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The exchange narrowing of the J band of certain dye monomers upon aggregation in solution has
been known since the 1930s. Here, we analyze the theoretical explanations put forward to account
for these narrow absorption bands. Although the theories range from models of identical monomers
interacting with vibrations to the opposite of rigid monomers with statistically distributed electronic
site energies, all approaches exhibit exchange narrowing. However, we show that the origins of the
narrowing are different. A unified theory incorporating the two approaches is presented in which
features of both narrowing mechanisms are evident. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2823730�

I. INTRODUCTION

The changes in shape of the absorption spectrum of mol-
ecules when they aggregate provide clues as to the confor-
mation of the aggregate and the strength and nature of the
interaction between the monomers. Amongst the most strik-
ing of such spectral changes is the extreme redshift and nar-
rowing of the broad vibronic absorption spectrum of a class
of cyanine dyes subject to strong monomer-monomer cou-
pling. The narrow shifted aggregate spectral line is known as
the J band and occurs in many aggregates of dye molecules.
Since its discovery in 1936,1–3 the narrowing of the J band,
nowadays called exchange narrowing, has been the subject
of many theories. Here, it is perhaps appropriate to give a
brief history of the development of our understanding of ex-
change narrowing.

Although Scheibe4 and Franck and Teller5 in 1938 cor-
rectly ascribed the J band as due to absorption to a collective
state of electronic excitation, a Frenkel exciton, they ad-
vanced no explanation of its vibrational narrowing. The ex-
citon interacts with vibrations in three ways. First, there is
the dominant mode of intramolecular vibration accompany-
ing electronic excitation which gives rise to a vibrational
progression in the monomer spectrum. We will call this vi-
bration intramolecular type 1 �IM1�. Second, as high reso-
lution data on cold monomers show6 that the dominant mode
interacts with many “soft modes” of internal vibration, which
contribute to an effective broadening of the vibrational pro-
gression. We will call these modes intramolecular type 2
�IM2�, although noting that in specific monomers the distinc-
tion between IM1 and IM2 may be blurred and there may be
more than one IM1 type of vibration. Third, there is the
interaction of the vibrating monomer with the enormous
number of soft modes of the surrounding solvent or matrix.
This contributes greatly to the broadening of the monomer
vibronic absorption bands at room temperatures. These ex-
ternal modes of vibration will be called EM. Both the inter-
action with IM2 and with EM can lead to transitions �relax-
ation� between levels of the dominant mode, or modes, IM1.

The question to be answered is: when the monomer absorp-
tion band is broadened into a quasi-continuum by these vi-
brational interactions, why does the J band exhibit a much-
reduced broadening? We enumerate several approaches to
answer this question.

�i� In 1957, Simpson and Peterson7 �to be referred to as
SP� advanced a qualitative argument based on the
magnitude of a parameter �the SP parameter�, which
is the ratio of the purely electronic intermonomer in-
teraction energy �which is 2V for linear aggregates
and nearest-neighbor interaction V� compared to the
vibrational width � of the monomer absorption band.
The vibrational width � is usually of the order of a
few ��, where � is the vibrational frequency on the
upper potential curve. SP associated the strong-
coupling case, when the aggregate shows a J band
much narrower than the monomer band, with the case
2V /��1. This explanation of the narrowing is best
understood in the time picture, where the strong-
coupling condition in the aggregate implies that the
electronic transfer time � /2V is much less than the
vibrational relaxation time, which is the order of � /�.
There the vibrational wave packet, placed on the up-
per potential curve by a vertical Franck-Condon tran-
sition from the ground vibrational state, has no time to
form standing vibrational waves before electronic ex-
citation is passed on to the neighboring monomer.
Then, as SP remark “the nuclear configuration is close
to that for the ground state,” and the aggregate ab-
sorption spectrum should become infinitely narrow
for an infinite chain with infinitely strong coupling.
Based on this qualitative argument, SP presented a
sketch �Fig. 2 in Ref. 7� showing the expected nar-
rowing of the J band in strong coupling.

�ii� Subsequently, in 1971, Briggs and Herzenberg8

showed that the ideas of SP are borne out by the first
J-band theory, the coherent exciton scattering �CES�
approximation, in which a continuous monomer vi-
bronic spectrum was modeled. One can show that a
single Gaussian peak for the monomer absorption isa�Electronic mail: alexander.eisfeld@physik.uni-freiburg.de.
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obtained when the upper potential curve is repre-
sented as a linear function. Then, there are no stand-
ing waves for the excited-state vibrational motion but
only outgoing waves, corresponding to vibrational
dissipation of IM1 energy into IM2 and solvent EM.
The slope of the upper curve decides the width � of
the Gaussian monomer spectrum and is proportional
to the relaxation time. Hence, the SP criterion appears
naturally. With a Gaussian monomer band, the aggre-
gate spectrum can be calculated analytically. In par-
ticular, one can show8 that, in strong coupling, the
width of the J band decreases exponentially with an
exponent which is the square of the SP parameter, i.e.,
there is a strong narrowing as the coupling strength
increases. Using a measured monomer spectrum,
rather than the Gaussian model, it was shown9–12 that
good agreement with the width of the J-band spec-
trum of several dye aggregates can be obtained. In
Ref. 13, it has been shown analytically that, within the
CES approximation, the precise width and shape of
the J band depend crucially on the energy dependence
of the monomer band-tail absorption. For later consid-
erations, it should be noted that the CES result is in-
dependent of the number N of aggregated monomers.

�iii� In two papers in 1977 and 1978, Klafter and
Jortner14,15 considered the line shape of exciton ab-
sorption in molecular crystals but, as they assumed a
one-dimensional model, the results are equally appli-
cable to one-dimensional aggregates. The continuous
line shape was attributed to two separate but related
effects. The first is the assumption that each monomer
has its electronic transition energy changed by inter-
action with the local environment. This coupling en-
ters phenomenologically as a “diagonal disorder” or
“static disorder” in the aggregate Hamiltonian. An ef-
fective continuous vibronic spectrum is obtained by
assuming that electronic transition energies are dis-
tributed continuously according to an assumed Gauss-
ian distribution, whose width is a free parameter. The
second effect is the coupling of the purely electronic
exciton to EM of the surroundings leading to “off-
diagonal disorder.” Klafter and Jortner showed, using
a Green’s function approach similar to that of the CES
approximation, that both exciton-disorder and
exciton-phonon scattering can be represented as sepa-
rate contributions to a complex exciton self-energy. In
a simultaneous paper,16 they applied the theory to de-
rive absorption band tails of exponential Urbach form,
although they had to make several assumptions about
the exciton-phonon scattering. However, they did not
specifically address the question of narrowing of the
exciton band, although essentially they were consid-
ering the J-band absorption.

