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Abstract. We show how to create long-range interactions between alkali
atoms in different hyperfine ground states, with the goal of coherent quantum
transport. The scheme uses off-resonant dressing with atomic Rydberg states.
We demonstrate coherent migration of electronic excitation through dressed
dipole–dipole interaction by full solutions of models with four essential states
per atom and give the structure of the spectrum of dressed states for a dimer. In
addition, we present an effective (perturbative) Hamiltonian for the ground-state
manifold and show that it correctly describes the full multi-state dynamics. We
discuss excitation transport in detail for a chain of five atoms. In the presented
scheme, the actual population in the Rydberg state is kept small. Dressing offers
many advantages over the direct use of Rydberg levels: it reduces ionization
probabilities and provides an additional tuning parameter for lifetimes and
interaction strengths.
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1. Introduction

Owing to their remarkable properties [1], Rydberg atoms have emerged as a versatile
tool in ultra-cold atomic physics. They can be used for diverse topics, such as quantum
information [2, 3], atomic aggregates [4], the study of conical intersections (CIs) [5], digital
quantum simulations [6], electro-magnetically induced transparency [7], coherent population
trapping [8], giant Kerr nonlinearities [9] and ultra-long range molecules [10–12], since their
long-range interactions can be tuned over many orders of magnitude. However, excited atoms
in Rydberg orbitals are more vulnerable to ionization [13] or spontaneous decay and are more
difficult to trap [14, 15].

Recently, several groups have proposed combining the advantages of both ground-state
and Rydberg atoms through ‘Rydberg-dressing’ schemes [16–20]. The main idea is to use
off-resonant laser coupling between ground and Rydberg states to create eigenstates of the
laser-coupled system in which a small Rydberg component is admixed to the ground state.
These resulting dressed states inherit some of the extreme properties of the Rydberg states,
while preserving favourable properties of the ground state. Moreover, the additional degrees
of freedom provided by laser Rabi frequency and detuning increase flexibility and promise
potential shaping as well as dynamical control.

Dressing has been extensively studied for van der Waals (vdW) interactions, generated
when virtual transitions between levels of a two-atom system yield a distance-dependent
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energy shift. Several articles have proposed Rydberg dressing techniques to induce this kind of
interaction for ground-state atoms [16–21]. In this context, it was shown that dressing ground-
state atoms with Rydberg levels allows the large Rydberg vdW interaction energies to be
reduced until comparable with typical energy scales of cold-atom traps, while simultaneously
increasing ensemble life times to those required for thermal equilibration effects [16, 17]. These
are useful features, e.g. for realizing a supersolid phase in Rydberg-dressed Bose–Einstein
condensates [16, 22].

Here, we demonstrate that the ideas behind dressing Rydberg vdW interactions can also
be applied to resonant dipole–dipole interactions of neutral atoms. They occur when transitions
between different states of the two-atom system are energetically resonant. In this case, the
existence of an interaction potential is linked to electronic state transfer between atoms [23].
Dressing dipole–dipole interactions requires the use of two laser couplings and four electronic
states (two ground and two Rydberg states), in contrast to one coupling and two states that
suffices for vdW dressing. Hence, the scheme is more involved but also more flexible, offering a
larger number of dressed states. It ultimately allows coherent quantum-state transport between
atoms in different long-lived ground states over distances of 5–15 µm and for durations of many
milliseconds.

Similar ideas have previously been applied to trapped Rydberg ions [24]. However, we
are motivated by the possibility of generating potentials in an atomic many-body system that
induces different kinds of (coupled) electronic and atomic motion, depending on the overall
quantum state of the system. Useful applications of such potentials can be found in [5, 25].
In many systems, this goal is easier to achieve with neutral atoms than with ions, since the
motion of the latter is typically dominated by their Coulomb repulsion or the indispensable trap.
Furthermore, the mapping of state-transfer interactions to normally noninteracting ground states
by the laser dressing can be presented more clearly in the atomic case, where complications by
trapping, mixing of internal and external dynamics and additional laser-induced interactions can
be ignored, at least for free atoms. Finally, see [26] for dressing techniques targeting the control
of atomic motion without linked excitation transport.

Our results provide an additional handle on the time scale of excitation transport and
lifetimes, enable time-dependent control over hopping strengths and can be used to vary the
order of magnitude of dipole–dipole forces. Within some constraints [19], the dressing also
enables the use of well-established trapping methods. As recently shown, dressed dipole–dipole
interactions are an important tool for realizing atomic ring trimers [5]. In particular, confinement
of long-range interacting atoms on a ring, as required in [5], is greatly facilitated by the
techniques presented here. Atomic ring trimers allow the detailed study of wave-function
dynamics near and across CIs. Dressed dipole–dipole interactions may also prove useful for
the study of exciton dynamics in Rydberg chains [4, 25, 27, 28].

To demonstrate dressed dipole–dipole interactions, we employ numerical simulations of a
model with four essential states per atom. In this case, there are several dressed state manifolds,
distinguished by the number of excited Rydberg atoms they contain in the limit of vanishing
dressing. We apply van Vleck perturbation theory to obtain analytical expressions for the
induced effective interaction and to determine the parameter range within which the scheme
can function.

The paper is organized as follows. In section 2, we present the atomic states considered,
describe the resulting Hamiltonian and outline the basic principles of the dressing scheme.
In section 3, we consider an atomic dimer in detail, providing analytical expressions for
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the effective dressed interactions, diagonalizing the full Hamiltonian and discussing different
available dressing manifolds. In section 4, we present two exemplary applications of our results:
dressed ring trimers and exciton migration. We conclude in section 5 and discuss the technical
details of our calculations and the underlying atomic physics in the subsequent appendices.

2. Dressed Rydberg aggregates

2.1. Model

We consider a collection of N alkali atoms, where the nth atom is located at the position Rn.
The distances between the atoms, Rkl = |Rk − Rl |, shall be so large that interaction between two
atoms can be neglected unless both of them are in a Rydberg state. In this case they experience
strong dipole–dipole interactions. As discussed in [4, 23, 25, 27, 28], the dipole–dipole
interaction leads to exciton dynamics similar to that of molecular dye aggregates, molecular
crystals or light harvesting systems [29].

For practical reasons we restrict ourselves to situations where the dynamics can be
adequately described using only two ‘ground’ states and two Rydberg states per atom. By the
term ‘ground states’, we refer e.g. to two different hyperfine levels of the actual alkali-atom
ground state. We shall denote the ground states by |g〉 and |h〉 and the Rydberg states by |s〉 and
|p〉. The latter correspond to the l = 0 and l = 1 angular momentum components of a Rydberg
level with large principal quantum number ν & 30. Schematically, the resonant dipole–dipole
interaction Û (R) leads to a coupling between states |sp〉 and |ps〉, whose matrix elements in
the Hamiltonian take the form Udip(R)|sp〉〈ps|. The transition strength is Udip(R) = −µ2/R3,

where R is the inter-atomic distance and µ quantifies the transition dipole moment between the
states |s〉 and |p〉. We assume that all atoms are prepared in the ml = 0 azimuthal quantum states
and never acquire ml 6= 0. With atoms constrained in a two-dimensional (2D) plane, orthogonal
to the quantization axis, this ensures that there is no angular dependence of Û (R) [23, 28]. Such
a geometry covers both scenarios described later in this paper. The interaction between atoms k
and l reads

Ukl = Udip(Rkl) = −
µ2

|Rk − Rl |
3
. (1)

To map the strong interactions Ukl to the ground states, the atoms are irradiated with far-
detuned dressing laser fields that couple the ground states and our two selected Rydberg states
coherently. The relevant level diagram is sketched in figure 1(a). In practice, such a coupling is
commonly achieved by two (or multi)-photon transitions [30], so that the Rabi frequencies �s,p

and detunings 1s,p in the diagram have to be regarded as effective quantities. From the laser
transition parameters, we assemble the effective dimensionless dressing parameters

αs,p =
�s,p

21s,p
. (2)

