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Abstract
Recent experiments have shown that it is possible to synthesize collections of one-dimensional
chains of non-covalently bound porphyrins on various surfaces. We provide a study of the
optical properties of these systems, and we show that generally one expects the appearance of
multiple superradiant transitions, which can be both redshifted or blueshifted with respect to
the monomer transitions. Moreover, porphyrin chains can simultaneously support both
redshifted and blueshifted features in the absorption spectrum. The energies, absorption
strengths and polarizations of the excitonic transitions can be understood in terms of Davydov
splitting of chains with one transition per molecule. A distribution over chain lengths and
energy relaxation due to coupling to the environment are proposed as mechanisms for the
broadening of the superradiant transitions.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The creation of molecule-based nanostructures on surfaces is
of great interest from the point of view of molecular electronics.
In the bottom-up approach, the techniques of supramolecular
chemistry are used to produce tailored structures with specific
functional properties [1–3]. By modifying the monomer
species, side groups and the substrate properties, it is possible
to modify the non-covalent interactions between the molecular
building blocks, and thereby influence the self-assembly
process. This allows for a variety of geometries that have
been created over the years. In addition, different substrates
may be used depending on the intended application, and a wide
range of molecule-based structures have been synthesized on
metallic, semiconductor as well as insulating substrates [4–6].
If one intends to decouple the supramolecular nanostructure as
much as possible from the substrate, the latter option is most
desirable [7, 8].

The close proximity of the non-covalently bound
porphyrins in these structures imply intermolecular resonance
interactions, suggesting a collective optical response and
coherent excitations. A proper understanding of the nature
of the collective electronic excitations and spectroscopical
properties is important in the view of possible optoelectronic

applications. Recent experiments on the semiconductor
3,4,9,10-perylenetetracarboxylic acid dianhydride (PTCDA)
on dielectric surfaces [8] have shown that one is, on the
one hand, able to obtain high resolution optical spectra of
both single molecules and supramolecular structures. On
the other hand, the supramolecular structure leads to a
coherent collective excitation of many molecules [9, 10].
The collective nature of the excitations leads to a reduced
coupling to vibrational modes and a strong reduction of
the radiative emission lifetime, a phenomenon known as
superradiance. In turn, superradiance also affects the
absorption spectra, typically leading to shifted and narrowed
absorption features [10, 11].

Porphyrins (and related molecules such as phthalo-
cyanines, chlorophylls, and hemes) [12–14] provide excellent
candidates for the use in molecular wires or photosynthetic
antennae. There is a wide variety of synthetically
available porphyrin derivatives with different side groups and
coordination complexes, allowing for the tailoring of the
monomer species to enhance the aggregation process and to
modify the physical properties of the nanostructure [5, 15].
Moreover, they are chemically stable, cheap, and have highly
desirable optical and energy transport properties due to their
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large transition dipoles in and around the visible spectrum.
A range of structures based on porphyrins have previously
been synthesized and studied, such as covalently coupled
wires [16–19], porphyrin aggregates [15, 20–24] and various
porphyrin arrays on surfaces [25–29].

Recent studies have shown the creation of non-covalently
bound, effectively one-dimensional porphyrin structures on
insulating substrates. Meyer and co-workers [30–32] have
synthesized chains of tilted porphyrins, both on monolayers
and along step edges. In particular, cyanoporphyrins have been
shown to form nanowires (among other observed geometries)
on a KBr(0 0 1) substrate [30, 31], preferably along the straight
step edges. The porphyrins are tilted with respect to the surface
and stabilized by electrostatic interactions of the side groups
with the surface, with π–π stacking between the porphyrin
rings. Likewise, in [33], it is reported that the deposition
of a thin CoO layer onto an Ir(1 0 0) surface creates a one-
dimensional Moiré pattern. These regularly spaced distortions
lead to a preferential attachment of the porphyrins onto these
spots, essentially enabling the formation of one-dimensional
porphyrin nanostructures. The molecules lie flat on the
surface here, and various relative orientations are possible [34].
Likewise, a flat stacking of porphyrins on the substrate has been
observed for various other substrate materials [5, 35].