�iv� Also, in 1977, Lukashin and Frank-Kamenetski�17 in a
paper devoted primarily to dimer spectra suggested,
without proof, that the J band will be narrowed by a
factor of 1 /�N compared to the monomer bandwidth.
This conjecture was based on the known result18 that

the dimer spectrum in strong coupling has a width of
1 /�2 smaller than that of the monomer.

�v� In a 1984 paper,19 Knapp considered specifically the
J-band narrowing and used the description “exchange
narrowing” for this effect. In this approach, a purely
electronic Hamiltonian is assumed, i.e., IM1 vibra-
tions are ignored and IM2 and EM vibrations are not
included explicitly. As in Klafter and Jortner, it was
assumed that there is �static� diagonal disorder due to
shifts of electronic transition energy at each monomer
site. Knapp derived the analytic result that, when
there is no intersite correlation between energy shifts,
the aggregate linewidth in strong coupling diminishes
according to 1 /�N. Note that in this result, the line-
width is independent of the SP parameter �with the
width of the assumed Gaussian distribution as ��, so
long as it is large enough to ensure that the diagonal
disorder is a perturbation on the electronic Hamil-
tonian. Also, this result is in line with the conjecture
in Ref. 17. Knapp then went on to show that when the
site energy shifts are correlated, the linewidth depends
strongly on this degree of correlation. In particular,
for infinitely strong correlation, the aggregate line-
width is unchanged from that of the monomer. The
1 /�N narrowing was interpreted as due to averaging
the inhomogeneities over all sites in the aggregate.
However, he also recognized a basic problem with
this result, namely, that the number N giving the
width of the J band should not correspond to the num-
ber of aggregated monomers but rather to the number
Ncoh of monomers on the chain which are coherently
coupled electronically, i.e., on the “size” of the exci-
ton. The problem is how does one decide what is Ncoh.
Of course, if one believes the theory, one can work
back from the measured spectrum to infer Ncoh.

�vi� In a further paper by Knapp et al. in 1984,20 a rather
different strategy was employed, in that phonons were
included specifically. However, diagonal disorder was
ignored in the aggregate Hamiltonian, which allowed
the aggregate vibronic “stick” spectrum to be calcu-
lated by diagonalization of the Hamiltonian. Then, as-
suming a Gaussian shape instead of the monomer
stick peaks, a modified form of the CES approxima-
tion was applied, resulting in a continuous aggregate
spectrum and, in particular, a narrow J band in agree-
ment with experiment. Although the origin of the nar-
rowing of the J band can be explained analytically in
CES approximation �see �ii� above�, the authors at-
tributed the narrowing to the exchange narrowing de-
scribed by Knapp,19 even though diagonal disorder
was ignored.

�vii� In the following years, much effort was spent on in-
vestigating the influence of �diagonal and off diago-
nal� disorder on the spectral properties of
aggregates.21–25 In 1990, Tilgner et al.26 included both
diagonal and off-diagonal static disorders in the
purely electronic Hamiltonian and, following Knapp,
they calculated a continuous aggregate spectrum by
assuming Gaussian statistical distributions for the
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monomer transition energies and nearest-neighbor
couplings. In contrast, in 1991, in Ref. 22, the off-
diagonal disorder was introduced through a Gaussian
distribution of molecular positions. The numerical re-
sults showed that in this case, the narrowing was quite
different from the case considered by Tilgner et al.
This behavior was explained by Malyshev and
Dominguez-Adame.27 They showed that fluctuations
in the positions lead to correlations in the interactions
between the monomers. The extensive numerical cal-
culations performed by Fidder et al.22 with an arbi-
trary degree of correlation between the random tran-
sition frequencies of the monomers confirmed
Knapp’s 1984 results. Within this approach, also good
agreement between measured J-band spectra and
theory has been obtained.28

�viii� In 1996, Scherer29 considered an exciton interacting
with both high-frequency IM1 and low-frequency
IM2 �or EM� modes. Examples of aggregate spectra
for two cases were given. First, for an exciton inter-
acting with a single IM1 mode, stick spectra were
presented for N=8 and various coupling strengths, il-
lustrating the J-band narrowing for strong coupling.
Second, a single IM1 mode was considered, together
with a Gaussian distribution of diagonal energies
leading to continuously broadened spectra, but only
the example of intermediate coupling for N=2 to N
=8 was presented.

�ix� The problem of which Ncoh is appropriate to estimate
the J band width in purely electronic theories was
addressed by Malyshev30,31 and Malyshev and
Dominguez-Adame,27 who gave a formula with which
Ncoh can be estimated. The basic result Malyshev de-
rived is that in the case of diagonal disorder, one can
estimate Ncoh�1.5�2�2V� /� for a linear aggregate,
thus directly connecting the delocalization length to
the SP parameter.

This plethora of different theories underlies the difficulty
of understanding precisely the origins of the J-band width.
This paper attempts to shed some light on the problem by
analyzing two theoretical approaches in more detail. First,
we show �Sec. III� that, in a theory including only IM1 ex-
plicitly �i.e., working with vibronic stick spectra� and assum-
ing identical monomers, one obtains also a predicted 1 /�N
narrowing of the J-band spectrum in the limit of strong cou-
pling. This confirms the supposition mentioned in point �iv�
above. The analytic result is a generalization of a result
known for a long time for dimers, namely, that in strong
coupling the spectrum has a width of 1 /�2 that of the
monomer.18,32–34

Second, we show �Sec. IV� that in purely statistical theo-
ries, ignoring vibrations altogether, the 1 /�N narrowing
arises quite generally without any specific assumptions as to
the character of the statistical distribution, provided the vari-
ance exists. In this way, we identify the precise origin of the
1 /�N narrowing in this case. Finally, we analyze in Sec. V

the case in which both vibronic intramonomer coupling and a
statistical spread of transition energies are taken into ac-
count.

