π2〉 is shifted off resonance due to vdW interactions, as
illustrated in Fig. 1(c). Now energy transfer is possible mainly
among the states |π1〉 and |π3〉, which combine into excitonic
states, while the state |π2〉 remains a localized state. Thus, in
this case the small J ′ cannot be neglected.

This can also clearly be seen in our numerical calculations.
For these we choose parameters C3 = −1.16 GHz/μm3;
Css

6 = 47 MHz/μm6, appropriate for a principal quantum
number n = 30 of Li [25]; and C

sp

6 ≈ +282 MHz/μm6.
The latter might require external modification of interaction
strengths with the use of Förster resonances [26,27]. The
use of a Förster resonance would also allow independently
controlling the sign of C

sp

6 and that of C3.
In Fig. 2(a) we plot Uk(R), for the three collective potentials

[obtained by numerical diagonalization of the Hamiltonian (5)]
relative to E0/h, as a function of the interatomic distance R.
The lowest potential has a minimum around R ≈ 0.8 μm,
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FIG. 2. (Color online) (a) The three collective potentials, Uk , as a function of the interatomic distance R. (b, c) The site populations |ci
k|2

as a function of the interatomic distance R in (b) the first (k = α) and (c) the third (k = γ ) collective states. The insets include schematically
the site amplitudes at the three |πi〉 states for the first and the third collective modes at large distances, R > R0, and small distances,
R < R0.

which leads to a bound state of the atoms. In Figs. 2(b) and
2(c) we plot the fraction of each |πi〉 state in the three collective
states, with (k = α,β,γ ), that is, |ci

k|2, as a function of R. In
mode α, for small distances the excitation is concentrated in
the |π1〉 and |π3〉 states and the state |π2〉 is almost not excited.
For large distances, a collective state is obtained with half the
excitation fraction in the |π2〉 state and a quarter in each of
the |π1〉 and |π3〉 states. In mode β (not shown) the |π2〉 state
is never involved in the formation of the collective state. In
mode γ for small R the excitation is almost entirely localized
in the |π2〉 state, the |π1〉 and |π3〉 states are not excited. For
large R the γ state has the same population distribution as
the α state. The amplitudes of the three |πi〉 states are plotted
schematically in the insets of Figs. 2(b) and 2(c) for large and
small R.

The situation is different when excitons are formed via
dipole-dipole interactions involving ultracold ground and low-
excited states in an optical lattice [28–30] or Rydberg states at
larger separations than considered here [19,20]. Then the vdW
shifts discussed above are usually negligible.

III. DYNAMIC RYDBERG AGGREGATE

After having established the effect of vdW interactions on
the static properties of the exciton states in a chain of Rydberg
atoms at fixed positions, we now consider dynamic properties
of such a chain: a flexible Rydberg aggregate [21]. This is done
by augmenting the total Hamiltonian of the problem with its
kinetic energy part,

Ĥkin =
∑

i

P 2
i

2M
, (7)

where Pi is the momentum of the ith atom and M is its
mass (for the examples shown, we chose Li). The combined
treatment of exciton dynamics and atomic motion is involved
quantum mechanically, but can be treated very well using
Tully’s quantum-classical description [10,19,20,31]. In Tully’s
method, the internal electronic degrees of freedom are treated
quantum mechanically, while the external position degrees
of freedom of the atom are treated classically. The ith atom
experiences the force

F i
k = −∇Ri

Uk(R), (8)

according to one specific Born-Oppenheimer surface Uk .
This surface corresponds to the kth eigenvector of the
electronic Hamiltonian Hex. Due to these forces we obtain
time-dependent atomic trajectories Ri(t) from the equation of
motion

M
d2Ri

dt2
= F i

k , (9)

and we obtain excitation amplitudes ci
k(t) from

i∂t |	k(t)〉 = Ĥex(R(t))|	k(t)〉, (10)

where |	k(t)〉 = ∑
i c

i
k(t)|πi〉. Stochastic nonadiabatic

switches of the Born-Oppenheimer surface k are possible
[31], but occur in a negligible fraction (<1%) of trajectories
for all cases shown in the present paper. In our calculations
we assume zero temperature. Actual experiments would be
performed at ultracold temperatures, where on the time scales
of interest thermal motion can be ignored; thus our zero
temperature description is reasonable.

We consider one-dimensionally confined Rydberg aggre-
gates. First, we discuss a trimer aggregate (i.e., three atoms),
where we focus on the potential surface which stems from the
combination of a repulsive vdW interaction and an attractive
“pure dipole-dipole surface,” as in the k = α state of Fig. 2(a),
since this may allow a stable configuration due to the potential
minimum.