They are a measure of how ‘far-detuned’ the laser coupling is, and will emerge as
crucial quantities controlling the dressing, as is the case for dressed vdW interactions [16, 17].
It is important that the state |g〉 is directly coupled only to |s〉, and |h〉 only to |p〉. For
this simple picture with four relevant states per atom to be valid, the detunings of both laser
couplings have to be chosen such that all other transitions, coupling to further Rydberg-state or
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Figure 1. (a) Schematic level diagram for laser dressing of a pair of ground-
state atoms with Rydberg states. The ground states |g〉, |h〉 do not participate
in inter-atomic interactions or spontaneously decay on time scales of interest.
States |s〉, |p〉 are highly excited Rydberg states, participating in binary long-
range interactions, as explained in the text. Ground and excited states are
coupled in a far-detuned fashion, as indicated in the diagram. The symbol γ

indicates the relevance of spontaneous decay, which we discuss in section 3.5.
(b) Implementation of the scheme sketched in panel (a) for 7Li, using the
indicated states to realize |g〉, |h〉, |s〉, |p〉. Also shown are the states energetically
closest to |s〉, |p〉. For the hyperfine-split ground state, F denotes the total atomic
angular momentum (nuclear, orbital and spin). See appendix B for further details
of the indicated transitions.

ground-state levels, are so far detuned that they can be safely neglected2. We show some realistic
level diagrams for 7Li in figure 1(b) to demonstrate how this constraint can be met in practice.
Throughout the paper, we will refer to the states |g〉, |s〉 as the ‘s-pair’ and the states |h〉, |p〉 as
the ‘p-pair’.

Using the four states introduced above as a basis for the single atom, an N -body basis state
|k〉 is written as

|k〉 ≡ |k1 . . . kN 〉 ≡ |k1〉 ⊗ . . . ⊗ |kN 〉, (3)

where k j ∈ {g, h, s, p} describes the electronic state of the atom j . For example, we write |ghs〉
when the first atom is in state |g〉, the second in |h〉 and the third in |s〉. After defining operators
σ̂

(n)

kk′ = |kn〉〈 k ′

n| with k, k ′
∈ {g, h, s, p}, where n is the atom index, the many-body Hamiltonian

can be written as

Ĥ = Ĥ 0 + V̂ , (4)

with

Ĥ 0 = −1s

∑
n

σ̂ (n)
ss − 1p

∑
n

σ̂ (n)
pp +

∑
nl

Unl σ̂
(n)
sp σ̂ (l)

ps (5)

2 If both couplings are realized by two-photon transitions, these considerations should include the virtual middle
level. We require couplings |g〉 ↔ |ms〉 ↔ |s〉 and |h〉 ↔ |m p〉 ↔ |p〉 with uniquely assigned states |ms/p〉. See
appendix B for more details.
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and

V̂ =

∑
n

(
�s

2
σ̂ (n)

gs +
�∗

s

2
σ̂ (n)

sg

)
+
∑

n

(
�p

2
σ̂

(n)

hp +
�∗

p

2
σ̂

(n)

ph

)
. (6)

We split Ĥ into two parts, Ĥ 0 and V̂ , to facilitate our later application of perturbation theory.
The atom–light coupling in (4) has been treated in the dipole- and rotating wave approximations,
as explained in appendix A. The exciton number operator

N̂ e =

∑
n

(σ̂ (n)
pp + σ̂

(n)

hh ) (7)

measures the number of atoms in the p-pair of states. It is easy to see that N̂ e commutes with Ĥ
and hence the exciton number is conserved; see also appendix C.

Of course, equation (4) is a simplified description of a complicated multi-state system. For
a more complete picture, one could include additional Rydberg levels adjacent to |s〉, |p〉 (as
shown in figure 1(b)), vdW interactions of all four states and spontaneous decay and loss in
the excited states. The latter arises as atoms in Rydberg states are lost due to auto-ionization
or blackbody radiation [31, 32]. Importantly, parameter regimes can be found where these
corrections are minor and (4) suffices, for example, for the states and parameters shown in
figure 1(b) and described in section 2.2.

2.2. Basic principles and exemplary parameters

Consider an atomic sample such as a chain, prepared in states |πn〉, in which the nth atom is in
the upper ground state |h〉 and all others in the absolute ground state |g〉

|πn〉 = |ggg . . . h . . . ggg〉. (8)

Without dressing (�s = �p = 0) this is an eigenstate of the Hamiltonian (4). If we ignore
dipole–dipole interactions for the moment, an adiabatic ramp-up of the dressing strengths �s,p

will change this eigenstate into one with some admixture of Rydberg population. Allowing then
for dipole–dipole interactions finally causes excitation transport via processes of the schematic
form: |gh〉 → |sp〉 |ps〉 → |hg〉. Here → symbolizes a transition of both atoms between the
ground-state manifold and the Rydberg-state manifold due to the dressing lasers. Similarly,
 stands for a transition occurring due to resonant dipole–dipole interactions between Rydberg
states. In section 3, we will confirm this expectation with numerical simulations and later justify
and quantify it using perturbation theory. If the lasers are sufficiently off-resonant, the admixed
fraction of excited state should remain small throughout. For this reason, we can describe the
process we have just sketched as an effective interaction in the space spanned by the |πn〉.
We will refer to it as the ground-state manifold. For later reference we also define spaces
spanned by

|πn〉A = |ggg . . . p . . . ggg〉, |πn〉B = |hhh . . . s . . . hhh〉, (9)

which we call the gp (hs) single-excitation manifold.
Throughout this paper, we focus on a specific realization of our scheme, sketched in

figure 1(b). We consider 7Li atoms whose 2S1/2 ground state has a hyperfine-splitting of
1hf = 800 MHz [33]. For the Rydberg state |s〉, we pick a principal quantum number ν = 80
and angular momentum l = 0 state. For |p〉 we choose ν = 80 and l = 1. The energy difference
between the two Rydberg states is 4.5 GHz. We will assume detunings 1s = 1p = 1 = 50 MHz

New Journal of Physics 13 (2011) 073044 (http://www.njp.org/)

http://www.njp.org/


7

and dressing parameters αs = αp = α = 0.02 unless otherwise indicated. We will occasionally
refer to α (without index), which implies αs = αp = α. For the above values of α and 1, our
Rabi frequencies are �s = �p = 4 MHz.

For the most part, we illustrate the dressing scheme through an atomic dimer with
R = 6.5 µm inter-particle separation. For this distance, the strength of the bare dipole–dipole
interaction is U = 92.5 MHz, just less than the doubly excited-state detuning 1s + 1p =

100 MHz. The reason for this choice will become clear later.
We stress that we have chosen these parameters to be specific, while our findings are more

general. The constraints under which the parameters can be varied without invalidating the
dressing scheme have been discussed in section 2.1. All the following results are expected to
hold for any alkali species if these constraints are met.

3. Dressed dimer

For the principal demonstration of excitation transport through Rydberg dressing, we first treat
the simplest possible case, the atomic dimer.

3.1. Dressing dynamics in the ground-state manifold

In this section, we show dynamics from the initial state |π1〉 = |hg〉. We consider two different
ramps of the dressing couplings �s,p in the Hamiltonian: (i) a sudden jump from zero to
their final value, and (ii) an adiabatic ramp over a small finite time Tramp = 0.1 ms, effectively
changing the initial state to |π̃1〉 ≡ (|hg〉 +O(αs,p)[|pg〉 + |hs〉])/N, where N is a normalization
factor (see also section 3.2)3.

We expand the time-dependent quantum state as |9(t)〉 =
∑

k ck|k〉, where |k〉 are the
N -body basis vectors defined in (3). In this basis, we express the Hamiltonian in matrix form
and solve the Schrödinger equation i∂t |9(t)〉 = Ĥ |9(t)〉 by matrix exponentiation. Using the
four-state model introduced in section 2.1, we employ the full Hamiltonian (4) without further
approximations.