II. THE BASIC HAMILTONIAN

First, we consider a monomer with a ground and only
one excited electronic state and include intramonomer vibra-
tions explicitly. In the Born-Oppenheimer �BO� approxima-
tion, the nuclei move on the ground- or excited-state poten-
tial energy surfaces �PESs� which are sketched in Fig. 1 for a
single vibrational degree of freedom Q. We specialize to the
particular approximation of harmonic vibrations of the same
frequency in the upper and lower PESs, since it allows a
simple analytic form �e.g., Eq. �17�� to be given for vibronic
spectra. It also makes contact with previous work where the
same approximation was used.18,32–37 Specifically, the energy
difference between the minima of the PES is denoted by E,
the shift of the upper curve minimum by Q*, and �� is the
vibrational quantum. In the single-channel BO approxima-
tion, the wave functions in the electronic ground state are

��g�� = ��g��	�� , �1�

where ��g� is the electronic part, parametrically dependent
on Q, and �	�� denotes the �th vibrational wave function in
the ground-state PES. Then, �	�� satisfies the equation

Hg�	�� = ����	�� , �2�

where

Hg = 1
2 �P2 + �2Q2� �3�

is the vibrational Hamiltonian in the electronic ground state.
Similarly, an excited-state vector of the monomer is written
as

��e
� = ��e���
� , �4�

where ��e� is the electronic part and ��
� satisfies

He��
� = �
�� + E���
� , �5�

with

He = 1
2 �P2 + �2�Q − Q*�2� + E . �6�

Within the electronic two-state approximation, the total
monomer Hamiltonian is given by

FIG. 1. Sketch of the BO potentials of the monomers.
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H 	 Hg + He = Hg��g�
�g� + He��e�
�e� . �7�

In an aggregate consisting of N monomers, we will label
quantities belonging to the nth monomer with a subscript n.

The aggregate electronic ground-state vector �g� is taken
as a simple product of the ��m

g � of each monomer m, i.e.,

�g� = �
m=1

N

��m
g � �8�

for an aggregate comprised of N monomers. Similarly, the
excited-state vectors of the aggregate are taken as localized
vectors ��n� denoting the nth monomer electronically excited
and all others in the ground state, i.e.,

��n� = ��n
e��

j�n

N

�� j
g� . �9�

Then, generalizing Eq. �7� for the aggregate, one has

Hg = �
n=1

N

Hn
g��g�
g� �10�

in the electronic ground state and

He = 
n=1

N �Hn
e + 

m�n

N

Hm
g���n�
�n� + 

nm

Vnm��n�
�m� �11�

for the electronic excited state of the aggregate. Here, the
exchange matrix element Vnm, causing electronic excitation
to be transferred from monomer n to monomer m via
electron-electron interactions, is taken to be independent of
nuclear coordinates. To obtain simple analytic formulas, we
will assume that the vibrational frequency � and the shift of
the upper PES Q* are independent of the monomer index n.
Taking this into account and inserting the Hamiltonians of
the monomers �Eqs. �3� and �6�� into Eq. �11�, we obtain
explicitly

He = 
n=1

n �1

2
�Pn

2 + �2�Qn − Q*�2� + En + 
m�n

N
1

2
�Pm

2 + �2Qm
2 ��

���n�
�n� + 
nm

Vnm��n�
�m� . �12�

Note that the electronic transition energy En is dependent on
the monomer index n to account for diagonal disorder.

In the following section, we will first consider absorp-
tion of an N-mer including one internal EM1 vibration but
ignoring disorder. Then, in Sec. IV, vibrations are ignored but
diagonal disorder is considered. In Sec. V, we consider the
general case, where an arbitrary number of vibrational nor-
mal modes are included and diagonal disorder is present.

We will consider the most simple case when the aggre-
gate is a one-dimensional chain where all the transition di-
poles of the monomers are parallel and have the same mag-
nitude. We further restrict to periodic boundary conditions
and take only nearest-neighbor interactions into account.

III. ABSORPTION LINE SHAPE IN THE VIBRATIONAL
MODEL

We consider first the monomer. Assuming that the elec-
tronic transition dipole moment 
�e����g� can be taken as its
value at fixed equilibrium Q �Condon approximation�, the
amplitude aeg for a transition from the vibrational ground
state ��=0� of the electronic ground state to a vibrational
state 
 of the excited state is given by,

aeg  
�
�
�e����g��	0� 	 �eg
�g�	0� . �13�

In the harmonic approximation of Eqs. �3� and �6�, the over-
lap integrals 
�
 �	0� appearing in Eq. �13� are easily evalu-
ated to give the well-known result38 for the Franck-Condon
�FC� factors

�f
�2 	 �
�
�	0��2 = P
�X� , �14�

where X=Q*
2� /2� is the Huang-Rhys factor38 and P
�X� is

a discrete Poissonian distribution defined by

P
�X� =
X



!
e−X. �15�

Note that the Huang-Rhys factor X completely determines
the shape of the Poissonian, in particular, the standard devia-
tion of the Poissonian P
�X� is given by �X. With Eq. �14�,
it follows that the absorption stick spectrum of the monomer
is also of Poissonian form i.e.,

AM���  

=0

�

P
�X���
�� + E − ��� , �16�

where � is the frequency of the light. In Eq. �16�, constant
terms have been omitted, since here we confine interest to
the line shape of absorption spectra. Since the “sticks” of the
absorption spectrum Eq. �16� have equidistant spacing ��, it
follows that the width �standard deviation� of the monomer
absorption spectrum is given by �X��.

For strong coupling, as shown by Merrifield33 and Fulton
and Gouterman,18 the dimer spectrum is also of Poissonian
form but with a width reduced by a factor of �2 and shifted
by the interaction energy V with respect to the monomer
spectrum, i.e.,

AD���  

=0

�

P
�X

2
���
�� + E + V − ��� . �17�

Note that the energy spacing between the absorption peaks
remains the same as for the monomer. The narrowing is
solely due to the replacement of X by X /2.

This behavior is readily explained. As shown by Wit-
kowski and Moffitt,32 in the harmonic approximation, the
dimer Hamiltonian is separable, one part corresponding to
the symmetric normal coordinate �Q1+Q2� /�2 and one part
to the asymmetric coordinate �Q1−Q2� /�2. The “center-of-
mass” symmetric Hamiltonian is independent of V and has
eigenstates which are harmonic vibrations giving a Poisso-
nian absorption as in Eq. �17�. The asymmetric vibration is
coupled to the electronic motion via the interaction V and the
Hamiltonian is exactly the Jaynes-Cummings Hamiltonian
which appears in the coupling of a harmonic radiation field
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to a two-level atom.36 In the strong-coupling limit, the ab-
sorption spectrum belonging to this Hamiltonian has only a
single line �for parallel transition dipole moments of the
monomers�. The convolution of this � function with the Pois-
sonian form of the symmetric vibration gives the spectrum of
Eq. �17�, as shown in detail in Ref. 36.

