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We study the transport of collective excitations (Frenkel excitons) in systems with static disorder
in the transition energies, not limiting ourselves to Gaussian transition energy distributions. Instead,
we generalize this model to the wider class of Lévy stable distributions, characterized by heavy
tails. Phonon-assisted scattering of excitons, localized by the disorder, leads to thermally activated
exciton motion. The time evolution of the second moment of the exciton distribution is shown to
be sublinear, thus indicating that the exciton dynamics in such systems is not diffusive, but rather
subdiffusive instead. The heavier the tail in the transition energy distribution is, the larger are the
deviations from the diffusive regime. This from fluctuations of site energies larger than the exciton
band width (outliers). We show that the occurrence of subdiffusive transport for heavy-tailed disorder
distributions can be understood from the scattering rate distributions, which possess a (second) peak
at zero scattering rate. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4808155]

I. INTRODUCTION

Excitons play a major role as energy carriers in a wide
variety of both natural and artificial systems, such as pho-
tosynthetic complexes,1–4 conjugated oligomer aggregates,5

polymers,6, 7 organic dyes embedded in a polymer matrix,8

molecular aggregates,9–13 semiconductor quantum wells and
wires,14–16 and organic solar cells.17 In many such systems,
the nature of the exciton motion affects the efficiency and
functionality of the system to a large extent. For example, in
light harvesting systems and photovoltaic materials, a pho-
ton absorbed by the material gives rise to the creation of
an exciton. Subsequently, the exciton can diffuse to a reac-
tion center or interface, where charge separation takes place
and the energy of the excitation can be harnessed for use-
ful purposes. The exciton needs to be sufficiently mobile to
reach the charge separation region within its typical lifetime.
Similarly, the functioning of organic light emitting systems
is strongly affected by exciton-exciton annihilation which, in
turn, is strongly dependent on the motion of excitons.18–21

Despite the complex chemical structures that the rele-
vant chromophores typically possess, theoretical approaches
based on tight-binding models have been successfully applied
to describe the optical properties and excitation dynamics in
such systems.22–26 It has been realized that the effect of the
environment that the chromophores are embedded in is cru-
cial in providing an appropriate description of the excitation
dynamics.22, 23, 27, 28 There are a number of commonly used
approaches to account for interactions with the environment,
also depending on the typical timescale on which environ-
mental changes take place. Changes that are slow compared to
the relevant exciton dynamics timescale are often modeled as

a)Electronic mail: vlaming@pks.mpg.de

static disorder,29, 30 where the host material essentially plays
the role of a time independent stochastic potential the exciton
moves in. Faster environmental dynamics are referred to as
dynamic disorder. The exciton may also couple to vibrational
modes when it moves from one molecule to the other. As dis-
cussed, e.g., in Ref. 31, such vibrations can be included in the
“environment.”

The standard disorder models consider Gaussian or
box distributions of the chromophore energies or interchro-
mophore interactions. These distributions may, however, not
always be an appropriate choice. This is supported by sin-
gle molecule studies on chromophores embedded in a glassy
host, where it has been shown both experimentally and
theoretically that the absorption lines are heavy-tailed.32–35

Such heavy-tailed distributions are known as Lévy stable
distributions.36 During the past 20 years, it has been recog-
nized that Lévy statistics are relevant in a variety of subfields
of the natural sciences, ranging from statistical physics to op-
tics, plasma physics, and condensed matter physics.37–45

In this paper, we study the transport properties of a
one-dimensional Frenkel exciton chain of N coupled chro-
mophores with transition energies randomly taken from a
symmetric Lévy stable distribution. As has been shown in
our previous publication,37 this choice can lead to signifi-
cant qualitative changes in the absorption spectra (exchange
broadening and blue shift of the maximum instead of ex-
change narrowing and red shift found for Gaussian random-
ness) as well as on the localization properties of the model
(additional structure in the localization length distribution).
Many of these effects originate from the heavy tails of the
Lévy stable distribution, resulting in frequently occurring out-
liers, i.e., large fluctuations in chromophore transition ener-
gies. The latter produce energy barriers, leading to weakly
coupled segments in the chain that are capped by these
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barriers, and one expects that this slows down the transport.
Similar questions arise in molecular motion in systems with
material barriers (membranes) in porous media, composites,
and biological tissues.46

We scrutinize the low-temperature exciton dynamics in
such Lévy disordered systems by extending the methodology
previously put forth in Refs. 22. The excitons are taken to be
weakly coupled to environmental phonon modes. This cou-
pling essentially leads to the scattering of excitons on phonon
modes. We are mainly interested in the low temperature exci-
ton dynamics, where scattering on long wavelength acoustic
phonons is the dominant transport mechanism. For delocal-
ized excitations, the exciton-phonon coupling is strongly re-
duced, supporting the validity of the perturbational approach
used here.22 The scattering events on the aforementioned
acoustic phonon modes provide an inhomogeneous hopping
mechanism between the various exciton states. For the molec-
ular J-aggregates that we will consider here, the relevant exci-
ton states for absorption and thermally activated exciton trans-
port have an energy close to the bare exciton lower band edge.
Of particular relevance are the localized states that reside in
the tail of the exciton density of states, just below the exciton
band edge, the so-called Lifshits tail.47

In this work, we show numerically that the exciton mo-
tion in a heavy-tailed disordered system is generally not dif-
fusive, but subdiffusive instead. This is done by calculating
the time evolution of the second moment of the exciton wave
packet’s position. We find a sublinear time dependence of the
second moment, indicating a subdiffusive exciton motion. We
show that the subdiffusive transport is linked to the increased
occurrence of outlier-induced barriers. This is confirmed by
analyzing the changes in the relevant scattering rate and over-
lap distributions, where heavy-tailed disorder distributions are
shown to lead to additional peaks that are directly related to
the presence of these barriers.