For two atoms placed a distance R = 6.5 µm apart, the resulting population oscillations
between the states |gh〉 and |hg〉 can be clearly seen in figure 2. On the logarithmic scale of
panel (b), we see that also states containing one Rydberg excitation or more are populated,
but their occupation is roughly suppressed by α2

= 4 × 10−4, indicated by the black solid line.
The suppression of excited-state population by a factor α2 is well known from vdW dressing
techniques [16, 17] and is a basic feature of off-resonant Rabi coupling. As can be seen in
figure 2, there will be many ground-state population oscillations up to the expected spontaneous
life-time of the dressed two-atom state, which we estimate to be about 0.29 s, as described in
section 3.5. Due to the dressing, the time scale on which the interaction transports the excitation
has been massively increased compared to the ‘bare’ population oscillation period between
Rydberg states |sp〉 ↔ |ps〉, which would be Tex = 5 ns.

The comparison of panels (b) and (c) of figure 2 shows that the use of the more refined,
adiabatically created, initial state has led to a more regular evolution of the excited-state

3 To obtain dressed excitation transport from a state |π̃1〉, the ramp ought to be slow on the time scale of the laser
coupling but fast on that of effective dipole–dipole transport. Thus, Tdress < Tramp < Tex with Tdress = 2π/�s,p =

0.25 µs and Tex ≈ 4 ms. (The value is read from figure 2 and defined as the time it takes for the excitation to
oscillate from the first atom to the second and back.)
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Figure 2. Transport dynamics of a Rydberg-dressed dimer. (a) Populations
nk = |ck|

2 of the two-atom states |gh〉 (violet) and |hg〉 (green) on a linear scale.
The blue line is the total population in the ground-state manifold. (b, c) On a
logarithmic scale, the differences between the two ramp-ups become visible:
(b) sudden addition of the laser coupling: the singly excited-states (red, yellow)
are roughly suppressed by α2

= 4 × 10−4, indicated by the solid black line.
Doubly excited-states (blue) are further suppressed. (c) Adiabatic ramp-up of the
laser coupling: singly excited-state populations are precisely suppressed by α2.
The expected spontaneous lifetime of this system is τeff = (α2(τ−1

s + τ−1
p ))−1

=

290 ms, as will be described in section 3.5.

populations, whose oscillations now precisely follow those of the two ground states. The
population of states with a single Rydberg excitation never exceeds α2. Doubly excited states
are further suppressed. However, this careful initial state creation is not actually required in
order to observe dressed population oscillations, as we have just seen.

3.2. Effective Hamiltonian

The results of the preceding section already unambiguously demonstrate excitation transport
through full numerical solutions of the problem. To further understand the population
oscillations more intuitively, we now consider the ground-state manifold spanned by |π1〉, |π2〉

as the system of interest and its Hilbert-space complement as the environment. The coupling
between the two is treated as a perturbation. We use van Vleck perturbation theory [34], as
outlined by Shavitt et al [35], to derive an effective Hamiltonian in terms of the ‘system’ only.
This scheme conveniently takes care of degeneracies and generates an effective Hamiltonian
well suited for describing excitation transport. A full analytical diagonalization of (4) is
impractical even for N = 2. In contrast, the perturbative results for N = 2 are intuitive and
generalize straightforwardly to cases with more atoms. They are also valid over large ranges of
parameter space, as we shall show below.

The aim of van Vleck perturbation theory is to find a basis that block-diagonalizes the
Hamiltonian (4) to a given order in the perturbation V̂ . For V̂ = 0 this is achieved by the basis
|k〉 introduced in section 2, since Ĥ 0 is already fully diagonal. The relative importance of V̂
and Ĥ 0 is governed by the dressing parameters αs,p. As the αs,p increase, the basis that block-
diagonalizes Ĥ becomes more complicated. Perturbation theory will thus be valid as long as the
dressing parameters αs,p are small.
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We will use the notation

|k〉 → |k̃〉 = |k〉 +
∑

m

bm|m〉, (10)

with bm ∼ O(αs,p), i.e. |k̃〉 is a state whose leading component is |k〉 as long as α remains
small and U is small (i.e. R is large). In this section, we shall only be interested in the block
of the effective Hamiltonian that governs the dynamics of the effective ground-state manifold
|π̃1〉 = |h̃g〉 and |π̃2〉 = |g̃h〉. The details of the calculation are given in appendix D; here we
merely present the results. In the basis |π̃1〉, |π̃2〉, one obtains

Heff = (E2 + E4)1+ E(R), (11)

where 1 is the 2 × 2 identity matrix. We have energy shifts (E2 + E4) and an explicitly distance-
dependent part E(R). The light shifts E2(E4), corresponding to the second (fourth) order in V̂ ,
are given by

E2 = α2
s 1s + α2

p1p, (12a)

E4 = −(α4
s 1s + α4

p1p + α2
s α

2
p(1s + 1p)), (12b)

where we have used the dressing parameters defined in (2). These light shifts could allow optical
trapping using the same fields that provide the dressing coupling. The position-dependent part
of the Hamiltonian, E(R), can be written as

E(R) =

(
W (R) Ũ12(R)

Ũ21(R) W (R)

)
, (13)

with

W (R) = α2
s α

2
p

1

1 − Ū 2
12(R)

(1s + 1p), (14a)

Ũ12(R) = α2
s α

2
p

U12(R)

1 − Ū 2
12(R)

, (14b)

where we have defined Ūij = Uij/(1s + 1p). As expected, the states |π̃1〉, |π̃2〉 acquire small
excited-state populations of the form

|π̃1〉 = (|hg〉 + αp|pg〉 + αs|hs〉 +O(α2
s,p))/N, (15)

independent of R. Here N=

√
1 + α2

p + α2
s is a normalization factor.

Let us briefly mention some special cases. For large inter-atomic separations, such that
Ui j � (1s + 1p), we can expand the expressions (14) and obtain W (R) ∼ W∞ = −α2

s α
2
p(1s +

1p) and U (R) ∼ α2
s α

2
pU12. The shift W∞, which is independent of R, can then be merged with

E4. For shorter distances, the factors 1/(1 − Ū 2
12) become relevant and diverge at Ū12 = 1, or

equivalently at Ui j(R) = (1s + 1p). We will see in the next section that this divergence can be
traced to avoided crossings between the perturbed energy eigenvalues. We show in section 3.4
that (14) fails only in a fairly narrow region around this avoided crossing.

An interesting special case is 1s = −1p. Here, the equations predict that the dressing
effect on the ground-state manifold vanishes, which is confirmed by full simulations. We will,
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however, show in section 3.6 that this case has special appeal for dressing within the single
excited-state manifold.

We also derive the contribution to Heff of sixth order in V̂ in appendix D.1. We will make
use of it in section 3.4 to illustrate the rate of improvement that can be achieved through higher-
order terms of perturbation theory.

3.3. Potential surfaces

To get an overview of the consequences of dressing radiation beyond the ground-state manifold,
we now consider the full energy spectrum of the dimer as a function of inter-atomic separation.
As we outline in appendix C, the dimer Hamiltonian can be brought into block-diagonal form,
with three blocks describing exciton numbers of Ne = 0, 1, 2. Of these, only the single exciton
block is nontrivial; hence we only show the eigenspectrum of its corresponding sub-matrix M1

(C.2) here. Explicitly, we solve

M1|9k〉 = Ek|9k〉. (16)

In addition to providing information on the possibilities of dressed excitation transport,
the energy eigenvalues as a function of separation can also be viewed as adiabatic
(Born–Oppenheimer) potential surfaces for the motion of the atoms, as long as this motion
is sufficiently slow [36].

The R-dependent energy eigenvalues are shown in figure 3 for 1s = 50 MHz and 1p =

60 MHz, with other parameters as described in section 2.2. The slight offset between 1s and
1p makes it easier to grasp the structure of the resulting spectrum. At large distances R and for
moderate dressing strength α, the eigenstates are essentially superpositions of two basis states,
and have odd or even symmetry under exchange of atoms 1 and 2. These superpositions are
listed in the caption of figure 3(a), disregarding normalization. Their energies are then mostly
determined by the total detuning of the two superimposed basis states. As the distance R is
reduced, the dipole–dipole interaction energy of the states consisting mainly of two Rydberg
atoms (blue dotted lines and red solid lines) becomes more prominent and eventually leads
to avoided crossings between these and the other states of the spectrum. On the large energy
scale of figure 3(a), O(1s,p), the dipole–dipole shift of the | ˜sp〉±| p̃s〉 states is most prominent.
However, the other states with only a small doubly excited-state component also acquire a space-
dependent dipole–dipole potential, as can be seen in the close-ups, panels (b)–(d). The energy
splitting of the states within the ground-state manifold, panel (b), is of order O(α41s,p), whereas
that in the singly excited-state manifolds, panels (c)–(d), is of order O(α21s,p). In panel (b), we
additionally display the energy eigenvalues obtained from the effective Hamiltonian (11). The
shape of the potential is well reproduced.