Now, this dimer result will be generalized to an
N-aggregate of monomers interacting electronically. Again,
we will show that the fully symmetric vibration can be sepa-
rated. Then, as we will see, the only change in the strong-
coupling limit is that �X /2� in Eq. �17� for the dimer be-
comes �X /N� for the aggregate.

In the case of an aggregate, we seek to separate further
the total Hamiltonian H=Hg+He of Eqs. �10� and �11� by a
suitable transformation of the nuclear coordinates,

Qj� = 
n

QnAnj , �18�

where Anj are the elements of an orthogonal N�N transfor-
mation matrix A. Defining the momenta Pj� in the same man-
ner, the canonical commutation relations between Pj� and Qj�
still hold and the form of Hg is unchanged, i.e.,

Hg = �
n=1

N

Hn
g�Qn����g�
g� �19�

is still a sum of N noninteracting harmonic vibrational
Hamiltonians. Noting that the electronic interaction Vnm and
the transition energy En do not depend on the Qi, the Hamil-
tonian operator �12� for the excited electronic states in the
new coordinates Qj� is given by

He = 
n=1

N �E + 
j=1

N
1

2
�Pj�

2 + �2�Qj� − AnjQ*�2����n�
�n�

+ 
nm

Vnm��n�
�m� . �20�

Choosing AnN=1 /�N for all n and defining the fully sym-
metric coordinate

QS = QN� =
1

�N


n

Qn, �21�

the Hamiltonian He can be separated as the sum of two com-
muting operators,

He = HS
e + HG

e . �22�

The part involving the fully symmetric vibration is

HS
e =

1

2�PS
2 + �2�QS −

Q*
�N

�2�
n=1

N

��n�
�n� , �23�

and the “generalized” Jaynes-Cummings �JC� Hamiltonian is

HG
e = 

n=1

N �E + 
j=1

N−1
1

2
�Pj�

2 + �2�Qj� − AnjQ*�2����n�
�n�

+ 
nm

Vnm��n�
�m� . �24�

Irrespective of the geometry of the aggregate, this separation

is always possible as long as the BO potentials are harmonic
and identical for all monomers. Note that HS

e is completely
independent of the electronic exchange coupling and in-
volves a displaced harmonic oscillator in QS, whose mini-
mum QS

min is shifted by a factor of 1 /�N less than in the
monomer �see Eq. �6��. The Hamiltonian HG

e , however, con-
tains the electronic coupling and the vibronic coupling. We
call it the generalized JC Hamiltonian since it was shown36

that for the dimer �N=2�, the operator HG
e is exactly the JC

Hamiltonian of quantum optics, describing two electronic
levels coupled to oscillatory modes of the electromagnetic
field. In the general case of Eq. �24�, a total of N electronic
states are coupled to the �N−1� oscillatory modes of the
nuclear vibrations. The quantity AnjQ* describes a shift of a
PES of the collective vibrational coordinate Qj� upon a local
electronic excitation of monomer n. Denoting by QA= �Qi��
with i=1, . . . ,N−1 the set of nuclear coordinates appearing
in Eq. �24�, the ground electronic state Hamiltonian �19� is
simply

Hg = �Hg�QS� + Hg�QA���g�
g� . �25�

Then, the complete aggregate ground state is

��g� = �	0�QS���	0�QA���g� , �26�

and the excited states are

��l

� = ��
�QS����G,l�QA�� . �27�

Here, ��G,l�QA�� is the lth eigenstate of the generalized JC
Hamiltonian HG

e with eigenenergy EG,l. Since vibrations and
electronic excitation are coupled in Eq. �27�, the index l de-
notes the progression of vibronic eigenstates of the operator
HG

e , which generally have to be determined numerically.
Then, from Eqs. �25�–�27�, one sees that when one takes the
electronic dipole matrix elements 
�n���g� at fixed Q’s, the
absorption amplitude separates into two factors

aeg  
�
�QS��
�G,l�QA��
n

�n�g��	0�QA���	0�QS��

= 2�eg
�
�QS��	0�QS��
�G,l�QA��	0�QA�� , �28�

where


�G,l�QA�� =
1

�N

�G,l�QA��

n

��n� , �29�

i.e., the integration has been performed over electronic de-
grees of freedom but �G,l�QA� is still a function of the trans-
formed vibrational coordinate. The cross section for absorp-
tion is then

Aagg���  

=0

�


l=0

�fS

�2�Fl�2��
�� + EG,l − ��� , �30�

where the FC factors now are defined by

�fS

�2 = �
�
�QS��	0�QS���2 = P
�X/N� =

�X/N�



!
e−X/N �31�

for the symmetric vibration and
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�Fl�2 = �
�G,l�QA��	0�QA���2 �32�

involving an integration over the remaining N−1 vibrational
coordinates �Qi��, i=1, . . . ,N−1. Since, from Eq. �23�, the
excited symmetric vibration is a displaced harmonic oscilla-
tor with displacement Q* /�N, the �fS


�2 in Eq. �31� follow a
Poisson distribution �Eq. �15�� but with a Huang-Rhys factor
XS=X /N, i.e., the width is reduced by a factor of �N with
respect to the monomer. Thus, the fully symmetric vibration
always separates to provide a Poissonian distribution of FC
factors with a width which is the monomer width divided by
1 /�N. Note that the narrowing of this Poissonian distribution
stems solely from the reduction of the effective displacement
Q* /�N, since the vibrational quantum of the symmetric vi-
bration does not change compared to that of the monomer.