The paper is organized as follows. The basic Frenkel ex-
citon Hamiltonian and the concept of localization is intro-
duced in Sec. II A. Then, we proceed with discussing how
to model the excitation dynamics in Sec. II B. The numerical
results are presented in Sec. III. First, we present the results
on the exciton motion in Sec. III A, which are analyzed and
put into a proper theoretical perspective in Sec. III B. Finally,
we summarize and conclude in Sec. IV. Details on the master
equation used for the excitation propagation can be found in
the Appendix.

II. THEORETICAL FRAMEWORK

A. Hamiltonian and localization

We consider the single-exciton manifold of a one-
dimensional Frenkel exciton chain (sites are labeled by
n = 1, . . . , N), described by the Hamiltonian48–50

H =
∑

n

Enb
†
nbn +

∑
n,m�=n

Jnmb†nbm. (1)

Here, b
†
n (bn) is the creation (annihilation) operator of an ex-

citation at site n and Jnm is the interaction between sites n and
m, which we will take as either a nearest-neighbor interaction

Jnm = −J(δm,n−1 + δm,n+1), or as a dipole-dipole interaction,
Jnm = −J/|n−m|3, where in both cases, we consider J > 0. We
consider the case of negative coupling Jnm which corresponds
to the important class of J-aggregates, where the absorption
is red shifted with respect to that of a single monomer. For
positive Jnm, we would find very similar results. We will com-
ment on this extension at the appropriate places. We consider
uncorrelated diagonal disorder,37 that is, the molecular transi-
tion energies En are independently taken from a certain distri-
bution. In this work, we focus on the symmetric (Lévy) stable
distributions,

P (E) = 1

2π

∫ ∞

−∞
dteiEt exp (− |σ t |α) , (2)

where the scale parameter σ determines the width of the dis-
tribution and the stability index 0 < α ≤ 2 fixes the asymp-
totic behavior. Generally, a smaller value of α implies more
weight in the tails of the distribution. Note that, except for
α = 2 (Gaussian disorder), the second and higher order mo-
ments of the Lévy stable distribution diverge. Thus the Gaus-
sian central limit theorem (an infinite sum of independent ran-
dom variables which have finite variance converges against
a Gaussian distribution) is not applicable. However, for each
Lévy stable distribution there exists a similar central limit the-
orem. As shown by, e.g., Gnedenko and Kolmogorov, the sum
of identical random variables with power-law tail distributions
decreasing as |x|−α−1 where 0 < α < 2 (and therefore having
infinite variance) will tend to a stable distribution with an in-
dex of stability α as the number of variables grows.36 An im-
portant property of the considered Lévy stable distributions is
that if the xn are distributed according to Eq. (2), then its av-
erage y = 1

M

∑M
n=1 xn is distributed according to a Lévy sta-

ble distribution with the same value of α, but a renormalized
width,

σ ∗ = σM (1−α)/α. (3)

This property is referred to as the stability of the distribution.
We are interested in transport of a single excitation along

the aggregate. Thus we expand the Hamiltonian Eq. (1) with
respect to one-exciton states |n〉, where site n is electronically
excited and all other sites are in their ground state. An arbi-
trary state can be expanded in this basis according to

|s〉 =
N∑

n=1

csn|n〉, (s = 1, . . . , N ). (4)

In the following, we will always use the notation |s〉 to refer to
an eigenstate of the Hamiltonian (1) in the subspace spanned
by the states |n〉, which for a given realization can simply be
found by numerical diagonalization of the Hamiltonian ma-
trix. The localization length of such an exciton state can be
defined in various ways; we employ the Participation Number
(PN),51–53 defined as Ls = (

∑N
n=1 |csn|4)−1. It can be straight-

forwardly checked that this definition gives the expected re-
sult in the limits of completely delocalized (csn = 1/

√
N ,

for periodic boundary conditions) and completely localized
(csn = δn,n0 ) states.

As has been shown in Ref. 37, the localization
behavior and the resulting optical properties for such
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heavy-tailed disorder (α < 2) differ considerably from con-
ventional localization, where states localize in the effective
potential wells produced by the typical fluctuations of the
transition energies.47 First of all, the exciton absorption peak
need not to be narrower than the monomer peak as the conven-
tional exchange narrowing effect predicts,54 but the opposite
effect of exchange broadening may occur. In fact, already for
Lorentzian disorder (α = 1) it is expected that exchange nar-
rowing is absent.55, 56 Second, the scaling of the localization
length with disorder will change considerably, while in addi-
tion the universality of the localization length distribution will
break down.