The dressed potentials shown in figures 3(b)–(d) have at least two interesting features.
(i) Their overall strength scales as ∼ α2 or ∼ α4; it can thus be easily adjusted by the choice
of laser parameters and even manipulated time dependently. (ii) The shape of the potentials can
be modified beyond a simple attractive or repulsive form ∼ ±R−3, owing to the appearance
of avoided crossings. For example, the attractive branch of potentials in the ground-state
manifold, shown in figure 3(b), approaches a finite value for small separations R, as can be
seen from its continuation in figure 3(a). This could avoid acceleration to high velocities during
atomic collisions on the attractive potential, perhaps reducing the probability of collisional
ionization [27, 37]. Light-induced modifications of potentials that would be strongly attractive
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Figure 3. Energy spectrum of a Rydberg-dressed atomic dimer as a function
of atomic separation R for 1s = 50 MHz and 1p = 60 MHz. We plot only
energies in the single exciton sub-space, governed by the Hamiltonian (C.2). All
states with odd particle-exchange parity correspond to solid lines and those with
even parity to bullets. (a) View of the largest energy scale set by the detuning.
The two states with dominant components |sp〉 ± |ps〉 for large R are most
strongly affected by the dipole–dipole interaction. As a consequence, one of
them undergoes avoided crossings with other states. Three avoided crossings can
clearly be seen. The states are labelled in the legend according to their leading
two-body content at large R. The state–content character changes each time a
state undergoes an avoided crossing, so that, for example, the solid black curve
corresponds to |gh〉 − |hg〉 at large R, but has become close to |sp〉 − |ps〉 at
small R. The vertical dashed line indicates the separation R = 6.5 µm, chosen
for dynamical examples throughout this paper. (b) Zoom-in of the ground-state
manifold. The crosses indicate the eigenvalues of the effective Hamiltonian (11).
(c, d) Zoom-in of singly excited-state manifolds; the colour code is the same as
in (a). Note the different energy scales of (b) compared with (c) and (d).

in the absence of dressing have already been discussed for the case with a single ground state
in [26], and proposed as a collisional shield for cold polar molecules in [38]. However, in our
case, once the separation of the atoms is much smaller than the minimal value included in
figure 3, which is R ∼ 4 µm, we have to keep in mind that the simplified four-state model
breaks down: the dipole–dipole shift of the dressed states may then become so large that they
couple strongly to two-atom states that are not included in our model.
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Figure 4. The same as figure 3, but for 1s = −1p = 50 MHz. In contrast to
figure 3, the ground-state manifold does not acquire a potential through the
dressing. Symmetrical dressed potentials are obtained for the singly excited-state
manifolds. The adiabatic potentials for the asymptotic | ˜sp〉 ± | p̃s〉 states are cut
off at energy ∼ ±1 due to avoided crossings.

Let us briefly discuss the case when the detunings have equal magnitude. As 1s approaches
1p, the asymptotic |g̃p〉 − | p̃g〉 energy curve (violet line) in figure 3(a) is squeezed between
the neighbouring ones until the states become degenerate. If we change the sign of one of
the detunings and consider the special case 1s = −1p, we obtain a particularly symmetric
energy spectrum, shown in figure 4. As predicted by (14), the dressing-induced state-transfer
interaction vanishes between the states |g̃h〉 and |h̃g〉. However, symmetrical induced potentials
can now be found in the singly excited-state manifold. The strength of these potentials scales as
α2, different from those previously obtained in the ground-state manifold. We will discuss this
further in section 3.6.

3.4. Performance of effective Hamiltonians

In this section, we revisit dressed dimer dynamics first presented in section 3.1 to apply the
results of section 3.2. Figure 5 shows a comparison of the evolution governed by the effective
perturbative Hamiltonian (11) with that following from the full Hamiltonian (4). Fourth-order
perturbation theory already describes the effective induced hopping period fairly well, as can
be seen in panel (b). When we move to the sixth-order expressions, which can be found in
appendix D, the agreement becomes even better: the deviation never exceeds 1% in the time
interval shown. In other simulations, we found that perturbation theory agrees better with full
calculations if α is small, as expected. Even for parameters with poorer agreement between
full and perturbative dynamics (e.g. larger α or closer to an avoided crossing), we typically still
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Figure 5. Comparison between exact dynamics using the Hamiltonian (4)(a) and
the errors resulting from using its perturbative approximations to fourth order
((b); see (11)) and sixth order ((c); see (D.4)) for the transport dynamics of
Rydberg-dressed dimer from a dressed localized state. Panels (b) and (c) show
the difference between the respective perturbation orders and the exact solution.
Simulations begin from the state |hg〉 at t = −Tramp. Then, over a duration
Tramp = 100 µs, we linearly ramp up the Rabi frequencies �s,p to their final
values. This approximately creates the state |h̃g〉 at t = 0. The colour scheme
is the same as in figure 2. The solid blue line in panel (a) shows the function
p(t) = N (t)/N (0) = exp(−t/τeff), with τeff = 290 ms for orientation; see the
discussion in the next section.

obtain the primary features that make these induced potentials interesting: (i) we have persistent
dressed hopping and (ii) the excited-state occupancy is suppressed.

Since we have included the dipole–dipole interaction in the unperturbed part of the
Hamiltonian (5), we do not a priori require it to be small compared to the detuning for the
perturbation theory in section 3.2 to be valid. In practice, we find that expression (11) works
well even for Ui j ∼ 1s,p, as long as one stays clear of the avoided crossings at Ui j = (1s + 1p).
The large splitting of the eigenstates in the ground-state manifold in the vicinity of the avoided
crossing, see figure 3(b), results in comparably fast population oscillations. The regime where
we can find dressed excitation transport on time scales shorter than the life time of the multi-
atom state is thus typically entered when Ui j approaches 1s + 1p but has not quite reached it yet.
The effective population-oscillation period in figure 5 is Tex = α−4(1 − Ū 2

12)/(2U12) = 4.5 ms.
Here, α−4

= 6.25 × 106, and the correction factor is (1 − Ū 2
12) = 0.13 due to the vicinity of an

avoided crossing.
Let us reconsider the doubly excited-state populations in figure 2. For atomic distances

where the system is far from all avoided crossings shown in section 3.3, the doubly excited
states would be suppressed by α4. This gets modified near these avoided crossings. For the
distance R = 6.5 µm, the system is fairly close to an avoided crossing; thus the doubly excited
states are more strongly populated.

To conclude this section, we would like to remark on the position degree of freedom
of the atoms carrying the interaction. In this paper, we treat it classically, assuming atoms
with a precisely defined separation R. In practice, each atom will have a position uncertainty,
for example due to the zero-point motion in a harmonic well. The resulting distribution of
interatomic distances R can lead to a fast de-phasing of population oscillations such as that
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shown in figure 5. For the example shown, if we would assume a separation uncertainty of
σR = R/20 the oscillations de-phase after four cycles.

We, however, do not study de-phasing here, since it is not specific to the dressed
interactions. If we consider direct dipole–dipole excitation transport, between the states |sp〉

and |ps〉 only, it would also de-phase after four cycles, which, however, would take place on
a time scale of 10 ns due to the by α−4(1 − Ū 2

12) stronger interaction. Thus, whether or not
de-phasing due to disorder poses a problem depends on the intended application of excitation
transport and not on whether or not the interactions arise due to dressing. In particular, our
previous paper [5] describes an exemplary application where it poses no problem; simula-
tions presented in [5] fully include atomic positioning uncertainties. Also in our previous work
[25, 27, 28], concerning combined excitation transport and atomic motion, the interactions
between the atoms could be interpreted as arising via the techniques considered here. Again,
de-phasing effects do not pose a problem.