From Eq. �30�, one sees that the aggregate absorption
spectrum is a convolution of the Poissonian a�E�
	
=0

�
P
�X /N���
��−E� belonging to the symmetric co-

ordinate and the “spectrum” b����	l�Fl�2��EG,l−��� of
the generalized JC Hamiltonian. The question now is what
effect do the FC factors �Fl�2 and energies EG,l have on the
overall spectral line shape. For the case of a dimer, this has
been studied extensively.18,36 It was shown that for weak and
intermediate couplings the spectrum of the �generalized� JC
Hamiltonian consist of many peaks distributed over an en-
ergy range of the order of the width of the monomer absorp-
tion spectrum. After convolution with the Poisson progres-
sion of the symmetric mode, the resulting dimer spectrum
has at least a width determined by that of the “JC spectrum.”
However, for strong coupling, the JC spectrum consists only
of one dominant absorption peak. This peak is shifted by the
energy V with respect to the mean of the monomer absorp-
tion spectrum. Hence, the dimer absorption spectrum in
strong coupling is just the Poissonian progression of the
symmetric mode centered at the position of the dominant
peak of the JC spectrum. Using the same line of argumenta-
tion as was done by Witkowski,34 this strong coupling result
can readily be generalized to the case of an N-mer. One then
finds for the absorptions spectrum in the limit 2V��X��

Aagg���  

=0

�

P
�X/N���
�� + Ẽ + 2V − ��� , �33�

with Ẽ=E+ ��N−1� /N��X��. An example of the spectrum
given by Eq. �33� is shown in Figs. 2�a�–2�e� �left column�
for X=1. Since only the change of shape is of interest, to
facilitate comparison, the shift 2V with respect to the mean
energy of the monomer absorption is ignored, i.e., all spectra
are centered at their respective mean energies. Figure 2�a�
shows the monomer spectrum and Figs. 2�b�–2�e� demon-
strate the change of shape of the Poissonian progression.
Rapidly the spectrum becomes more and more asymmetric,
and the lowest peak gains absorption strength such that al-
ready for N=10, it carries nearly all the oscillator strength
�Fig. 2�d��. In the right column of Fig. 2, the case of X=9 is
shown where the monomer line shape is nearly Gaussian.
Here, for small N �N=2 in Fig. 2�g� and N=4 in Fig. 2�h��,
the line shape is still approximately Gaussian. For N=10
�Fig. 2�i�� again, the spectrum is very asymmetric, and the

lowest peak has dominant absorption strength. For N=100,
the spectrum is dominated by one peak.

IV. ABSORPTION LINE SHAPE IN THE STATISTICAL
MODEL

Here, we consider the relation between the widths of the
monomer and aggregate spectra when one ignores vibrations
altogether but includes diagonal disorder. Then, the Hamil-
tonian �Eq. �12�� simplifies considerably. Taking the ground
vibrational state of the ground electronic state as the initial
state, Hg, of Eq. �10� merely sets the zero of energy. Then,
the Hamiltonian �Eq. �11�� becomes, in nearest-neighbor ap-
proximation, simply

He = 
n=1

N

En��n�
�n� + 
nm

Vnm��n�
�m� . �34�

In this diagonal disorder model, the spectral width is as-
sumed to arise from the change of interaction of the mono-
mer with the environment according to its location. It is as-
sumed that the transition energy En of monomer n is
distributed according to the probability density pn�En�. Aver-
aging over many �infinite� realizations of the monomer tran-
sition energies gives the absorption spectrum. In the case of
noninteracting monomers, the absorption line shape is there-
fore just given by the assumed distribution of transition en-
ergies pn�En�.

To investigate the narrowing of the spectrum for strong
intermonomer coupling, we will not consider the line shape
in detail but focus only on the mean position and the width
of the J band. In the following, we will denote the expecta-
tion value of a random variable y by E�y� and the variance
by Var�y�. To keep the discussion transparent, we take the
mean

FIG. 2. Strong-coupling absorption spectrum of the symmetric mode with
Huang-Rhys factor X=1 �left column� and X=9 �right column� for increas-
ing N. ��a� and �f�� monomer, ��b� and �g�� dimer, ��c� and �h�� N=4, ��d� and
�i�� N=10, and ��e� and �j�� N=100. All spectra are centered about zero and
the energy is in units of �� of the monomer. For comparison, a continuous
Gaussian spectrum with the same variance is shown as a solid line.

044505-6 Walczak, Eisfeld, and Briggs J. Chem. Phys. 128, 044505 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



EM 	 E�En� �35�

and the variance

�M
2 	 Var�En� �36�

of the transition energies En to be the same for all monomers.
For one realization of the diagonal disorder of the N-mer, the
mean transition energy is given by

Ē =
1

N

n=1

N

En �37�

�which is, in general, not equal to the mean transition energy
of the monomers EM�.

In strong coupling �2V��M�, we divide the Hamiltonian

�Eq. �34�� according to He= H̃+W, where the operator W

	n=1
N �Ē−En���n�
�n� is a small perturbation to H̃	 Ē

+nmVnm��n�
�m�. Using perturbation theory, it was shown
in Ref. 19 that in strong coupling, there is only absorption at

the energy Eagg	 Ē+2V. The criterion for the validity of per-
turbation theory is analyzed also in Ref. 39.

To obtain the mean position E�Eagg� and width �standard
deviation �agg� of the ensemble averaged N-mer absorption
spectrum, one needs to calculate the mean and width of the
random variable Eagg, which can be done using elementary
statistical properties �see, e.g., Ref. 40�. One finds for the
mean of the aggregate absorption spectrum

E�Eagg� = E�Ē� + 2V = EM + 2V , �38�

and for the variance,

�agg
2 	 Var�Eagg� =

�M
2

N
+

2

N2 
n=1

N


m�n

N

Cov�En,Em� . �39�

In the last equation, Cov�En ,Em�=E��En−E�En���Em

−E�Em��� is the covariance of En and Em. In deriving Eq.

�39�, we have used that Var�Eagg�=Var�Ē� and �1 /N2�n=1
N

Var�En�=�M
2 /N. To demonstrate the usefulness of Eq. �39�,

in Appendix A, it is applied to some often used forms of
correlation.

For independent transition energies En, the variance of
the aggregate absorption spectrum reduces to

�agg
2 =

�M
2

N
. �40�

Equation �40� shows that the width of the aggregate absorp-
tion peak is decreased by 1 /�N with respect to that of the
monomer. The above argument can be generalized straight-
forwardly to the case where each random variable En has a
different mean and different variance. Note that in the deri-
vation of Eqs. �39� and �40�, no particular distribution of the
transition energies of the monomers has been assumed,
showing that the narrowing of the J band occurs irrespective
of the monomer line shape �provided the variance is finite�,
thus generalizing the result obtained for a Gaussian distribu-
tion of monomer transition energies. The case of a Gaussian
distribution of monomer transition energies is special, since
the sum of two Gaussian random variables is again a Gauss-

ian random variable, i.e., the Gaussian is a stable distribu-
tion. Furthermore, if the monomer distribution has a finite
variance and the correlation between the monomers de-
creases sufficiently fast with increasing distance between the
monomers, then the distribution of Eagg will approach a
Gaussian �for more precise requirements of this central limit
theorem, see, e.g., Ref. 41�. The speed of convergence, i.e.,
how many monomers N are needed to “approach” a Gaussian
distribution, is, in general, quite fast for independent random
variables. Examples are discussed in Ref. 40.