Of particular relevance in the present case is that heavy-
tailed disorder distributions also support the frequent occur-
rence of outliers, which are molecules whose transition en-
ergy occurs in the tails of the distribution outside of the
exciton band. Note that outliers can in principle occur for
Gaussian disorder as well, in particular when the width of
the distribution is of a comparable magnitude to the exciton
bandwidth; however, more heavy-tailed distributions already
support non-negligible amounts of outliers for considerably
smaller disorder values σ . These outliers, which we here de-
fine as molecules n with |En| > 2.5J, i.e., with an energy
outside of the bare exciton band, typically do not coherently
share their excitation with their neighbors to any appreciable
extent, due to the large transition energy difference. However,
when the molecular excitation energy is not too far below the
exciton band edge (E = −2J for nearest neighbor interactions,
E = −2.4J for dipole-dipole interactions), a local low energy
exciton state may be supported that still has an appreciable
overlap with other exciton states. For details on these topics,
we refer to Refs. 37 and 55. Most relevant for the study of
excitation energy transport is the change in hidden structure,
that is, the structure of the wave functions near the exciton
band edge.57, 58 A typical realization is shown in Fig. 1, and it

0 50 100 150 200
−2.15

−2.1

−2.05

−2

−1.95

−1.9

−1.85

site label n

E
(J

)

FIG. 1. Typical realization of exciton wave functions for a Lévy disordered
chain (α = 1/2, σ = 0.1J) around the exciton band edge. The vertical offset
of the wave functions corresponds to the exciton energy, while the actual
amplitude is not related to an energy but illustrates the shape of the wave
functions. The vertical lines correspond to molecules with either a very high
or a very low energy (|En| > 2.5J), and these outliers effectively divide the
chain into a set of weakly coupled, shorter subchains. Note that typically the
wave functions hardly extend across these segment boundaries.

is clear that segmentation takes place. Each localization seg-
ment is bounded by two outliers, effectively subdividing the
chain into a set of weakly coupled subchains. The occurrence
of these segment boundaries is expected to strongly reduce the
exciton motion, and as will be shown in Sec. III, subdiffusive
transport is to be expected.

B. Exciton dynamics

The interactions with the environment make it possible
for the exciton to scatter between states. On the one hand
this gives rise to exciton relaxation, while on the other hand
it also supports the movement of the excitation within the
supramolecular system. We allow for scattering of the exci-
tons on environmental acoustic phonon modes, and employ
the Pauli master equation approach to follow the time evo-
lution of the exciton populations (see, e.g., Refs. 22, 23, 48,
and 59).

We describe the time evolution of the populations of the
eigenstates |s〉 by the Pauli master equation

Ṗs(t) =
∑
s ′

[Wss ′Ps ′ (t) − Ws ′sPs(t)] , (5)

where Wss ′ is the scattering rate from exciton state |s′〉 to |s〉.
The details of this formalism, including the explicit expres-
sions for the scattering rates, are given in the Appendix. Here,
we only note that the scattering rates Wss ′ are proportional to
an overlap factor between the states |s′〉 to |s〉.

We are primarily interested in quantifying how the ex-
citation packet propagates spatially. As detailed in the Ap-
pendix, due to symmetry, the disorder-averaged displacement
vanishes, so we choose to use the second moment of the ex-
citation to characterize the type of transport that occurs. For
diffusive behavior, the second moment should evolve linearly
in time; deviations from this behavior is thus direct evidence
of non-diffusive transport. For an excitation that is initially
localized on site n0, we define the second moment as

〈n(2)(t)〉 =
∑

n

pn(t) (n − n0)2

=
∑

n

∑
s

Ps(t) |csn|2 (n − n0)2 , (6)

where Ps is the population of exciton state s, and pn is the
population of monomer n in the site basis.

As stated before, the second moment is often used to
characterize the type of transport. Ballistic transport implies
that the second moment evolves quadratically in time, dif-
fusive motion corresponds to a second moment that evolves
linearly in time, while subdiffusive transport shows a second
moment that increases even more slowly.38, 60–62 For diffusive
transport, the time dependence of the second moment can be
written as 〈n(2)(t)〉 = 2Dt, where the proportionality constant
D is called the diffusion coefficient.

III. NUMERICAL RESULTS

In this section, we provide the results of our numerical
calculations and put them in a theoretical perspective. First of
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all, we introduce and motivate the relevant initial conditions,
and define the parameter values that are used in the model cal-
culations. Then, in Sec. III A, we present the time evolution
of the second moment of the excitation, for various parameter
values and for both nearest-neighbor and dipole-dipole inter-
actions, where we show that subdiffusive behavior occurs. Fi-
nally, in Sec. III B, we argue that the subdiffusive behavior is
due to the introduction of segment boundaries and traps that
act as blockades for the excitation movement. This is substan-
tiated by considering the distributions of scattering rates and
overlaps, where heavy-tailed disorder distributions are shown
to lead to the emergence of a two-peaked structure in the scat-
tering rate and overlap distributions. The additional peak cor-
responds to exciton states that couple weakly to its neighbors,
which effectively impede the exciton transport.

