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ABSTRACT: Two-dimensional electronic spectroscopy has become an important
experimental technique to obtain information on, for example, electronic coherences in
large molecular complexes or vibronic couplings. For the correct interpretation of two-
dimensional spectra, however, detailed theoretical calculations are required. Reliable
theoretical calculations are impeded by large system sizes and large numbers of vibrational
degrees of freedom that need to be explicitly taken into account. Here, we demonstrate
that a numerical approach based on a stochastic hierarchy of pure states (HOPS) does
allow the calculation of two-dimensional spectra, notwithstanding the stochasticity of the
method. The number of coupled equations as well as the hierarchy depth shows a superior
scaling with system size as compared to the previously developed hierarchical equations of
motion (HEOM). Large systems thus become accessible for numerical calculation of two-
dimensional spectra.

Two-dimensional (2D) electronic spectroscopy has become
a popular tool to extract information about complex

molecular systems.1−4 It has been applied to study diverse
systems and processes, such as coherence and excitation
transfer in biological light harvesting systems,5−7 J-aggre-
gates,8−10 conjugated polymers,11 and nanotubes.12,13 The
basic principle of 2D electronic spectroscopy can be under-
stood by considering three noncolinear femtosecond laser
pulses that reach the sample at different times. The resulting
time-dependent polarization of the system is then detected in a
phase-matching direction, as a function of the delay-time
between the pulses and the detection time. Two-dimensional
Fourier transformation with respect to the detection time and
one of the time delays of the pulses then gives a 2D spectrum.
Detailed theoretical calculations are necessary to correctly

interpret the 2D spectra obtained in experiment. However,
typical systems of interest are difficult to treat numerically,
because of their size and complexity. A particular problem arises
from strong coupling to many vibrational degrees of freedom.
Because the 2D signal essentially stems from an operator that in
many cases only depends on electronic degrees of freedom,
open quantum system approaches are a possible way to treat
such systems theoretically. Popular approaches are based on
Lindblad or Redfield equations. However, the applicability of
these approaches is very limited, which can lead to wrong
conclusions. For example, they cannot capture the effect of
strong coupling to weakly damped vibrational modes. To date,
there have been only two numerically exact methods applied to
calculate 2D spectra. One is the so-called QUAPI method;19

the other is the so-called hierarchical equation of motion
(HEOM) approach,14−18 which will be of particular interest in
the present work, since it is based on a similar hierarchy to that
of our present method. In the HEOM method, the reduced

density matrix of the system is obtained by solving a coupled
system (hierarchy) of differential equations of density-matrix-
like objects. The two main things that limit the applicability of
this approach are (i) that the required number of differential
equations (in the following denoted as the depth of the
hierarchy) rapidly grows with the number of (weakly damped)
vibrational modes and upon decreasing the temperature and
(ii) that the size of the density-matrix-like objects grows
quadratically with the system size.
To overcome the problems associated with the HEOM

approach, in recent years numerically efficient approaches to
calculate the reduced density matrix using stochastic wave
functions within the non-Markovian quantum state diffusion
(NMQSD) framework have been developed.20,21 In particular,
in ref 21, we developed a stochastic hierarchy of pure states
(HOPS) with which one can recover the reduced density
matrix exactly (for an infinite number of trajectories and an
infinite depth). In the case of the excitation transfer in light
harvesting systems, we have demonstrated that for typical
parameters one has fast convergence with respect to the
number of trajectories and the depth of the hierarchy. The
HOPS is closely related to the HEOM: in ref 22, we have
shown that HEOM can be directly derived from HOPS. HOPS
provides reduced dimensionality (wave function versus density
matrix), and furthermore, our studies indicate that it also
converges faster with the number of equations involved in the
hierarchies.21

In the present work, we demonstrate that HOPS is also
suitable to calculate 2D spectra. To this end, we use a
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nonperturbative approach in the electric field strength. This
technique depends sensitively on the phases of the laser-
pulses,23 and the signal of interest is constructed by phase
sensitive summation of different contributions. Therefore, one
might question the applicability of stochastic methods that lead
to fluctuations in the time evolution. As an important result, we
will show that HOPS provides sufficiently fast convergence
with respect to the number of trajectories. We demonstrate this
for the simple case of a single molecule with two one-
dimensional harmonic Born−Oppenheimer surfaces coupled to
a bosonic bath. We note that the real power of the approach
will be for larger systems (e.g., several interacting molecules and
more vibrational modes).
The paper is organized as follows: first, we introduce the

general open quantum system model and review the HOPS
approach. Then, we discuss how to apply HOPS within a
nonperturbative treatment to calculate 2D spectra. The
applicability of HOPS is demonstrated for our simple model
system. Finally, we provide a summary and an outlook for this
approach.
We consider the (total) Hamiltonian