The above argument that a narrowing by 1 /�N occurs
�see Eq. �40�� only holds if the variance exists, i.e.,
Var�En���. For a Lorentzian �where the second moment
does not exist�, it was shown numerically in Ref. 13 that no
narrowing occurs, irrespective of N and the coupling strength
V. For the case of strong coupling, this result is given ana-
lytically in Appendix B 1.

A. Poissonian disorder

To compare the disorder model with the vibrational
model without disorder, we will investigate the special case
when the random variables En are distributed according to a
discrete Poisson distribution �Eq. �16��, i.e.,

p�En� = 

=0

�

P
�X���
� + E − En� . �41�

This distribution gives exactly the same monomer absorption
spectrum as in the purely vibrational model including one
IM1 mode with Huang-Rhys factor X and vibrational quan-
tum ��=�. A comparison of the strong-coupling result in the
disorder model with the vibrational model is instructive,
since it shows the different origin of the narrowing in the two
models. As shown in Appendix B in strong coupling in the
disorder model, the aggregate line shape can be calculated
analytically to give

Aagg���  
j=0

�

P j�NX��� j
�

N
+ E − ��� . �42�

Here, again, a Poisson distribution is obtained. However,
now, the narrowing stems from the fact that the distance
between neighboring peaks is decreased by a factor N, as can
be seen in the argument of the delta function. However, the
distribution P j�NX�, which is responsible for the shape of
the spectrum, alone would lead to a width which is �N times
that of the monomer. The product of these two effects gives
the overall 1 /�N narrowing. In Figs. 3�a�–3�e�, the resulting
line shape for increasing length N of the aggregate is shown
for a Poissonian with X=1. This has to be compared with the
results obtained in the vibrational model displayed in the left
column of Fig. 2. One clearly sees that in the statistical
model with a Poissonian distribution of monomer energies,
the aggregate line shape already for N�4 becomes Gauss-
ian. This is in contrast to Fig. 2 where the absorption spec-
trum is dominated by one single peak for N�4. This shows
the fundamental difference between the vibrational model
and the diagonal disorder model. Whereas in the former, the
narrowing is accompanied by an increasing asymmetry, in
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the latter, the spectrum rapidly assumes a symmetric Gauss-
ian line shape as N increases.

V. BOTH VIBRATIONS AND DISORDER

In the previous sections, we have investigated two dif-
ferent models which describe how the J band narrows with
increasing number N of monomers forming the aggregate.
One model assumes that each monomer possesses a single
vibrational mode. In this model, all monomers in the aggre-
gate have identical properties, whereas in the statistical
model of Sec. IV, vibrations are ignored but it is assumed
that the transition energies of the monomers are randomly
distributed. It was shown that in both cases, the width of the
J band is decreased by a factor of 1 /�N with respect to the
width of the monomer. We will now discuss how these mod-
els can be merged and extended.

In the following, we will consider �max vibrational
modes of type IM1 for one monomer. These modes are as-
sumed to be normal modes. The respective coordinate be-
longing to mode � is denoted by Q���. The frequencies, the
shifts of the upper harmonic potential curves, and the Huang-
Rhys factors of these normal modes are denoted by ����,
Q*���, and X���, respectively. The FC factor for a transition
from the ground vibrational state of the electronic ground
state to the 
th state in the electronic excited state of normal
mode � is

�f ���

 �2 = P
�X���� =

X���




!
e−X���. �43�

Furthermore, diagonal disorder is taken into account where
the electronic transition energies of the monomers are dis-
tributed with a distribution function p, which, for simplicity,
is chosen identical for all monomers. The absorption spec-
trum of the noninteracting monomers can then be written as

AM���  

1,. . .,
�max

�

�f �1�

1 �2 ¯ �f ��max�


�max �2

�p�
�


������ + E − ��� . �44�

An example of such a spectrum is shown in Fig. 4. De-
noting by �dis the width of the diagonal disorder distribution,
the width � of the monomer spectrum is

� = ��dis
2 + 

�

X�������2. �45�

Now, consider the aggregate. Applying the transforma-
tion A �see Eqs. �18� and �21�� to each coordinate Q��� allows
a separation He=HS

e +HG
e �see Eq. �22��, where

HS
e = 

�

PS���
2

2
+

����
2

2
�QS��� −

Q*���

�N
�2

�46�

is just a sum of shifted harmonic oscillators for each normal
mode and

HG
e = 

n=1

N �En + 
j=1

N−1


���

1

2
�Pj����2 + ����

2 �Qj���� − AnjQ*����2��
���n�
�n� + 

nm

Vnm��n�
�m� . �47�

Equation �30� can now be generalized directly to more than
one vibrational mode, and one obtains for the aggregate ab-
sorption spectrum

Aagg���  

1,. . .,
�max

�

�fS�1�

1 �2 ¯ �fS��max�


�max �2

�
l



�Fl�2��
�


������ + EG,l − ����� ,

�48�

with FC factors of the symmetric mode given by

FIG. 3. Strong-coupling absorption line shapes in the statistical model with
a distribution function giving a Poissonian line shape with X=1 �left col-
umn� and X=9 �right column� for increasing N. The spectra are calculated
using Eq. �42�. ��a� and �f�� monomer, ��b� and �g��: Dimer, ��c� and �h��
4-mer, ��d� and �i�� 10-mer, ��e� and �j�� 100-mer. All spectra are centered
about zero and the energy is in units of �� of the monomer. These spectra
are to be compared to those shown in Fig. 2.

FIG. 4. Monomer spectrum calculated with Eq. �44� using two IM1 normal
modes �sticks� and an additional Gaussian disorder �solid line�. The energy
is in units of ���2�. The parameters used for the IM1 modes are X�1�=0.5,
X�2�=3, ��1�=10��2�, and the width of the Gaussian distribution is �dis=1.

044505-8 Walczak, Eisfeld, and Briggs J. Chem. Phys. 128, 044505 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



�fS���

 �2 = P
�X���

N
� �49�

and 

¯�� denotes the average over disorder. Note that the
FC factors �Fl�2 and eigenenergies EG,l of the generalized JC
part are now dependent on the particular realization of the
transition energies En. Note also that Eq. �48� is equivalent to
a convolution of Poissonians a����E�=
�

P
�
�X��� /N���E

−
������� with the spectrum of the generalized JC part
b�E�= 

l�Fl�2��E−EG,l���, i.e., Aagg=b�a1� ¯ �a�Max

,
where � denotes the convolution.