3.5. Spontaneous decay and loss

The use of chains of Rydberg atoms for random walks and other aggregate physics [4, 25]
is limited by spontaneous decay and other incoherent loss processes from the Rydberg states.
When using a dressing scheme, these decay processes are reduced by construction since the
atomic population in Rydberg states is kept small. Throughout the paper, except section 3.5.1,
we thus do not explicitly include loss in the presented dynamical calculations, but instead
estimate the lifetime of dressed Rydberg aggregates based on their content of actual Rydberg
population. For example, the state |π̃1〉 (15) will be assigned a total effective decay rate
γeff = α2

s γs + α2
pγp for two atoms. This scaling of γeff with the dressing parameters follows the

same pattern as in vdW dressing [16, 17].
Most of our simulations treat excitation transport via ν = 80 Rydberg states of lithium,

which have lifetimes τs = γ −1
s = 185.8 µs and τp = γ −1

p = 315.8 µs [31]. This yields τeff =

γ −1
eff = 290 ms for α = 0.02 and N = 2. The corresponding exponential population decay is

schematically indicated in figure 5(a). Note that simple estimates of the lifetime of a dressed
system using the relations of this section and the results of section 3.2 require excited-state
populations to be accurately described by perturbation theory. We have seen in figure 2 that this
is the case, even fairly close to the avoided crossings in the spectrum.

3.5.1. Density-matrix treatment. To ascertain that the simple estimates of loss effects
discussed above are valid for our cases, we also calculated results such as those shown in figure 5
with the inclusion of loss and spontaneous decay. Consider the density matrix

ρ̂ =

′∑
k,l

ρk,l|k〉〈 l |, (17)

with basis states as defined in (3). The prime on the summation symbol indicates that only states
within the single exciton manifold (set b1 in appendix C) are considered.

Let the time evolution of ρ̂ be given by the master equation

ρ̂ = −i
[
Ĥ , ρ̂

]
+
∑

ak

γ̄kD[D̂(a)

k , ρ̂] + 0L[L̂, ρ̂], (18)
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Figure 6. The same scenario as in figure 5, but calculated with a density-matrix
formalism including spontaneous decay and loss. (a) All decay processes return
population to the ground states |g, h〉, case (i) described in the text. (b) Some
decay processes lose population from our system, case (ii) described in the
text. (c) The same as (b), but on a logarithmic scale. The black line in (a, b)
is the function p(t) = N (t)/N (0) = exp(−t/τeff), with τeff = 290 ms, shown for
orientation.

where D is the Lindblad superoperator D[â, ρ̂] = âρ̂â†
− â†âρ̂/2 − ρ̂â†â/2. For k = {s, p}

define l(k) = {g, h}, then D̂k
(a)

acts like |l(k)〉〈 k | in the electronic space of atom a and as
unity elsewhere. These operators describe spontaneous decay.

The superoperator L has the form L[â, ρ̂] = âρ̂ − ρ̂â† and the operator 〈 k|L̂|k′
〉 =

nRyd(k)δkk′/2i . Here, nRyd(k) counts the number of excited atoms in the state |k〉. The purpose
of L is to describe loss from the Rydberg states to states external to our model [39], for example
to other Rydberg states. For simplicity, we assumed an identical loss rate 0 from |s〉 and |p〉.

We consider two cases. (i) All the population loss from the Rydberg levels described
by the effective decay rates γs,p from [31], including black-body effects, ends up in the
respective ground states. Here, we set 0 = 0 and γ̄s,p = γs,p. This is a worst-case scenario
for our purposes, as all incoherent processes within our four-state model decohere excitation
transport. (ii) We split τeff from [31] into the zero-temperature component τ0 and the black-body-
induced component τbbr via τ−1

eff = τ−1
0 + τ−1

bbr . This yields τ0,s = 413.7 µs, τ0,p = 1386 µs, τbbr,s =

337.3 µs and τbbr,p = 409.0 µs. We then assume that population returns to their respective
ground states with a rate γ̄s,p = (τ0,(s,p))

−1, while black-body redistributed population is lost,
either due to ionization or because it leaves the single exciton manifold4. We thus set
0 = τ−1

bbr,s.
These calculations, shown in figure 6, verify that loss out of the system from the Rydberg

states |s〉 and |p〉 has indeed no other consequences than an overall population decay. If
spontaneous decay in the channels |s〉 → |g〉 and |p〉 → |h〉 is included, population oscillations
additionally show a de-phasing. Neither effect is dramatic on the time scales considered here.

3.6. Dressing in singly excited state manifolds

In section 3.3, we have pointed out that dressing-induced dipole–dipole interactions can
be created in the ground-state manifold (between the states |g̃h〉, |h̃g〉) or in two different

4 For example, through a cascaded decay such as |gp〉 → · · · → |gg〉.
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Table 1. Lifetimes and interaction strengths of various dressed N -atom states:
from top to bottom in the excited-state manifold, singly excited-state manifold
and ground-state manifold.

State τeff Ueff β = τeff/Tex

| ˜sss · · · sp〉
τ0
N U 2τ0U 1

N ≡ β0
1
N

| ˜ggg · · · gp〉
τ0

1+(N−1)α2 α2U β0
1

N−1+α−2

| ˜ggg · · · gh〉
τ0

Nα2 α4U β0
α2

N

excited-state manifolds (between the states | ˜sh〉, |h̃s〉 or |g̃p〉, | p̃g〉). The latter requires
significantly different detunings 1s and 1p (such as 1s = −1p) to energetically separate the
two different singly excited-state manifolds. We have explicitly verified population oscillations,
for example, between the states |hs〉 and |sh〉.

To find out whether the ground or singly excited-state manifold would be more useful
for a specific application, it is important to consider the lifetime of the dressed multi-atom
state: the smaller the α, the longer the lifetime, but also the longer the effective hopping period
Tex ∼ 1/(2Ueff) required for a complete population oscillation that transfers the excitation from
one atom in the dimer to its counterpart and back. Here, the interaction Ueff denotes the off-
diagonal entry in the effective Hamiltonian of the corresponding manifold, e.g. Ũ21(R) in (13)
for the ground-state manifold.

Here, we estimate the lifetime of dressed states more approximately than described in
section 3.5, assuming that ground-state atoms (|g〉, |h〉) do not decay and excited-state atoms
(|s〉, |p〉) decay with the same rate γ = 1/τ0. For a system of N atoms in various states, we then
again add the decay rates.

For three different N -atom states, the lifetimes determined in this way and the ratio of
lifetime to hopping period, β = τeff/Tex, are listed in table 1. As long as α−2 . N , the ratio β

for the singly excited-state manifold can be larger than that for the ground-state manifold.
Whether dipole–dipole interactions induced through dressing are advantageous over direct

dipole–dipole interactions among Rydberg states depends strongly on the problem at hand, as
we discuss now for three examples.

3.6.1. Exciton migration. For the migration of a single or multiple excitons on a rigid chain,
as studied in [4], the ratio β introduced above gives a direct measure of how many sites the
excitation can traverse within the lifetime of the whole chain. Evidently this measure is never
improved by the present dressing technique, whose advantage for this scenario thus lies only
in reduced ionization probabilities and simpler atom trapping. In section 4.2, we show an
exemplary case where the overall lifetime in the presence of dressing is long enough to exploit
these features.

3.6.2. Adiabatic transport. There are dynamical scenarios whose time scale of interest is not
directly given by Tex, such as the adiabatic entanglement and excitation transport we reported
in [25]. It can be seen that the ratio of the time scale of transport dynamics to spontaneous life
time of the chain can be improved by a factor of about two by working in the dressed singly
excited-state manifold.
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3.6.3. Ring aggregates. In section 4.1, we consider systems of three dipole–dipole interacting
atoms trapped in effectively 1D on a ring. For such a construction, dressing can be highly
beneficial.

4. Applications

After choosing the dimer as the simplest case to work out the basic details of dressed
dipole–dipole interactions, we now briefly present two exemplary applications of our results to
larger systems. First, in section 4.1, we consider a dressed ring trimer (N = 3 atoms confined to
a ring), a system of interest due to CIs of the adiabatic energy surfaces [5]. Then, in section 4.2,
we examine a dressed exciton on an atomic chain with N = 5.