= + + +H H V t H H( )tot env int (1)

where H is the Hamiltonian of the “system” and

μ= −⎯→̂· ⃗V t E t( ) ( ) (2)

describes the interaction with a time-dependent electro-

magnetic field E⃗(t) via the dipole operator μ⎯→̂. The Hamiltonian
of an environment consisting of harmonic oscillators is given by
Henv = ∑λ ωλbλ

†bλ with [bλ, bλ′] = 0 and [bλ, bλ′
† ] = δλλ′. The

interaction of system and environment is modeled by a linear
coupling Hamiltonian

∑= * +
λ

λ λ λ λ
† †H g Lb g L b( )int

Here, L is a system operator and gλ are complex numbers
quantifying the coupling strength of the respective oscillator (λ)
to the system. The extension to more than one system operator
and coupling to several environments is straightforward.21,22

Note that the form of Hint does not imply a rotating wave
approximation. [This can be clearly seen for the case when L =
L†.] It is convenient to encode the frequency dependence of
the interaction strengths in the so-called spectral density

∑ω δ ω ω= | | −
λ

λ λJ g( ) ( )2

which is typically assumed to be a continuous function of
frequency. The latter is related to the bath correlation function
α(τ) by24
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where T is the temperature. In many cases of interest, the bath
correlation function can be well approximated by a finite sum of
exponentials25−27

∑α τ = − >
=

p wt t( ) exp( ) ( 0)
j

J

j j
1 (4)

with wj = iΩj + γj. We will use such a form throughout this
work. For HOPS and HEOM, one typically wants to have as
few exponentials as possible. One possibility is to directly fit the
bath correlation function. We usually follow the procedure
described in ref 27 by fitting the spectral density with suitable
functions and handling the temperature dependent part via a
Pade ́ approximation. In this way one can, for example,
efficiently treat superohmic spectral densities. The resulting
errors are discussed in ref 27 explicitly for the case of linear
spectra. Note that the error can be decreased by increasing J.
Now that we have specified our open quantum system

model, we discuss how HOPS can be applied to calculate the
2D signal. Expectation values of an operator A in the system
space can be obtained via

ψ ψ⟨ ⟩ = ⟨ | | ⟩⃗ ⃗A t z A t z{ ( ; ) ( ; ) }z
(0) (0)

(5)

where z denotes an average over the stochastic wave
functions |ψ(0 ⃗)(t;z)⟩ obtained by using the following hierarchy
of pure states (HOPS)21,22 (here and in the following, we use
ψt = ψ(t) interchangeably)
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with initial conditions ψt = 0
(0 ⃗) = ψt=0 and ψt = 0

(κ)⃗ = 0 for κ ⃗ ≠ 0 ⃗. The z
= zt are a set of complex stochastic processes with =z{ } 0z

and α* = −z z t s{ } ( )z t s . Here, w⃗ = {w1, ..., wJ}, where J is the
number of exponentials in eq 4 and κ ⃗ = {κ1, ..., κJ}, with κj
integers ≥ 0. Furthermore, ej⃗ = {0, ..., 1, ..., 0} is a vector that
has a one at the jth position and the rest of the elements are
zero. For numerical calculations, one has to truncate the
hierarchy (6). There are many possibilities to do so. In the
present work, we take a particular simple truncation scheme
where we take only terms with κ∑ ≤j j into account. We

refer to as the depth (order) of the hierarchy.
Equation 6 generates non-Hermitian, stochastic dynamics

which can result in large fluctuations of the norm, which in turn
can lead to problems in the convergence with respect to the
number of realizations (one example can be found in ref 21).
Therefore, in practice we use the corresponding normalizable
evolution equation (see eq 15 of ref 21).
To obtain the 2D spectrum we use a nonperturbative

approach based on phase cycling.23,28−30 In this approach, the
signal of interest (e.g., the one that is observed in a certain
phase-matching direction) is obtain by the (weighted) sum of
several signals. Each individual signal is obtained from the
interaction with three pulses that have well-defined phases.
How to choose the phases and the corresponding weights has
been discussed in several publications (e.g., refs 23 and 28−30).
Here, we choose the convention of ref 30 (see also eq 8 below,
and the Supporting Information).
We express the electric field, consisting of three short pulses

with specific phases, as

∑ ω ϕ⃗ = ϵ⃗ − − −
=

E t f t t t t( ) ( )cos[ ( ) ]
n

n n n n n s n
1

3

,
(7)
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In this expression the index n labels the three pulses. The
polarization of each pulse is given by ϵn⃗. The envelope
functions are taken as τ− = − −