In our numerical simulations, we follow the procedure
outlined in Sec. II B and detailed in the Appendix, and cal-
culate the time evolution of the averaged mean square dis-
placement (Eq. (6)). Experimentally, an excitation is usually
created by the absorption of light; the exciton states that do
so most strongly are those around the exciton band edge that
have no nodes, since for such exciton states all molecules con-
tribute coherently to the absorption if all transition dipoles of
the monomers are assumed to be parallel and identical. There-
fore, in our simulations for each realization of the disorder, we
initially populate the exciton state that satisfies the following
requirements:

� it is an s-like state (i.e., without nodes), which we de-
termine by the criterion63

∣∣∣∣∣
∑

n

csn |csn|
∣∣∣∣∣ ≥ C0. (7)

We take C0 = 0.9 in our simulations to select states
where a sufficiently large fraction of the molecules ab-
sorb in phase.

� it is sufficiently delocalized, i.e., it is not an outlier (in
practice, we require a minimum value of the Partici-
pation Number, Ls > 3.) Again, this is done to select
an exciton state with sufficient oscillator strength to be
relevant for absorption, and which lies around the ex-
citon band edge.

� we choose the spatially most central exciton state that
satisfies the above requirements, in order to minimize
the occurrence of finite size effects.

The system is then allowed to evolve in time and we av-
erage over typically a few thousand up to ten thousand real-
izations. We do these calculations for both nearest-neighbor
(NN) and long-range dipole-dipole (LR) interactions. In the
simulations below, we consider chains of length N = 500.
This is sufficiently large to avoid finite size effects for the
parameters considered. The nearest-neighbor interaction J is
taken as the unit of energy. Unless noted otherwise, the tem-
perature is 0.116J, corresponding to a temperature of 100 K
in case of nearest neighbor interactions of a strength ap-
propriate for pseudoisocyanine (PIC) aggregates, where J
≈ 600 cm−1.64, 65 We choose a scattering amplitude W (0)

= 10J , which is of the correct order of magnitude for PIC

aggregates.23 Let us briefly comment on differences when
one uses a coupling between the sites which is positive. This
corresponds to the case of so called H-aggregates, where
the absorption is shifted to the blue.66 Then, in contrast to
the present situation, the initial state would be at the top of the
exciton band and the initial dynamics would be dominated by
relaxation to the bottom of the band. After that initial stage, a
very similar type of dynamics sets in as the one that will be
described in the remainder of this work.

Note that, while the scattering amplitude W (0) is related
to the strength of the exciton-phonon coupling, in addition it
involves a large number of other constants and prefactors.22, 23

The resulting value of W (0) = 10J is much larger than the
bare exciton-phonon coupling strength. The presence of ener-
getic and overlap factors in Eq. (A2) reduces the actual exci-
ton scattering rates Wss ′ to values far lower than W (0). Finally,
we use a cut-off frequency in the spectral density, which is in
the order of the interaction J. This guarantees that there are
phonon modes available with frequencies that correspond to
energy differences between the exciton states. Specifically, in
the following we use ωc = J/2.

A. Exciton motion

In most cases that we have studied, the time evolution of
the second moment can be well fitted by a power law, 〈n(2)〉
∝ tδ , with an exponent δ < 1 corresponding to subdiffusive
behavior. Since the initial state has a small non-zero second
moment as well, we have also fitted the time evolution of
the second moment by a power law with offset, 〈n(2)〉 = atδ

+ b. Typically, however, this leads to similar values for the
fit exponent δ, while only marginally improving the quality of
the fit. We will therefore proceed with using the simple power
law 〈n(2)〉 ∝ tδ .

Typical examples, for α = 3/2 and α = 1/2, are shown
in Fig. 2. Generally, the more heavy-tailed a distribution be-
comes, the larger will be the deviation from diffusive behavior
(δ = 1). As we will discuss in more detail in Sec. III B, this
is related to the increased occurrence of outliers, whose cor-
responding exciton states have a small overlap with its neigh-
bors and which as a result provide barriers for the excitation
transport. In addition, there is also an increase in exciton states
centered around sites with an excitation energy in or around
the Lifshits tail, such that these states still have a considerable
overlap with their neighbors but lie sufficiently deep into the
Lifshits tail to act as traps. In such cases, scattering into such
a local low energy exciton state occurs at considerably higher
rates than scattering out of it, thereby reducing the exciton
motion. It is observed that even Gaussian disorder seems to
produce slightly subdiffusive behavior at long times. This is
most likely due to the fact that the likelihood of outliers occur-
ring is small but non-vanishing, and the occurrence of disor-
der still leads to the introduction of local low energy states that
act as traps or barriers. Generally, an increase in the weight in
the tails (i.e., smaller α and/or larger σ ) of the disorder distri-
bution leads to stronger subdiffusive behavior.