For a symmetric trimer the forces on the atoms can
be found analytically (in the Appendix we give detailed
derivations of the symmetric aggregate); in the general case
the corresponding energy landscape has the shape shown in
Fig. 3, by using the Jacobi coordinates r = R2 − R1 and
R = R3 − R2 − r/2. It allows stable bound trimer-aggregates
in the global minimum around r ≈ 0.8 μm and R ≈ 1.2 μm,
as seen from the magenta trajectory. Such a state can be
created in a similar fashion as described in Ref. [20]. In this
scheme first ground-state atoms are trapped in the desired
arrangement, e.g., by using microlense arrays [32,33]. Then
by laser excitation all atoms are transferred into the s state.
Finally a microwave pulse that is short on the time scale of
atomic motion addresses the desired aggregate eigenstate.

The binding on the lowest Born-Oppenheimer surface can
be extended to larger aggregates, as shown in Fig. 4 for the
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FIG. 3. (Color online) Energy landscape of the lowest Born-
Oppenheimer surface of the Rydberg trimer. For ease of interpretation
we use the Jacobi coordinates r = R2 − R1 and R = R3 − R2 + r/2.
The potential exhibits a well around R − r/2 ≈ r ≈ 0.8 μm and
exceeds the maximum of the color bar in the region of small r or R.
Lines show a dissociating (white) and a stable (magenta) quantum
classical trajectory. Big dots mark the starting position.

case of six atoms. The atomic initial position and momentum
are randomly distributed, according to the quantum ground
state of an initially harmonically confined particle, with
spatial width σ = 0.03 μm. We then bin the atomic positions
Ri(t) to obtain the total atomic density n(x,t). It shows
partial dissociation, but a signature of the six-atom aggregate
clearly remains visible. This stabilization crucially requires
the modification of exciton states by the vdW shifts discussed
earlier. Without them, the exciton wave function has insuffi-
cient amplitude on the outermost atoms and the attraction of
these atoms becomes too weak. We choose a Rydberg state
n = 30 to maximize the product of self-trapping frequencies
in the aggregate and system lifetime (3 μs for the case
shown). This empirically favors smaller principal quantum
numbers.

Besides stable configuration one can prepare the system
initially in configurations that exhibit a more complicated
dynamics, e.g., the white trajectory shown in Fig. 3. Details
for this trajectory are displayed in Figs. 5(a) and 5(b). We can
access regimes in which the trimer first undergoes breathing
oscillations with excitation transfer between the sites, only to
finally dissociate into a dimer and a free atom at a dissociation
time tdiss ≈ 1 μs, significantly faster than the excited system
lifetime of about τlife = 6 μs [18].

The dissociation can also be studied in a trajectory
average, where we obtain the pictures shown in Figs. 5(c)–
5(e). Here, we consider a chain which is slightly perturbed
from a symmetric configuration. The position of each atom
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FIG. 4. (Color online) Total atom density n (arb. units) in vdW–
stabilized Rydberg 6-mer for three selected times.
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FIG. 5. (Color online) Rydberg aggregate dissociation for (a, b)
symmetric and (c, d) asymmetric configurations. (a) Atomic positions
Ri for a single dissociating trajectory, i = 1 [red (bottom) curve],
i = 2 [magenta (middle) curve], and i = 3 [green (top) curve]. (b)
Excitation amplitudes |ci

α(t)|2 for a single dissociating trajectory.
(c) Total atomic density n from the trajectory average; overlaid
are the mean positions of the three atoms. (d) Mean excitation
amplitudes |ci

α(t)|2 on the three sites. (e) Energy distribution of
the final-state dimer (black solid curve) and the initial energy (red
solid curve) for the same case in panel (c). The dotted lines indicate
one standard error and are nearly indistinguishable from the solid
ones.

is initially Gaussian-distributed around x = −1.5, 0.3, and
1.5 μm, with spatial widths of σ = 0.2 μm. In the dynamics
we can resolve some coherent motion of the chain in the
total atomic density [Fig. 5(c)], accompanied by excitation
redistribution [Fig. 5(d)]. Later dissociation events that are
qualitatively like those in Figs. 5(a) and 5(b) smear out the
picture. Details of dissociation events depend strongly on
the precise classical initial state, so that the multitrajectory
simulation shows a quite broad distribution of the final dimer
energy [34]. The smallest dimer potential energy is Umin ≈
−1.2 GHz and the largest initial total energy is about U0,tot ≈
−200 MHz, explaining the bounds of the energy spectrum in
Fig. 5(e).

The potential energy surface in Fig. 3 is reminiscent
of that of simple triatomic molecules such as ozone for
constrained bond angles. Modern theoretical methods can
determine nuclear wave packets of such molecules during
dissociation in detail [35], while only coarse grained quantities
such as absorption spectra can be compared with experiments.
One-dimensional confinement of Rydberg atoms may soon be
possible optically [36,37], hence our system provides a plat-
form for the direct experimental visualization of wave-packet
dynamics in an analog of molecular-dissociation processes,
with the use of state-selective and high-resolution Rydberg
atom monitoring schemes [38–41]. Thus our setup allows the
direct comparison of wave-packet evolution between theory
and experiment.
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IV. SUMMARY

In conclusion, we addressed the formation of excitons
in chains of Rydberg atoms with short separations, where
the vdW effect is shown to modify the excitonic picture
formed by resonant dipole-dipole interactions. The level of
excitation localization depends on the separation of atoms in
the chain. We show that the combined action of vdW and
resonant dipole-dipole forces can lead to interesting effects
in one-dimensional chains, such as the stabilization of larger
Rydberg aggregates in an attractive exciton. Even unstable
parameter regimes show intriguing breakup dynamics that can
be followed experimentally in quite some detail in the realm
of ultracold Rydberg physics. Moreover, using the highest
occupied molecular orbital and lowest unoccupied molecular
orbital configurations, similar exciton-state modifications are
expected for a cluster of organic molecules.