π τ
f t t t t( ) exp[ ( ) /2 ]n n

a
n n2

2 2
n

,

that is, they are Gaussians with standard deviation τn, centered
at tn. The amplitude of the pulse is denoted by a, the carrier-
frequency is denoted by ωn, and ϕs,n denotes its phase. Here,
the subscript s is used to label different combinations of the
three phases ϕ⃗s = (ϕs,1, ϕs,2, ϕs,3). For such a pulse we calculate
the resulting time-dependent polarization Pϕ⃗s(t; {t1, t2, t3}) =
Tr{ρϕ⃗s(t) μ̂}, where the electronic dipole operator of the
system is denoted by μ̂ (independent of nuclear coordinates)
and ρϕ⃗s(t) is the reduced density matrix in the electronic
subspace. Note that here and in the following, we do not
indicate the dependence on the pulse-times explicitly. This
pulse sequence is sketched in Figure 1.

A phase-matching direction Pkr⃗ can then be extracted via

∑= ϕ⃗ ⃗P t a P t( ) ( )k
s

r s,r s
(8)

using an appropriate choice of phase triples ϕ⃗s and coefficients
ar,s. In the present work, we use the phase-triples as given in
Table 1 of ref 30, and note that to obtain the ar,s of eq 8, one
has to invert the coefficient matrix given in eq 40 of ref 30. For
completeness we provide the phase triples and the coefficients
ar,s in the Supporting Information.
Finally, within the HOPS formalism we calculate the

polarization as

ψ μ ψ= ⟨ | |̂ ⟩ϕ ϕ ϕ⃗ ⃗
⃗

⃗
⃗P t t z t z( ) { ( , ) ( , ) }z

(0) (0)
s s s (9)

where we use a finite number M of stochastic trajectories.
To illustrate the formalism and to investigate the

convergence with the number of trajectories, we will consider
a particular simple model of a molecule. We consider two
electronic states: the ground state |g⟩ and the excited state |e⟩.
The “system” part of the Hamiltonian in eq 1 is chosen as H =
Eg|g⟩⟨g| + Ee|e⟩⟨e|, which contains only the electronic degrees of
freedom. The electronic part of the system-bath coupling is
taken as L = |e⟩⟨e|. Depending on the choice of the spectral
density, this model can capture various situations ranging from
internal molecular vibrations to relaxation and dephasing
caused by the surroundings (see, for example, the discussions
in refs 27 and 31). In the present work, our focus is on the
convergence properties of the stochastic HOPS. To this end,
we consider two bath-correlation functions that lead to quite
different spectra. For a discussion of different forms of the bath
correlation function and their representations as sums of

exponentials, we refer to ref 27. The parameters that specify the
bath correlation functions (BCF) in eq 4 are given in Table 1
for both cases studied in the present work.

For the first case, the BCF consists of only one exponential,
that is, α(t) = p exp(−iΩt − γt). We set ℏ = 1 and use Ω as the
unit of energy. For the applied value γ = 0.05, one has Ω ≫ γ
and can roughly interpret this BCF as stemming from a
molecule with two one-dimensional harmonic potential surfaces
that are shifted with respect to each other, where Ω describes
the vibrational frequency and γ is the vibrational damping (at
low (zero) temperature).27,31 In the following, we refer to this
BCF as weakly damped BCF. The BCF and the underlying SD
are shown in Figure 2A, together with the resulting linear
absorption spectrum (Figure 2C). The absorption spectrum is
calculated as described in ref 32 and clearly shows a weakly
broadened vibrational progression. The ability to treat such
weakly damped modes at low temperature is an important
issue, see refs 33−36, for example.
As a second example, we use a BCF that appears in the