Using arguments similar to those of Secs. III and IV, one
sees that in strong coupling �2V���, the FC factor �F0�2

which belongs to the transition with energy EG,0= Ē+2V
+ ��N−1� /N���X�������� carries all the oscillator strength,

where Ē is given by Eq. �37�. As in Sec. IV, the width of the
distribution of EG,0 is given by the width of the distribution

of Ē. According to Eq. �40�, this distribution has narrowed by
a factor of �N with respect to the monomer disorder distri-
bution. Also, since the width of the Poissonian progressions
a����E� of the normal modes has narrowed by a factor of �N,
the absorption spectrum of the N-mer has also narrowed by a
factor of �N, which can easily be seen using the properties of
the convolution of these distributions.

For the special case that the disorder is Gaussian �with
variance �dis

2 and mean EM�, one obtains for the absorption
spectrum of the aggregate in strong coupling

Aagg���  

1,. . .,
�max

�

P
1
�X1

N
�¯ P
�max

�X�max

N
�

�G�
�


������ + Ẽ + 2V − ��� , �50�

where G is again a Gaussian distribution but with variance

�dis
2 /N and Ẽ=EM + ��N−1� /N��

�X������.
We have performed numerical diagonalizations of the

Hamiltonian �Eq. �12�� and have compared the resulting “ex-
act” spectra with the analytic expression for strong coupling
�Eq. �50��. This comparison is shown in Fig. 5 for N=2 and
N=4 and considering one vibrational mode with X=0.49 and
Gaussian disorder with a standard deviation 0.5��. Figure
5�a� shows the monomer spectrum. The unit of energy is the
vibrational quantum �� and the zero of energy is at the mean
energy of the absorption spectrum. Due to the disorder, the
vibrational progression of the monomer is broadened into a
single peak, although the asymmetry of the monomer spec-
trum is still evident. Figures 5�b� and 5�c� show the case N
=2 and N=4 calculated in the strong-coupling limit. For all
spectra, the results �dotted lines� using Eq. �50� agree very
well with the numerical calculations �solid lines�. Due to the
narrowing of the Gaussian disorder distribution, already in
the case of the dimer, the vibrational progression of the sym-
metric mode becomes visible. In the case of the 4-mer, the
vibrational peaks are clearly resolved.

VI. DISCUSSION

We have examined the width of the J band in the limit of
extremely strong-excitonic coupling predicted by various
theories. In a model of identical monomers but including
intramolecular vibrations, we have shown that the fully sym-
metric vibration of the N-monomer aggregate can be sepa-
rated. A Poisson line shape for the monomer vibronic levels
gives rise to an aggregate Poisson line shape with the same
vibrational spacing but of width reduced by 1 /�N. This spec-
trum folded with the single absorption line due to a 0–0
transition in the remaining coordinates gives the absorption
spectrum of the aggregate in the strong-coupling limit. This
analysis is a straightforward generalization of the old and
well-known analysis of the dimer by Merrifield.33

A model of spectral shapes very common in the litera-
ture is one in which vibrations are ignored altogether but the
“site energies,” i.e., the electronic transition energy of each
of the N monomers are assumed to be distributed statisti-
cally. For a Gaussian, the most common assumed distribu-
tion, it has been shown long ago that exchange narrowing
leads �for uncorrelated site energies� to a 1 /�N reduction of
the J-band width compared to the assumed width. Here, the
same result has been shown to hold quite generally, irrespec-
tive of the chosen distribution of site energies, provided it
has a finite variance. Then, for large N, the line shape of the
J band will also assume a Gaussian line shape due to the
central limit theorem. In Appendix A, the method is extended
to treat the case of correlated site energies. It has also been
demonstrated �see Appendix B 1� that for a Lorentz distribu-
tion, which has no finite variance, no narrowing occurs, even
for uncorrelated disorder.

FIG. 5. Comparison between the aggregate spectrum calculated according to
Eq. �50� �dotted line� and numerical diagonalization of the aggregate Hamil-
tonian �solid�. �a� monomer, �b� dimer, and �c� N=4. All spectra calculated
with Huang-Rhys factor X=0.49 and Gaussian disorder with a standard
deviation of 0.5��.
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Considering the case of a discrete Poisson distribution,
which gives the same absorption line shape as in the vibra-
tional model, the origin of the 1 /�N factor has been traced to
the fact that, unlike in the vibrational case, the Poisson dis-
tribution broadens by a factor of �N �and becomes more and
more Gaussian� but simultaneously the vibrational spacing
decreases by a factor of 1 /N.

We have derived the strong-excitonic coupling absorp-
tion spectrum for the combined case of coupling to internal
vibrational modes �IM1� and diagonal disorder. This spec-
trum shows features of both narrowing mechanisms. As can
be seen in Figs. 5�b� and 5�c�, each individual peak of a
vibrational progression narrows as predicted by the statistical
model, but also the overall vibrational progression narrows,
as in the purely vibrational model. This is seen by imagining
the broad peaks in Figs. 5�a�–5�c� to be replaced by sticks at
their center. Then, the curves in Fig. 5 are quantitatively
similar to those of Figs. 2�a�–2�c�. It is also encouraging that
the approximate formula �Eq. �50�� gives almost perfect
agreement with exact numerical results for N=2 and N=4.
This implies that the formula may be useful in practice.

In all this discussion, one should be aware that the width
of an N-aggregate peak is not a well-defined quantity, in that
it is local rather than global. Indeed, an exact sum rule,
proved for N=2 by Fulton and Gouterman18 and later gener-
alized to all N,42–44 states that the width of the N-mer absorp-
tion is identical to that of the monomer and certainly not
1 /�N smaller. The origin of this discrepancy is to be found
in a small but finite absorption into other levels, far removed
from the J band. The contribution of this absorption to the
global width restores the sum rule, as has been shown ex-
plicitly for the dimer.18,45