While the time dependence of the expectation value of
the second moment can generally be well fit by a power law,
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FIG. 2. Time evolution of the second moment 〈n(2)(t)〉 of the excitation wave
packet calculated for different parameter values and interactions (long-range
interactions: thick solid, nearest-neighbor interactions: thin solid), and corre-
sponding power law fits (dashed lines). (a) α = 3/2, σ = 0.2J, with power law
fits 〈n(2)(t)〉LR = 5.20 t0.815 (red dashed line), and 〈n(2)(t)〉NN = 1.99 t0.835

(blue dashed line), (b) α = 1/2, σ = 0.2J, with power law fits 〈n(2)(t)〉LR
= 75.5 t0.52 (red dashed line), and 〈n(2)(t)〉NN = 25.1 t0.45 (blue dashed
line).

it is observed that typically the actual expectation value of
the second moment increases slightly slower than the best fit
power law. This introduces some ambiguity into what the best
fit is, as this depends on the time interval considered: the cor-
responding exponent can change by a few percent. We choose
to consider the same time interval in all simulations.

The results reported here do not qualitatively change un-
der the inclusion of long-range dipole-dipole interactions,
even though the overall exciton motion does show a consid-
erable quantitative difference. As shown in Fig. 2, subdiffu-
sion is observed to occur for long-range interactions as well.
While the degree of subdiffusion, as defined by the exponent
δ in the time evolution of the second moment, may also differ
to a small extent, it is typically of a comparable magnitude.
The most striking quantitative difference is in the overall mi-
gration rate: typically, long-range interactions allow for faster
transport of the excitation by a factor of 2–3. This is most
likely due to the fact that long-range interactions allow for
a next-nearest-neighbor coupling between molecules on dif-
ferent sides of segment boundaries. A small difference in the
exciton transport exponent δ between nearest-neighbor and

long-range interactions may occur, but to a reasonable ap-
proximation, the quotient of the two second moments is ap-
proximately constant in time except for short times.

The time in Fig. 2 is expressed in units of J−1 in order to
facilitate application of our results to different physical sys-
tems. As mentioned in Sec. III, for a molecular aggregate such
as PIC, we have J ≈ 600 cm−1, so that the time unit J−1 corre-
sponds to 1J−1 ≡ 1/18 ps. The total timescale of plots such as
Fig. 2 thus corresponds to approximately 100 ps. This is of the
same order of magnitude as typical fluorescence decay times
for molecular aggregates, and therefore the relevant timescale
for the exciton dynamics in these systems.22, 52, 64, 67–69

B. Subdiffusive transport: Theoretical background

From the numerical calculation of the time evolution of
the excitation, it is difficult to get an understanding of the un-
derlying physical processes. From considering simpler quan-
tities, it turns out to be possible to qualitatively understand the
observed occurrence of subdiffusion.

To make a connection to previously studied diffusion
models, it is useful to consider scattering rates that are trans-
formed back to the site basis, which gives effective scattering
rates W̃nn′ from site n′ to site n,

W̃nn′ =
∑
s,s ′

|csn|2 |cs ′n′ |2 Wss ′ . (8)

We denote the distribution of scattering rates over a distance
m by P (W̃m) with W̃m = W̃n,n+m, i.e., we include all possible
values of the index n for which W̃n,n+m is defined. It is insight-
ful to consider the distribution of nearest-neighbor scattering
magnitudes W̃n,n+1, which we will simply denote by W1. The
distributions are normalized to unity area. For Gaussian dis-
order (α = 2), the distribution consists of one single peak, as
shown in Fig. 3. In contrast, for more heavy-tailed distribu-
tions such as in Fig. 4, it shows a clear bimodal shape. The
first mode, a sharp peak as W1 → 0, is numerically found
to correspond to scattering events involving an initial and
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FIG. 3. Distribution of scattering rates W1 for α = 2, σ = 0.2J, and the cor-
responding overlap distribution in the inset. For clarity, only the distributions
for long-range interactions are shown; the distributions for nearest-neighbor
interactions are very similar. There is no low-W1 peak visible.

Downloaded 26 Jun 2013 to 193.175.8.21. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



214316-6 Vlaming et al. J. Chem. Phys. 138, 214316 (2013)

0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

0.05

W
1
 (cm−1)

P
(W

1)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

Ω

P
(Ω

)

FIG. 4. Distribution of scattering rates W1 for α = 1/2, σ = 0.2J, and the cor-
responding overlap distribution in the inset. For clarity, only the distributions
for long-range interactions are shown; the distributions for nearest-neighbor
interactions are very similar. Note the clear bimodal shape: one peak at low
W1 (at low �), and a second peak similar to the one obtained for Gaussian dis-
order (see Fig. 3). The overlap distribution shows additional features, which
are explained in the main text.

final site with widely different energies; typically outliers are
involved. The second mode is a typical distribution of scat-
tering rates for a system without outliers, and corresponds
to intrasegment scattering – analogous to the distribution in
Fig. 3. Naturally, the relative size of the two contributions de-
pends on the values of α and σ that characterize the disorder
distribution. Typically, smaller α and larger σ lead to an in-
crease in outliers and therefore to an increase in importance
of the small-W1 peak. This is analyzed quantitatively below.