context of bacteriochlorophyll molecules in a protein environ-
ment at room temperature.37 The representation of this BCF in
the form of eq 4 has been discussed in ref 27. We represent this
BCF as a sum of five exponentials (cf. Table 1) and it is
displayed in Figure 2B. The corresponding SD and absorption
spectrum can be seen in Figure 2B (inset) and Figure 2D,
respectively. The absorption spectrum now shows only a single
broad peak. We will refer to this BCF as strongly damped BCF.
For the electromagnetic field used to calculate the 2D

spectra, we consider the following parameters: we choose the
amplitude a such that the resulting interaction μna = 0.24. The
carrier frequencies are chosen to coincide with the bare
electronic transition ωeg = Ee − Eg. The width of the pulses in
the time domain is τn = 0.6 and the first pulse peaks at t1 = 8.
Time is in units of 1/Ω, where Ω is the maximum of the SD. In
the following, we will consider signals that correspond to the
phase-matching direction −k1⃗ + k2⃗ + k3⃗. We will also restrict the
time ordering of the pulses t1 ≤ t2 ≤ t3. It is convenient to
define the following time intervals, denoted as coherence,
waiting, and detection time, respectively (see Figure 1)

τ = − = − ′ = −t t T t t t t t2 1 3 2 3 (10)

For a given waiting time T, the final 2D spectrum is then
obtained from a two-dimensional Fourier transform with
respect to τ and t′ as S(T;ωτ,ωt′) = i ∫ 0

∞ dτ ∫ o
∞ dt′S(τ, T, t′)

ω τ ω− ′τ ′e ei i tt . In our case, S(τ, T, t′) = P−k1⃗+k2⃗+k3⃗(τ, T, t′).

Figure 1. Sketch of the pulse sequence used in the phase-cycling
scheme (cf. eq 7). The envelope functions of the three colinear pulses
that interact with the sample and the emitted signal field are shown.
The coherence, waiting, and detection times τ, T, and t′ are defined in
eq 10.

Table 1. Parameters Used for the Two BCFs Discussed in
the Texta

weakly damped BCF

p Ω γ

1 1 0.05
strongly damped BCF

j pj Ωj γj

1 48 − 27i 0.89 0.82
2 −2.85 − 2.94i 3.42 2.23
3 69.3 + 18.5i −0.89 0.82
4 −1.23 + 11.3i −3.42 2.23
5 0.005 0.0 26.1

aNote that in general, pj is a complex quantity.
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In Figure 3, we show such 2D spectra for waiting time T = 0.
From left to right, we increase the number of realizations of the
HOPS calculations. For comparison, in the rightmost panel we
show the result of the corresponding HEOM calculation. For
both BCFs, we have used a large depth of the hierarchy to
ensure convergence. Because the hierarchy used for HEOM is

equivalent to the corresponding HOPS equations (see ref 22),

for a given depth of HOPS, the number of auxiliary vectors in

HEOM is the square of the number of auxiliary matrices in

HOPS. [For HEOM, each auxiliary matrix ρκ,⃗κ′⃗ has two labels κ ⃗
and κ′⃗ (see, e.g., refs 22, 38, and 39).]

Figure 2. (A) and (B) Plots of the two bath correlation functions (BCFs) used in the present work. The corresponding spectral densities (SDs) are
displayed in the inset. In (C) and (D), the absorption spectra corresponding to the two spectral densities are shown. The zero of frequency is chosen
as the purely electronic transition energy ωeg = Ee − Eg.

Figure 3. Convergence of the 2D spectra with respect to the number of realizations. Upper row: weakly damped BCF with depth = 8. Lower row:
strongly damped BCF with depth = 5.
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For the smallest number of realizations (10 000) in Figure 3,
there is still a lot of noise in the spectra. Nevertheless, the main
features are already clearly visible. Upon increasing the number
of realizations by an order of magnitude the noise has decreased
dramatically and the agreement with the HEOM result is quite
good. For 500 000 realizations (panel C), HOPS has nearly
converged.
As mentioned earlier, one expects that for HOPS one needs a

smaller depth of the hierarchy than for HEOM. To
demonstrate this, in Figure 4, we show HOPS and HEOM
calculations for different depths of the hierarchy for the case of
the “strongly damped BCF”. Results for the “weakly damped
BCF” can be found in the Supporting Information. Though for
depth = 2, HOPS already shows reasonable agreement with
the correct result, the HEOM spectrum suggests a totally
wrong peak structure. Note that depth = 2 implies 20
auxiliary vectors in HOPS and already 400 auxiliary matrices in
HEOM.
In the present work, we have shown that the HOPS method,