APPENDIX: SYMMETRIC RYDBERG AGGREGATE

For purpose of illustration, in this appendix we present
detailed results for the case of a symmetric chain, where we
can obtain instructive analytical results. In particular we focus
on the case of three atoms. Then, due to the symmetry, we
have R2 − R1 = R3 − R2 ≡ R.

To make the discussion more transparent, we approximate
the electronic Hamiltonian by including interactions only
among nearest-neighbor atoms; hence we obtain the following
from Eq. (5) in the main text,

Hex = E0 +
⎛
⎝

D J 0
J D̄ J

0 J D

⎞
⎠ , (A1)

where

J = hC3

R3
, D = h

(
C

sp

6 + Css
6

)
R6

, D̄ = 2hC
sp

6

R6
. (A2)

Note that the energy difference between |π2〉 and either one
of the two states |π1〉 and |π3〉 is D̄ − D. Hence it depends on
the difference between the C6 parameters, that is, C

sp

6 − Css
6 .

The diagonalization of the Hamiltonian (A1) (for fixed
atomic positions) gives the three eigenenergies Uk and
the corresponding eigenstates |ψk〉 = ∑3

i=1 ci
k|πi〉, with (k =

α,β,γ ).

The eigenenergies are Uγ = E0 + D and

Uα,β = E0 + (D̄ + D)

2
∓ 1

2

√
(D̄ − D)2 + 8J 2, (A3)

where α corresponds to the − sign and β to the + sign,
respectively. Using the same values for the parameters as
in the main article, where C3 ≈ −1.16 GHz/μm3, C

sp

6 ≈
+282 MHz/μm6, and Css

6 ≈ +47 MHz/μm6, we have ver-
ified that the resulting adiabatic potential surfaces are in very
good agreement with the full numerical ones.

We also obtain analytical results for the site populations
|ci

k|, which are given by

∣∣c1
k

∣∣2 = ∣∣c3
k

∣∣2 = J 2

�2
k + 2J 2

,
∣∣c2

k

∣∣2 = �2
k

�2
k + 2J 2

, (A4)

where �k = Uk − D, and we have
∑

i |ci
k|2 = 1. Note that the

|π1〉 and |π3〉 states have identical site populations.
For the three collective electronic states |ψk〉, the atoms

experience the above potentials Uk(R) and move under
the influence of the forces Fk = −∇Uk(R). The calculation
yields

Fα,β = − (D̄R + DR)

2
± (D̄ − D)(D̄R − DR) + 8JJR

2
√

(D̄ − D)2 + 8J 2
,

(A5)
with α → (+), β → (−), and Fγ = −DR , where

JR = dJ

dR
= −3

hC3

R4
,

DR = dD

dR
= −6

h
(
C

sp

6 + Css
6

)

R7
, (A6)

D̄R = dD̄

dR
= −12

hC
sp

6

R7
.

The trajectories of the interatomic distances are the solutions
of the equations M

2
d2R
dt2 = Fk .

We numerically solve the equations of motion to get the
trajectories for different initial interatomic distances. The
initial velocity is taken to be zero and the mass of the atom
is that of Li, M ≈ 11.1 × 10−27 Kg. In Fig. 6(a) the system
is prepared in the lowest symmetric state for different initial
interatomic distances. When the initial interatomic distance is
smaller than the crossover length, the potential is repulsive and
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FIG. 6. (Color online) (a) The interatomic distance trajectories for the lowest symmetric eigenstate. (b) The trajectories for the higher
eigenstate. The plots are for different initial interatomic distances of 2 and 3 μm. (c) The populations |ci

k|2 in the lowest mode as a function of
time for initial interatomic distance of 3 μm. The trajectory oscillations result in population oscillations with a period of about 0.85 μs.
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the atoms move apart. When the starting distance is larger than
the crossover length, the potential is initially attractive and the
atoms oscillate around the minimum of the potential. For the
upper collective state the trajectories are plotted in Fig. 6(b)
for different initial interatomic distances. Here the potential

is repulsive and the interatomic distances increase with time.
Interestingly, the oscillations of the trajectories around the
minimum of the potential in the lowest symmetric state lead to
oscillations in the populations of each |πi〉 state in the global
exciton state as is presented in Fig. 6(c).
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