One problem with the above theories, as already men-
tioned, is to ascertain in an experimental situation quite what
is N or the effective Ncoh. Although Malyshev et al.27,30,31

have proposed a formula for Ncoh in the disorder model, cer-
tainly this question needs more research. An alternative
theory, where the narrowing is independent of N, must be
mentioned here. This is the CES approximation which the
present authors have applied to calculate the J and H bands
of several dye aggregate spectra.9–12 The CES approximation
satisfies the exact sum rule on the global width.44 However,
in strong coupling, an approximate expression can be derived
for the local width of the J band.13 In agreement with the
statistical model, a monomer Lorentzian is simply shifted
unchanged in shape. For a Gaussian, in the CES approxima-
tion, the prediction is a J-band width decreasing exponen-
tially with the square of the energy shift, in apparent contra-
diction to the 1 /�N rule. However, the tail of the monomer
spectrum, which decides the J-band width in CES approxi-
mation, is never truly Gaussian in practice. In realistic cases,
i.e., for the Urbach exponential tail, the CES result is in close
agreement with experiment.12

It is also interesting that the CES approximation gives an
expression for the spectral absorption function which is al-
most identical to that of Klafter and Jortner15 who assumed a
Gaussian distribution of site energies and included model
exciton-vibrational coupling. In both theories, the aggregate
spectral function for absorption at energy E is proportional to

the imaginary part of the averaged aggregate Green’s func-
tion 
G�E��. In CES approximation, this is explicitly

− Im
G�E�� = − Im

g�E��

1 − 2V
g�E��
, �51�

where 
g�E�� is the monomer averaged Green’s function and
2V is the excitonic coupling. Writing the real and imaginary
parts of 
g�E�� as gR and gI, respectively, and taking J-band
absorption to be centered at E�2V in strong coupling, one
has

− Im
G�E�� = −
1

2V
Im

2VgI�E�
�E − 2V�2 + �2VgI�E��2 , �52�

where we have used a dispersion relation to put gR�1 /E for
strong coupling.13 This expression is identical in form to Eq.
�II.8� of Ref. 15 where the complex self-energy replaces the
complex 2V
gI�E��.

It is hoped that the above results are certainly of interest
to theorists, since they combine two apparently rather differ-
ent approaches. However, they are only valid in the limit of
very large coupling. Unfortunately, most experimental data
do not allow a definitive test of these theories, since one
encounters coupling strengths of the order of a few �, e.g.,
SP�2 to SP�3, even though a clearly identifiable narrow J
band is formed.
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APPENDIX A: EXAMPLES OF CORRELATED
DISORDER

To investigate the influence of correlations and the use of
Eq. �39�, we consider several models which are used in the
literature. As a first example, we assume that the spatial cor-
relations between the monomer transition energies decay ex-
ponentially with a correlation length a. This assumption
leads to19

Cov�En,Em� = �M
2 e−a�n−m�, linear aggregates, �A1�

Cov�En,Em�

= �M
2

cosh�a�N

2
− �n − m���

cosh�a
N

2
� , cyclic aggregates.

�A2�

Inserting these expressions in Eq. �39� and defining b=e−a,
one finds for the variance of the aggregate by a simple cal-
culation,

�agg
2 =

�M
2

N
�1 +

2b

1 − b
+

2b

N

bN − 1

�1 − b�2�,

linear aggregates, �A3�
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�agg
2 =

�M
2

N

�1 + b��1 − bN�
�1 − b��1 + bN�

, cyclic aggregates. �A4�

These results agrees with those derived by Knapp19 for a
Gaussian distribution. The derivation given here is much
simpler and more general, since no specific distribution has
been assumed.

As a second example of Eq. �39�, we consider a model
for correlations which has recently been studied by Maly-
shev et al.46 In this model, one assumes that the aggregate
consists of S segments, each containing L monomers �SL
=N�. Within each segment, the transition energies En are
equal, but the energies of the segments are distributed ac-
cording to a probability distribution with width �M. Thus,
one has Cov�En ,Em�=�M

2 for n and m within the same seg-
ment and Cov�En ,Em�=0 otherwise. Now, one has
n=1

N m�n
N Cov�En ,Em�=SL�L−1� /2 and, inserting this into

Eq. �39�, one finally obtains

�agg
2 = �M

2 L

N
, �A5�

which is the result obtained in Ref. 46 for a Gaussian
distribution.

APPENDIX B: SPECIAL CASES OF DISORDER

In this appendix, we calculate the line shape of the J
band for special cases of the diagonal disorder distribution.
The first example is a Lorentzian distribution. This distribu-
tion does not have a finite width. As will be demonstrated,
the J band has the same Lorentzian line shape, i.e., no nar-
rowing occurs. For the second example, we have chosen a
discrete Poissonian distribution to compare with the vibra-
tional monomer line shape. We restrict to independent ran-
dom variables.

To obtain the J-band line shape �in strong coupling�, we

have to calculate the distribution P�Ē� of the random variable

Ē= �1 /N�n=1
N En, see Eq. �37�. It is well known �see, e.g.,

Ref. 40� that the probability density function of the sum of
two independent random variables is given by the convolu-
tion by their respective probability densities. Denoting by
pn�En� the distribution of the random variable En, we have

P�Ē� = Nf1�NĒ� = Np1 � ¯ � pN�NĒ� , �B1�

where � denotes the convolution. Thus, the distribution of

the energies Ē can be obtained by successively convoluting
the monomer distributions pN , . . . , p1. We, will now use this
result for the cases of a Lorentzian and Poissonian monomer
distributions.

1. Lorentzian

It is easy to show that the convolution of two Lorentz-
ians with �1 and �2 is again a Lorentzian, but with width
�1+�2. With this and Eq. �B1�, one obtains

P�Ē� = N
1

�

 j=1
N � j

�ĒN�2 + � j� j�2
=

1

�

 j=1
N � j

Ē2 + � 1

N
 j� j�2 . �B2�

For the case of identical Lorentzians of the monomer distri-
butions, i.e., � j =� for all j, one finds that the distribution

P�Ē� is identical to that of a single monomer.

Poissonian

To prove Eq. �42�, we first consider the convolution of
two distributions given by

pn�En� = 

=0

�

X
e−X


!
��
� + E − En� . �B3�

The result for the N-mer follows then by repeating the same
line of argumentation.

We find for the convolution of p1 and p2

p1 � p2�y� =� p1�x�p2�y − x�dx

= 

1,
2

X
1+
2


1!
2!
e−2X��2E + �
1 + 
2�� − y�

= 
j=0

�
�2X� je−2X

j!
��2E + j� − y� . �B4�

In the last step, j=
1+
2 was introduced and the identity



1

Xj


1!�j − 
1�!
=

Xj

j! 
1

� j


1
� =

�2X� j

j!
�B5�

was used. With Eq. �B1�, the result �Eq. �42�� follows di-
rectly from Eq. �B4�.
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