which is based on the stochastic quantum state diffusion, is well
suited to calculate 2D spectra. Here, we used a nonperturbative
treatment based on the method suggested in ref 23. This
approach is very closely related to experimental phase-
cycling40,41 and phase-modulation42,43 techniques. These

techniques can also be applied to individual molecules, using
a fourth pulse to create a population that can then be detected,
for example by fluorescence or by ionization. Our approach is
easily extendable to this situation and has the flexibility to
handle arbitrary pulse shapes and different carrier frequencies of
the pulses; also in a nonperturbative regime. The extension to a
larger number of pulses is also straightforward. Compared to
the density-matrix-based HEOM, for the stochastic HOPS,
quite a large number of trajectories has to be calculated. The
detailed dependence of this number is difficult to assess
beforehand. Fortunately, the convergence with respect to the
number of trajectories is already easy to see for a small number
of realizations. Note that within a perturbative treatment, the
absorption spectra can be calculated using HOPS with a single
trajectory.32 This seems not to be possible for the 2D spectra.
The advantages of HOPS compared to HEOM are that, in
HOPS, one propagates vectors instead of matrices, and
furthermore, that the convergence with respect to the hierarchy
is usually faster.21 Both aspects will become crucial if one
considers larger systems with more complicated bath
correlation functions. The dimension of the system of equation
that one has to propagate is for HEOM roughly by a power two
larger than that of HOPS, when using the same order of the
hierarchy (and the same truncation scheme). In HOPS, it is

Figure 4. Convergence with the depth of the hierarchy for the case of the “strongly damped BCF”. Left column: HOPS with 500 000 realizations.
Right column: HEOM. The depth is indicated in each plot.
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straightforward to add external stochastic fluctuations (e.g.,
phase-noise or static disorder), without much additional cost.
In the present work, the system only contained electronic
degrees of freedom and the vibrational mode was shifted to the
environment. This is not always possible (for example, if the
potential surfaces are strongly anharmonic). For such
situations, approximate stochastic methods have been proposed
recently.44,45 The approach in the present work can be easily
adapted to this situation by including the respective nuclear
degree of freedom in the system, coupling it to a “simpler”
environment.
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Mukamel, S. Coherent Multidimensional Optical Spectroscopy of
Excitons in Molecular Aggregates; Quasiparticle versus Supermolecule
Perspectives. Chem. Rev. 2009, 109, 2350−2408.
(4) Lott, G. A.; Perdomo-Ortiz, A.; Utterback, J. K.; Widom, J. R.;
Aspuru-Guzik, A.; Marcus, A. H. Conformation of Self-Assembled
Porphyrin Dimers in Liposome Vesicles by Phase-Modulation 2D
Fluorescence Spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 2011, 108,
16521−16526.
(5) Brixner, T.; Stenger, J.; Vaswani, H. M.; Cho, M.; Blankenship, R.
E.; Fleming, G. R. Two-Dimensional Spectroscopy of Electronic
Couplings in Photosynthesis. Nature 2005, 434, 625−628.
(6) Hayes, D.; Wen, J.; Panitchayangkoon, G.; Blankenship, R. E.;
Engel, G. S. Robustness of Electronic Coherence in the Fenna-
Matthews-Olson Complex to Vibronic and Structural Modifications.
Faraday Discuss. 2011, 150, 459−469.
(7) Duan, H.-G.; Stevens, A. L.; Nalbach, P.; Thorwart, M.;
Prokhorenko, V. I.; Miller, R. J. D. Two-Dimensional Electronic
Spectroscopy of Light-Harvesting Complex II at Ambient Temper-
ature: A Joint Experimental and Theoretical Study. J. Phys. Chem. B
2015, 119, 12017−12027. PMID: 26301382.
(8) Milota, F.; Sperling, J.; Nemeth, A.; Kauffmann, H. Two-
Dimensional Electronic Photon Echoes of a Double Band J-Aggregate:
Quantum Oscillatory Motion Versus Exciton Relaxation. Chem. Phys.
2009, 357, 45−53.
(9) Milota, F.; Prokhorenko, V. I.; Mancǎl, T.; von Berlepsch, H.;
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