4.1. Flexible Rydberg ring trimer

In [5], we show that circular Rydberg trimers, consisting of three Rydberg atoms trapped in 1D
on a ring, exhibit interesting quantum dynamics near CIs. For practical realizations, however,
dipole–dipole forces are typically too large for ring confinement. In this case, the reduction
of interaction strengths, which limits the parameter range where dressing is beneficial for
exciton migration, turns into a benefit. As dressing also increases the system’s lifetime, it greatly
facilitates the practical creation of dipole–dipole ring trimers.

Consider three atoms tightly confined in 1D on a ring, as sketched in figure 7(a). Achieving
such confinement is the first point in this section that is simpler for dressed ground-state atoms
than for bare Rydberg atoms. On the ring, the bare interaction between atoms Ukl is fully
determined by the two relative angles θ12 and θ23 shown in the sketch. Adiabatic energies,
defined by (16), then form 2D surfaces Ek(θ12, θ23). In the absence of laser couplings, the
three surfaces spanned by |pss〉, |sps〉, |ssp〉 exhibit a CI [40], where two of them become
exactly degenerate, at θ12 = θ23 = 2π/3. In the presence of laser couplings, this feature is also
imprinted onto surfaces spanned predominantly by the ground states |hgg〉, |ghg〉, |ggh〉. CIs
are of great interest, in particular in chemical physics, as they strongly affect the outcome of
photo-chemical reactions [40]. In cold atomic gases of Rydberg-dressed atoms, they result
in interesting nonadiabatic and geometric phase effects [5]. For a detailed description of this
system and the concept of CIs, see [5] and references therein.

For the purpose of this paper, it is more important to point out that the techniques worked
out here are highly beneficial for the practical realization of this kind of ultra-cold CI. This
conclusion is reached through an extensive but technical survey of parameter space. We defer
full details to a specialized publication and present here only the core points.

In order to realize the scenario sketched in figure 7(a), initially at least three conditions
have to be met.

(A) The dipole–dipole interaction energy should not exceed the transverse oscillator
spacing ω⊥ to ensure 1D dynamics. Our interest is in dynamics near the CI, where the
atoms form an equilateral triangle and are separated by d =

√
3R, where R is the ring radius.

Comparing the (possibly dressed) interaction strength with the strength of the ring trap, ω⊥,
we have µ2/d3α4 < ω⊥, thus preventing either too small ring radii R or too large interaction
strength µ and hence principal quantum numbers ν.

(B) The motion should be adiabatic, except close to the CI. We can estimate the order of
magnitude of the CI transit time TCI from the time scale set by the classical equations of motion
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Figure 7. Adiabatic dressing dynamics according to (4) for temporally varying
bare interaction strength Ukl(t). (a) Geometric arrangement of the dressed
Rydberg ring trimer, as discussed in [5]. The interaction strength is varied
according to two different (classical) trajectories of motion of the ring trimer,
as shown in the inset. For the solid path, symmetry forces the eigenstates of
(4) to remain constant in time despite changes in Ukl(t); this corresponds to
straight crossing of the CI of the (dressed) energy surfaces. For the red dashed
path, dressed eigenstates change in time and are being adiabatically followed,
corresponding to motion on the same energy surface in [5]. (b) Bare interaction
strengths Ukl(t) for the two paths, using the same coding. For comparison −21

is also shown, where 1 = 24 MHz is the excited-state detuning. (c) Logarithmic
plot of populations nk = |ck|

2, for the solid path in the inset of (a), using the
same assignment of colours to states excitation number as in figure 2. Grey
indicates triply excited states. (d) Populations nk = |ck|

2 for the dashed path in
(b), using a normal scale. (e) Difference between the exact populations in (d)
and the expected dynamics according to the fourth-order effective perturbative
Hamiltonian (D.7).

θ̈ = −(∂V (θ)/∂θ)/(2M R2), which holds for a dimer of angular separation θ . This time scale is
TCI = 23/4

√
M R5/2/(µα2). Adiabatic dynamics must fulfil TCI � Tex, with Tex as in section 3.6.

(C) The lifetime of the dressed three-atom system should be longer than the duration of the
motion, thus τeff > TCI.

Attempting to fulfil the inequalities (A)–(C) for various atomic species leads to two
main conclusions: (i) lighter atoms are favourable and (ii) without dressing (α = 1), principal
quantum numbers ν would be too high to avoid strong effects of black-body radiation. If we
consider a dressed system however, one more constraint comes into play.

(D) The bare dipole–dipole shift without dressing must be smaller than the doubly excited-
state detuning 1s + 1p, at the closest approach of the atoms. This is to stay clear of avoided
crossings such as those seen in figure 3.

A set of parameters where these conditions are met is: ν = 100, R = 9.8 µm, 1s = 1p =

24 MHz and αs = αp = 0.15.5 Now we consider the dynamical evolution of an eigenstate

5 These are the parameters employed in [5]; in that paper, the detuning and Vbare(d∗) were given as angular
frequency 1ω = 2π × 1.

New Journal of Physics 13 (2011) 073044 (http://www.njp.org/)

http://www.njp.org/


19

of (4) when the interaction parameters Ukl = Ukl(t) are varied in time in a manner representative
of near CI dynamics. To this end we extracted the trajectory θ(t) = 〈θ〉 from full quantum
mechanical solutions of the time-dependent Schrödinger equation in [5]6, shown in the inset of
figure 7(a) as a dashed line. A second trajectory is taken slightly offset (dotted line). We find
that the quantum-state dynamics in both cases follows Heff (see equation (D.7)) well, justifying
the simplified model used in [5]. Since the energy spacing E pd (see figure 1) for ν = 100 is
E pd = 298 MHz, we could have chosen a much larger detuning, yielding even better agreement
between the perturbative and exact solutions.

As we have seen in this section, dressing has three benefits for atom trapping in the
construction of CIs in dressed Rydberg ring trimers: (i) it greatly widens the available scope
for quasi-1D trapping of the atoms; (ii) it reduces the involved interaction strength such that
trapping can be realistically considered in the first place; and (iii) it simultaneously extends the
available lifetimes.

4.2. Dressed excitation transport on long atomic chains

We discuss the results for a linear chain of N = 5 equidistant atoms in the following, considering
the same physical situation as in section 3.4; hence the spacing of atoms in the chain is also
1R = 6.5 µm. We create the initial state adiabatically as in section 3.4.

For this section only, we will define our excitation to be the state |g〉, such that e.g.
|π1〉 = |ghhhh〉. The corresponding dressed states have longer lifetime for larger chains.

The dressing-induced excitation transport and a comparison of exact and perturbative
evolution are shown in figure 8. It can be seen that the excitation is transported over many sites of
the chain on timescales shorter than the expected spontaneous lifetime of the dressed five-atom
state (about τeff = [α2((N − 1)/τp + 1/τs]−1

= 0.14 s). Due to the dressing, the timescale on
which the interaction transports the excitation has been increased by a factor of α−4(1 − Ū12) =

8.4 × 105, compared to the direct use of excited Rydberg states.
In section 3.6, we argued that dressing typically does not favourably alter the possible

number of excitation hops, given by the ratio, β = τeff/Tex, of lifetime to hopping period.
Nonetheless the results of this section show that dressed excitation migration within the
available lifetime is possible. Despite the detrimental effect on β, the dressing still enables time-
dependent control of the transport and, as in the previous section, simplifies trapping efforts.

5. Conclusions and outlook

We have shown that the dressing of alkali atoms in the ground state with Rydberg excitations
can yield dipole–dipole interactions with excitation transfer for the ground-state atoms. This
generalizes existing results for dressing with Rydberg–vdW interactions, which do not entail
excitation transport. The scheme proposed here is an adaptation of a similar method, introduced
in the context of trapped Rydberg ions [24], to neutral atomic systems. It makes use of two
effective laser couplings to Rydberg states, instead of the one required for vdW dressing.