It is straightforwardly confirmed that this bimodal shape
is a localization-induced effect. To see this, let us consider the
distribution of the overlap factors, i.e., in the form wherein the
overlap also enters the scattering rate Eq. (A2),

�s =
∑
s ′

∑
n

|csn|2 |cs ′n|2 . (9)

Note that the overlap �ss ′ = ∑
n |csn|2 |cs ′n|2 between states

s and s′ that are localized in different parts of the system is
practically zero, an effect that is also present for Gaussian
disorder. However, we want to make a distinction between,
on the one hand, exciton states that have practically no over-
lap with any other exciton state, and on the other hand exci-
ton states that do overlap with some (but not necessarily all)
other exciton states. Therefore, in Eq. (9), we include a sum
over all other exciton states s′ to eliminate the irrelevant prac-
tically zero-valued overlap factors with non-adjacent exciton
states. This leads to overlap distributions that show a bimodal
shape as well, i.e., there are states that hardly overlap with
any of its neighbors, and states that do have an overlap with
some other exciton states. In the insets of Figs. 3 and 4, the
overlap distributions are shown for the cases α = 2 and α

= 1/2, respectively. A comparison of the scattering rate dis-
tributions in Figs. 3 and 4 and the corresponding overlap dis-
tributions in their insets show that both consist of two main
peaks, including one peak at zero scattering rate (zero over-

lap). The energy-dependent prefactors in the scattering rates,
such as the spectral density and the thermal phonon occupa-
tions, cause a weighing of the various overlap contributions,
modifying the details of the distribution but keeping its gen-
eral bimodal shape intact.

Additional structure can be observed in the overlap dis-
tribution for α = 1/2 (e.g., the inset of Fig. 4), consisting of
a peak at � = 1/2 and a series of small shoulders at larger
values of �. The peak at � = 1/2 originates from the oc-
currence of segments that behave effectively as dimers, that
is, two neighboring sites whose transition energies happen to
have a similar value, while this value is very different from the
transition energies of any other neighboring sites. Then, this
dimer is approximately decoupled from the rest of the system,
and it is straightforwardly shown that such dimer states pro-
duce overlap factors of � ≈ 1/2. The small features at larger
values of � correspond, analogously, to effective segments of
length three, four, and so on.

While the nearest-neighbor scattering rates W1 allow for
an understanding of the origin of subdiffusive behavior in
these systems, it is instructive to see how P (W̃m) evolves
with increasing m. First of all, for more heavy-tailed distri-
butions, the average scattering rate decays with m, signifying
that scatterings over increasingly large distances become less
important. This supports our focus on the nearest-neighbor
scattering rates. For disorder distributions closer to Gaussian
disorder, the average scattering rate might actually initially
increase with m, and peak at some value of m > 1. This is
also reflected in the position of the peak of the second mode,
which for increasing m may first shift to higher values of W ,
but will eventually shift towards smaller values of W as the
scattering rates for larger displacements become increasingly
small. In addition, while the general bimodal shape is also
present for displacements m > 1, the shape of the distribution
does change with increasing displacement m with the low-W
mode obtaining a larger weight at the cost of the intraseg-
ment scattering mode. This is a direct consequence of the in-
creased likelihood of finding outliers and trap states within
the scattering distance m. How quickly the shape changes
with increasing disorder strength σ depends strongly on the
localization length, i.e., on how likely it is that an increase
of the scattering distance leads to encountering an additional
outlier.

We will now argue that the bimodal distribution of scat-
tering rates P (W1) observed above leads to subdiffusive be-
havior. It is well known70, 71 that diffusion of a point particle
in a chain with randomly distributed nearest-neighbor scat-
tering rates W1 is diffusive if the expectation value of W−1

1
is finite. However, when the expectation value of W−1

1 di-
verges, subdiffusive behavior is expected. In particular, pre-
vious studies70, 71 have analytically shown that scattering rate
distributions of the form P (W1) ∝ W

−β

1 will lead to long-time
subdiffusive behavior. This behavior is related to the results
of Scher and Montroll,72 where the carrier motion in various
materials is modeled as a random walk with a long-time tail
in the hopping time distribution, showing that such a random
walk yields subdiffusive behavior. Since the hopping times
are basically the inverses of the scattering rates W1, a peak for
small W1 in the scattering rate distribution corresponds to a
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tail for large hopping times in the corresponding hopping time
distribution. This confirms that indeed our bimodal distribu-
tion leads to subdiffusion.

A relevant quantity for understanding to what degree
the excitation transport becomes subdiffusive, is the relative
weight of the intersegment scattering mode (ISSM), which
we define as

	W1 =
[ ∫ Wmin

1
0 P (W1)dW1

]
∫ ∞

0 P (W1)dW1
. (10)

Here, the ISSM is defined as the part of the distribution from
W1 = 0 up to the local minimum separating the two modes,
where we denote the corresponding value of W1 by Wmin

1 .
The quantity 	W1 can be interpreted as the fraction of

sites that are only weakly coupled to their neighbors. We can
define a similar quantity for the overlap distributions p(�),
i.e., the distribution of �s for all s, where analogously to the
scattering rate distribution we define �min as the value of �

corresponding to the minimum between the two modes,

	� =
[ ∫ �min

0 p(�)d�
]

∫ ∞
0 p(�)d�

. (11)

Figure 5 shows how 	W1 and 	� depend on disorder, for
various values of α. For any value of α, both 	W1 and 	� in-
crease as a power law 	 = aσγ with the disorder. For the sake
of clarity, Fig. 5 only shows the results for long-range inter-
actions; the results for nearest-neighbor interactions are quite
similar. It should be noted that all 	’s vanish for Gaussian dis-
order, α = 2 with σ � 2J. For the heavy-tailed distributions
shown in Fig. 5, excellent power law fits can be made for 	

= aσγ , in all cases yielding an exponent γ ≈ α. Specif-
ically, in the order presented in the legend of Fig. 5, we

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

σ(J)

Λ

 

 

ΛΩ
LR

 , α=1/2

ΛΩ
LR

 , α=1

ΛΩ
LR

 , α=3/2

ΛW
1

LR
 , α=1/2

ΛW
1

LR
 , α=1

ΛW
1

LR
 , α=3/2

FIG. 5. Disorder dependence of the relative weight of the first mode in, re-
spectively, the scattering rate distributions and the overlap distributions for
long-range interactions, for the values α = 1/2, α = 1, and α = 3/2. The rel-
ative weights for nearest-neighbor interactions are nearly identical to those
for long-range interactions, and are not shown here for clarity. Note that, for
a fixed value of α, all these measures scale (almost) identically with the dis-
order strength and only differ in an overall prefactor in the scaling power
law.

obtain the following fit exponents: γ �
1/2 = 0.49 ± 0.01, γ �

1

= 1.00 ± 0.01, γ �
3/2 = 1.55 ± 0.04, γ W

1/2 = 0.51 ± 0.01, γ W
1

= 0.99 ± 0.01, and γ W
3/2 = 1.41 ± 0.06. It is striking that all

exponents γ are almost equal for any given value of α, inde-
pendent of whether we consider scattering rates or overlaps,
or whether we use nearest-neighbor or long-range dipole-
dipole interactions. The difference is purely in the prefactor
of the scaling relation. This suggests that the distribution of
localization segments and their overlap properties, as dictated
by the disorder distribution, determine to what extent the dis-
tributions are separated into a weakly scattering (low-overlap)
intersegment mode and a strongly scattering (high-overlap)
intrasegment mode; the details of the intermolecular interac-
tions or energy-dependent prefactors are relatively unimpor-
tant here.

The fact that the scaling exponent obeys γ ≈ α can be un-
derstood quantitatively. We have argued before that the peaks
at small scattering rates (small overlaps) correspond to barri-
ers in the excitation transport, related to outliers in transition
energy. These barriers then correspond to sites sufficiently
deep in the tail of the Lévy stable distribution, where one can
approximate the stable distribution P(E) by73

P (E) ∼ σα sin (πα/2) � (α + 1)

π |E|1+α
. (12)

The weight Y of the tails beyond some energy E0, i.e., the area
of the distribution with |E| > E0, is obtained from a straight-
forward integration of Eq. (12), yielding

Y = 2 sin (πα/2) � (α + 1)

παEα
0

σα ∝ σα. (13)

The tail weight Y thus shows exactly the same scaling behav-
ior with disorder σ as was previously observed for the relative
weight 	W1 (	�) of the small scattering rate (overlap) peak,
confirming our assignment of these peaks to barriers corre-
sponding to outliers.

For increasing disorder σ , the relative weight of the low-
overlap (or low scattering rate) mode 	 increases and the sub-
diffusive exponent δ decreases. It is thus not surprising that
both quantities are anti-correlated for fixed values of the sta-
bility index α. It is, however, not possible to obtain a general
one-to-one relation between the two: while the two quanti-
ties are anti-correlated for fixed α, this no longer holds when
combining these quantities obtained for different values of α.

IV. CONCLUSIONS

The dynamics of excitations in disordered systems are
shown to depend crucially on the type of disorder involved.
The considerable changes in localization behavior that have
previously been uncovered to occur for disorder distributions
with heavy tails37 are reflected in the exciton motion as well.
In particular, molecules with transition energies in the tails
of the distribution will coherently share their excitation with
their neighbors to a small extent, effectively acting as seg-
ment boundaries separating the system into weakly coupled
subchains of variable length. This change in the wave func-
tion structure near the lower exciton band edge has conse-
quences for the exciton transport in such systems as well. To
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this end, we study the time evolution of the second moment
of an excitation in disordered systems, where the molecular
excitation energies are represented by uncorrelated stochastic
variables taken from a symmetric Lévy stable distribution. In
such systems, diffusive behavior will in general not occur, as
the second moment does not increase linearly in time, but as a
power law 〈n(2)(t)〉 ∝ tδ with an exponent δ < 1. The disorder-
induced segmentation of the exciton wave functions and the
increased occurrence of deep-lying low energy exciton states
(outliers) inhibits the exciton motion and leads to subdiffusive
behavior instead.