We find that the dressed dipole–dipole transition matrix element between ground-state
atoms scales as α4 with the dressing parameter α, while the lifetime of the dressed state scales as
α−2. Dressed vdW interactions show the same scaling behaviour. We demonstrate in [5] that this

6 These simulations only contained the three effective ground-state energysurfaces.
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Figure 8. (a) Dressing-induced excitation transport in a chain of five atoms,
according to the Hamiltonian (D.7). Visualized is the population of states |πn〉.
(b) Quantitative details of the same data as those in (a). Sites 1 and 5 are
shown in magenta and green, respectively; the approximate population loss is
shown as a blue dashed line. (c) Absolute difference between the evolution
according to the fourth-order effective Hamiltonian (D.7) and the full five-body
Hamiltonian (4).

rearrangement of lifetimes and interaction time scales allows the study of CIs using Rydberg-
dressed atoms on a ring. Beyond this, the dressing scheme will enable a larger variety of trapping
techniques for the atoms and reduce the likelihood of ionization. As a further example of the
flexibility afforded by the dressing, we show that it is possible to induce effective transport of a
single Rydberg excitation within a chain of ground-state atoms. The amplitude of this process
scales as α2.

Whether the effective interactions discussed in this paper are more useful than the direct
use of dipole–dipole interactions depends on the details of the situation one studies. In [5], we
provide an exemplary scenario where they can be highly beneficial.
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Appendix A. Atom–light interactions

In this section, we derive the rotating-wave Hamiltonian (4) from more fundamental expressions
for atom–laser interactions, reviewing textbook material; see e.g. [41]. The Hamiltonian for an
atom in the presence of an electric field is

Ĥ ′ = Ŵ0 − er̂ · E(r0, t). (A.1)
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This expression is valid in the dipole approximation k · r � 1, when the wavelength of the
incident light is much larger than typical atomic distances. The operator Ŵ0 is the full atomic
Hamiltonian in the absence of an external field, e the electron charge, r̂ the position operator
and E(r0, t) the electric field at the atomic nucleus, which is treated classically.

Consider for the moment only a single atom, with the four relevant states |g〉, |h〉, |s〉,
|p〉 and a level scheme, as shown in figure 1(a). These states are eigenvectors of the free
atomic Hamiltonian Ŵ0; thus Ŵ0|k〉 = h̄Ek with k ∈ {g, h, s, p}. We add two7 coupling fields
E = Es + Ep, with Es,p = Es,pẑ cos(νs,pt) ≡ Es,p(t)ẑ. Here, ẑ is a unit vector in the z-direction.
For any two states |a〉, |b〉 we define matrix elements µ̂ab = e〈 a|ẑ|b〉. A general quantum state
in the chosen subspace is |9(t)〉 =

∑
n∈{g,h,s,p}

cn|n〉, with the equation of motion

i
∂

∂t


cg

cs

ch

cp

 =


Eg −µgsEs(t) 0 0

−µ∗

gsEs(t) Es 0 0
0 0 Eh −µhpEp(t)
0 0 −µ∗

hpEp(t) E p




cg

cs

ch

cp

 . (A.2)

Here we have used atomic units. Now we change the variables cm of the coefficient vector to
dm = cmeiωm t , where ωm are arbitrary constants. If the coefficient vector c evolved according
to i ∂

∂t c = Mc for some matrix M , d evolves according to i ∂

∂t d = M ′d with M ′
= E M E∗

− �,
where E and � are diagonal matrices with elements Emm = eiωm t and �mm = ωm .

Using the specific transformation vector ω = (Eg, Es, Eh, E p)
T, we obtain

i
∂

∂t


dg

ds

dh

dp

=


0

−
1
2µ

∗

gsEs f−(ωs, νs)

0
0

−
1
2µgsEs f+(ωs, νs)

0
0
0

0
0
0

−
1
2µ

∗

hpEp f−(ωp, νp)

0
0

−
1
2µhpEp f+(ωp, νp)

0



×


dg

ds

dh

dp

 , (A.3)

where ωs = Es − Eg, ωp = E p − Eh and f±(ω, ν) stands for e±i(ω+ν)t + e±i(ω−ν)t . Under the
rotating-wave approximation all terms e±i(ωs,p+νs,p)t are dropped, as they are oscillating too
rapidly to have any effect. We also introduce the detunings 1s,p = νs,p − ωs,p and Rabi
frequencies �s = −µgsEs and �p = −µhpEp.

Finally, we perform one further variable change, using ω = (0, 1s, 0, 1p)
T to obtain

i
∂

∂t


d ′

g

d ′

s
d ′

h
d ′

p

 =


0 �s

2 0 0
�∗

s
2 −1s 0 0
0 0 0 �p

2

0 0
�∗

p

2 −1p




d ′

g

d ′

s
d ′

h
d ′

p

 . (A.4)

The Hamiltonian in (A.4) is the basic building block of (4), as long as only a single
atom is concerned. Even for more than one atom and with the inclusion of dipole–dipole

7 For each of the two transitions that we require, we only consider a single light field instead of the multiple
lasers that would typically be employed for a multi-photon transition. A more detailed treatment does not add
qualitatively new features.
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Figure B.1. Several alternative transition pathways to realize the overall effective
coupling between the ground and Rydberg states. The |g〉 ↔ |s〉 coupling
proceeds via a standard two-photon transition, whereas the |h〉 ↔ |p〉 coupling
requires either a ultraviolet (UV) transition [43] or a three-photon transition [44],
both of which are more cumbersome. This diagram is intended only to be a
rough guide; hence fine and hyperfine structures are omitted for all excited states.
Intermediate state energies are taken from [45], Rydberg energies calculated with
a simple quantum defect theory as in [46].

interactions, the above procedure can be followed. Instead of the single atom energies in the
first transformation vector ω, we would employ many-atom energies. Since the dipole–dipole
interaction only couples energetically degenerate states such as |sp〉 to |ps〉, all complex phase
factors can finally be eliminated to arrive at a many-body version of (A.4), which is (4).

Appendix B. Lithium energy levels

In practice, the scheme displayed in figure 1 is complicated by selection rules and transitions are
constrained by the availability of laser sources. The coupling between the states |g〉 ↔ |s〉 can
be realized with now broadly established two-photon excitation schemes. These transitions are
typically near resonant with some auxiliary middle level, such as |2p3/2〉 in figure B.1, in order
to enhance transition amplitudes. For the right choice of parameters, coherent coupling between
|g〉 = |2s1/2, F = 1〉 and |s〉 = |80s1/2, F = 1〉 is achieved; see e.g. [42]. For the coupling
between the states |h〉 ↔ |p〉 two-photon transitions are forbidden due to the selection rule
1l = 1.

This necessitates one- or three-photon coupling schemes, examples of which are included
in figure B.1. Let us briefly discuss both options.
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B.1. Single-photon UV transition

Direct transitions from ground to Rydberg levels [43] suffer from extremely small dipole-
transition matrix elements. These scale as ν−3/2 with the principal quantum number [1]. From
the matrix element |〈 13p3/2|r̂ |2s1/2〉| = 0.036a0 [47]8, we extrapolateM= |〈 80p3/2|r̂ |2s1/2〉| =

0.0024a0, where a0 is the Bohr radius. Assuming that P = 0.09 mW of laser power, focused
to a waist w = 10 µm, one achieves a Rabi frequency � = 4 MHz as employed in this paper.
The intensity at the focus is I = 2P/(πw2), resulting in a Rabi frequency � =MeE/h̄, where
E=

√
2I/(cε0) is the electric field and e, c and ε0 are fundamental constants. Laser light at the

UV wavelength is typically created through higher harmonic generation, reducing flexibility
and making it more challenging to achieve the required power.

B.2. Three-photon transition

One would probably employ three different transitions, as indicated in figure B.1, exploiting
near resonant auxiliary levels to enhance the coupling amplitude. In principle, it would also be
possible to utilize three photons all stemming from the same laser. For Li, such three-photon,
single-colour schemes can still proceed near resonant with the intermediate |2p1/2〉 state [44].
Consider, for example, the excitation chain sketched in yellow and dark blue in figure B.1 and
denote the Rabi frequencies and detunings of the three transitions by �k and 1k with k = 1, 2, 3
from lower to higher energies. Since both intermediate states decay on a time scale of 10 ns,
they have to be far detuned with α1 = �1/(211) and α2 = �2,eff/(2(11 + 12)) of the order of
αk . 10−3 for k = 1, 2. Here �2,eff = α1�2. This ensures that the effective decay rate of the
intermediate levels is at least not larger than that due to the Rydberg state.