Generally, the more weight is in the tails of the disorder
distribution, the stronger the deviation from diffusive behav-
ior is, as is indicated by a decrease in the exponent δ. Calcula-
tion of the distribution in scattering rates and overlaps makes
this behavior more insightful, as these show the appearance of
an additional peak at small scattering rates (overlaps), reflect-
ing the presence of barriers in the excitation transport. The
relative weight 	 of this additional peak scales with disorder
as a power law 	 ∝ σα , independent of the choice of interac-
tion and independent of whether we consider scattering rates
or overlaps. This scaling behavior is identical to the scaling
of the tail weight of the original Lévy distribution, indicat-
ing that the emergence of the small scattering rate and small
overlap peaks is indeed caused by an increased frequency of
outliers.

However, while the disorder strength σ , the time evolu-
tion exponent δ and the relative weight of the small-scattering
(or small-overlap) mode 	 can all be correlated with each
other for a fixed type of Lévy stable distribution (i.e., for a
fixed α), no one-on-one relation between the various studied
quantities has been found that holds for all α. Finally, the ex-
citation transport has been studied for both nearest-neighbor
and long-range interactions. The degree of subdiffusion, as
defined by the time evolution exponent δ, does not differ ap-
preciably, but there is an overall increase in exciton migra-
tion for long-range interactions. This finds its origin in an
increase in overlap between states on different localization
segments.
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APPENDIX: EXCITATION DYNAMICS

We model the excitation transport by allowing for a per-
turbative scattering of the excitons on environmental acous-
tic phonon modes.22, 23, 48, 59 That is, we consider the exciton-
phonon coupling term as a perturbation to the Frenkel exciton
Hamiltonian Eq. (1), thus allowing for scattering between ex-
citon states by interaction with phonon modes. We consider
a bath that relaxes back to equilibrium on a short timescale
compared to the typical exciton dynamics, and assume that the
time evolution of the coherences and the populations decou-

ple; formally, this corresponds to making the Born-Markov
and secular approximations.74, 75 This leads to a decoupling
of the time evolution of exciton populations and exciton co-
herences, and the populations of the eigenstates |s〉 evolve in
time according to the Pauli master equation,

Ṗs(t) =
∑
s ′

[Wss ′Ps ′ (t) − Ws ′sPs(t)] . (A1)

Note that we have neglected radiative decay here, as we want
to focus only on the transport. In Sec. III A, we will provide
some estimates wherein this assumption is shown to be rea-
sonable for the considered timescales. In Eq. (A1), Wss ′ is the
scattering rate from state s′ to state s, given by22

Wss ′ = W (0) S(|Es − Es ′ |)
N∑

n=1

|csn|2 |cs ′n|2

×
{

nT (Es − Es ′ ), Es > Es ′

1 + nT (Es ′ − Es), Es < Es ′
. (A2)

Here, the scattering amplitude W (0) is a constant that is re-
lated to the strength of the exciton-phonon coupling, S(E) is
the phonon spectral density,

∑N
n=1 |csn|2 |cs ′n|2 is the overlap

factor between the initial and final scattering states, and nT(E)
= [exp (E/T) − 1]−1 describes the thermal occupancy of the
phonon modes at temperature T. For the spectral density S(E),
we use a Debye-like form with an exponential cut-off factor,
S(E) = |E/J|3exp (−E/ωc), where ωc is the cut-off frequency.
Note that generally Wss ′ �= Ws ′s ; in fact, the scattering rates
obey the detailed balance condition,

Ws ′s = Wss ′ exp (Es − E′
s)/kBT (A3)

implying that at long times the population distribution ther-
malizes to a Boltzmann distribution.

We rewrite Pauli master equation (A1) as

Ṗs(t) = −
∑
s ′

Rss ′Ps ′ (t), (A4)

where we have introduced the matrix R̂ given by

Rss ′ =
∑

r

Wrsδss ′ − Wss ′ . (A5)

The formal solution of Eq. (A4) reads

Ps(t) =
∑
s ′

(e−R̂t )ss ′Ps ′ (0). (A6)

For a given initial state Ps ′ (0), this allows us to calculate the
exciton populations Ps(t). The population of site n, which we
denote by pn(t), is related to Ps(t) by

pn(t) =
∑

s

Ps(t)|csn|2. (A7)

Once the time evolution of the populations are known,
we can consider the corresponding displacement and mean
square displacement. Since the transition energies are cho-
sen randomly from the same distribution for all sites (which
implies in particular that for all sites the mean energies are
identical), there is no net directionality and the displacement
vanishes when one averages over realizations.
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The mean position 〈n(t)〉 of the excitation at time t is
given by a weighted sum

〈n(t)〉 =
∑

s

Ps(t)〈n〉s , (A8)

where the mean position of the excitation in the exciton state
s is given by

〈n〉s =
∑

n

n |csn|2 . (A9)

For an excitation that is initially localized on site n0, we
define the second moment as

〈n(2)(t)〉=
∑

n

pn(t) (n−n0)2 =
∑

n

∑
s

Ps(t) |csn|2 (n−n0)2 ,

(A10)
where Ps is the population of exciton state s, and pn is the
population of monomer n in the site basis.
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