If we now consider the effective three-photon Rabi frequency

�eff =
�1�2�3

411(11 + 12)
= α1α2�3, (B.1)

we would require �3 & 4 × 103 GHz to reach �eff = 4 MHz as employed here, rather hard to
achieve on the weak Rydberg transition. There may however still be applications where much
smaller effective Rabi frequencies �p are sufficient and the three-photon scheme has advantages
over the UV transition.

Appendix C. Multiple excitons

The Hamiltonian given in (4) is the N -body generalization of the results of appendix A with
added dipole–dipole interactions. It conserves the exciton number, represented by the operator
(7). Consequently, the Hamiltonian has a block-diagonal structure, with each block describing
a given number of excitons. For N = 2 atoms, we explicitly have

Ĥ =

M0 0 0
0 M1 0
0 0 M2

 , M0 =


0 �∗

s
2

�∗
s

2 0
�s
2 −1s 0 �∗

s
2

�s
2 0 −1s

�∗
s

2

0 �s
2

�s
2 −21s

 , M2 = M0|s→p (C.1)

8 We calculate matrix elements M from oscillator strengths fik and transition energies 1E using M=√
3e2h̄2 fik/(2me1E), where me is the electron mass.

New Journal of Physics 13 (2011) 073044 (http://www.njp.org/)

http://www.njp.org/


24

M1 =



0
�∗

p

2 0 0 �∗
s

2 0 0 0
�p

2 −1p 0 0 0 �∗
s

2 0 0

0 0 0 �∗
s

2 0 0
�∗

p

2 0

0 0 �s
2 −1s 0 0 0

�∗
p

2
�s
2 0 0 0 −1s

�∗
p

2 0 0

0 �s
2 0 0 �p

2 −1s − 1p 0 U12

0 0 �p

2 0 0 0 −1p
�∗

p

2

0 0 0 �p

2 0 U12
�p

2 −1s − 1p


. (C.2)

The bases with respect to which the three blocks are written are b0 = {|gg〉, |gs〉,
|sg〉, |ss〉}, b1 = {|gh〉, |gp〉, |hg〉, |hs〉, |sh〉, |sp〉, |pg〉, |ps〉}, b2 = {|hh〉, |hp〉, |ph〉, |hh〉}.
In section 3.3, we study the nontrivial part, M1, of this Hamiltonian in more detail.

Appendix D. van Vleck perturbation theory

The basic goal of van Vleck perturbation theory was outlined in section 3.2: to find a basis that
block-diagonalizes the Hamiltonian (4) to a given order in the perturbation V . This appendix
supplies the details necessary to understand the origin of the results presented in section 3.2
and appendix D.1. We first partition our unperturbed basis |n〉 into two sets P and Q, the first
of which shall span the ‘system’ space of interest and the second is its complement in the
full Hilbert space (the ‘environment’). The specific basis, |n〉, used for the definition of the
system and the environment is given in (3). This basis is also an eigenbasis of H0. Then we can
construct projection operators on the system subspace P =

∑
φ∈P |φ〉〈 φ| and its complement

Q = 1− P . Here we consider the example where P= {|πn〉, 16 n 6 N }; thus our system space
is the ground-state manifold. We then have P =

∑
n |πn〉〈 πn|.

With respect to these partitions the Hamiltonian matrix, or similarly any other operator, can
be divided into four blocks, PHP , PHQ, QHP and QHQ. Out of these, we assemble a block
diagonal part HD = PHP + QHQ and a block off-diagonal part HX = PHQ + QHP . Since H0

is diagonal in its eigenbasis, we have HD = H0 + VD, HX = VX . We now aim to find a unitary
transformation T that yields a block diagonal Hamiltonian H= T −1 H T to a given order in V ,
thus HX = QHP + PHQ = 0. The effective Hamiltonian in the space of interest that we seek is
then given by the block Heff = PHP .

Next, we express the unitary transformation operator T as T = eG with G = −G†. We then
introduce the conditions G D = 0 and G X = G for the block diagonal and off-diagonal parts of
G. Other choices are possible, the present one distinguishes the van Vleck procedure from other
related schemes [35]. For all operators in the problem, we write a series expansion in orders of
the perturbation V , most notably H= H0 +

∑
∞

n=1 W (n), T =
∑

∞

n=1 T (n), G =
∑

∞

n=1 G(n).
As outlined in [35], it is then possible to obtain recursive relations for [H0, G(n)].9 One

extracts the full matrix G(n) from [H0, G(n)] as follows. Let us introduce the notation |i〉 with

9 A crucial step is to rewrite H= e−GHeG as a series of increasingly deeper nested commutators using the
Baker–Campbell–Hausdorff formula. By segregating expansion orders in V , the equation is then turned into a
recursive set of equations for the [H0, G(n)]. An elegant method to perform this cumbersome routine is outlined
in [35].
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Latin indices to denote an eigenvector of H0 within Q and the notation α with Greek indices for
that within P. Since we demand G D = 0, we only require matrix elements such as 〈 i |G(n)

|α〉

or 〈 α |G(n)
|i〉 in order to know the whole matrix form of G(n). Now we define the resolvent

operator

R(0)
α =

∑
i

|i〉〈 i |

εα − εi
, (D.1)

which fulfils

O|α〉 = −R(0)
α

[
H0, O

]
|α〉 (D.2)

for any operator O . Substituting O = G(n) into (D.2) and multiplying from the left by 〈 i |, we
obtain 〈 i |G(n)

|α〉 and also 〈 α |G(n)
|i〉 = −〈 i |G(n)

|α〉
∗.

From a knowledge of G, one can infer the expansion orders W (n) through commutation
relations. A series expansion of T = eG to the required order finally yields the perturbed
eigenstates via

T |α〉 =

∑
t

|t〉〈 t |T |α〉. (D.3)

See to [35] for further technical details.

D.1. Higher orders and atom numbers

The effective Hamiltonian of the dimer in the ground-state manifold spanned by |π̃1,2〉 is given
in section 3.2 up to fourth order, with odd orders vanishing. Here we display the corresponding
expression of sixth order, H (6)

C , where we use the definition H (m)

eff = PW (m) P . We can write

H (6)

eff =

(
W (6)(R) Ũ (6)

12 (R)

Ũ (6)

21 (R) W (6)(R)

)
, (D.4)

with

W (6)(R) =

{
2(α6

s 1s + α6
p1p) + (α2

s 1s + α2
p1p)Ū

2
12

[
− 4(α4

s + α4
p) − α2

s α
2
p

12
s − 41s1p + 12

p

1s1p

+

(
2(α4

s + α4
p) + α2

s α
2
p

(1s + 1p)
2

1s1p

)
Ū 2

12

]}
/(Ū 2

12 − 1)2, (D.5)

Ũ (6)

12 (R) = α2
s α

2
pU12

[
α2

s + α2
p

Ū 2
12 − 1

+
−2(α2

s + α2
p) + 2Ū 2

12
(12

s +12
p)

(1s+1p)

(
α2

p

1s
+ α2

s
1p

)
(Ū 2

12 − 1)2

]
. (D.6)

Recall that 1̄ = 1s + 1p and Ū12 = U12/1̄.
Finally, for both cases shown in section 4, the effective Hamiltonian of section 3.2 has to

be adjusted for N > 2. In terms of the basis |π̃n〉, we obtain

Heff,i j = (E2 + E4)δi j + Ũi j(R), (D.7)

E2 = (N − 1)α2
s 1s + α2

p1p, (D.8)
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E4 = −[(N − 1)α4
s 1s + α4

p1p + (N − 1)α2
s α

2
p(1s + 1p)], (D.9)

Ũ j j(R) = α2
s α

2
p

∑
k 6= j

1

1 − Ū 2
kj

 (1s + 1p)δi j + α2
s α

2
p

Ui j

1 − Ū 2
i j

(1 − δi j). (D.10)
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