The emphasis in [30, 31, 36] has been on the synthesis and
characterization through noncontact atomic force microscopy
(nc-AFM) of the wires. In this paper, we provide a predictive
study of the optical properties of one-dimensional porphyrin
wires. In contrast to the PTCDA case where each molecule
has only one optical transition of relevance [8], porphyrins
may have multiple optical transitions that allow for nontrivial
geometrical possibilities and interesting collective excitonic
effects. In this paper, we will provide a general treatment
that can be applied to chains of similar molecules, as long
as there are two perpendicularly polarized transitions present
in the monomer. The theoretical framework here can easily
be extended to other molecules with multiple molecular
transitions. Likewise, the approach presented here may apply
to other substrates and also one-dimensional covalently bound
porphyrin structures, as long as neither the substrate nor
the covalent bond significantly distort the optically relevant
monomeric electronic wave functions. In a more specific
example, we will provide predictions for the optical properties
of experimentally realized porphyrin wires, similar to those
reported in [30, 31, 36] and those which can be realized in
the system of [33]. In particular, we show that interesting
collective optical behaviour exists in these systems: we predict
the occurrence of superradiance, and in fact the porphyrin
wires will typically support a double peaked absorption
spectrum where both peaks are shifted away from the monomer
absorption peak. A distribution over chain lengths will lead to
additional peaks, and we suggest the possibility of a finite size
induced broadening of the absorption peaks, in addition to the
thermal broadening caused by coupling to the environment.

In section 2, we introduce the theoretical background
necessary to calculate the optical properties of the systems
mentioned above. First, we provide a general description on
the occurrence of exciton states and their absorption properties

in section 2.1. In section 2.2, we show some analytical
results that facilitate the understanding of the expected optical
properties of porphyrin chains. We then proceed with
numerical simulations of the absorption properties of various
experimentally feasible porphyrin chain conformations in
section 3. Specifically, in section 3.1 we first focus on the
absorption of chains of porphyrins that lie flat on the surface,
and how this depends on the various parameters and the relative
orientation of the porphyrin molecules. In section 3.2, the
discussion is generalized to chains of tilted porphyrins, i.e. as
in [30, 31, 36]. We conclude in section 4.

2. Theoretical considerations

The optical response of monomeric phthalocyanines and
porphyrins is typically dominated by two bands of transitions
in the (near) visible part of the spectrum [12–14]. At low
energies (around 1.5–2 eV, typically) there is the so-called
Q-band, consisting of two transitions that are polarized
perpendicularly to each other and are referred to as the
Qx and Qy transitions. These are often strongly coupled
to vibrational modes of the molecule, leading to additional
vibronic sidepeaks (at higher energies). In addition, there
are two perpendicular transitions (labelled Bx and By) at
considerably higher energies, forming the Soret band at
transition frequencies in the near ultraviolet (around 2.5–3 eV).
The two B or Q-transitions may be degenerate but are not
necessarily so, depending on the symmetry, the side groups
and the environment. The transition dipoles are likewise not
necessarily equal in magnitude due to symmetry breaking
considerations (e.g., the Q transition is only weakly allowed in
porphins due to symmetry [37]). The Soret band transitions
tend to be stronger, with transition dipole moments that can
easily reach µ = 10–13 D, while the Q transitions are typically
found to be weaker, with transition dipole moments of the
order of µ = 3–7 D found for various porphyrin derivatives,
see e.g. [17, 24, 38, 39, 40]. Specifically, the Q band transition
dipole magnitude of the cyanoporphyrin derivatives used by
the Meyer group is estimated at µ ≈ 4.4 D [30]. There
may be additional weak transitions, referred to as N and
Tx1–Tx3 transitions; we will not concern ourselves with those
in this paper since it will not add to the qualitative predictions
presented here.

For clarity’s sake, we will treat the two optically
dominant bands separately. A treatment of these four
electronic excitations (Bx , By , Qx and Qy) simultaneously
is straightforwardly implemented in the formalism presented
here. However, while it is known that coupling between
the two bands may lead to some intensity borrowing and
additional shifts, it does not lead to any qualitative alterations
in the predictions we make here. For a study of the effect
of coupling between the B and Q-transitions in three related
systems, namely β-tetraethylpyridinylporphyrin aggregates
[41], chlorophylls/bacteriochlorophylls [42, 43], and tetra(4-
sulphonatophenyl)porphyrin nanotubes [44], we refer to
[41–44]. In addition, we focus our study on porphyrin-based
structures on insulating substrates. Here, the coupling between
the molecules and the substrate is weak [7], and the optical
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response of the porphyrin structures is well captured by a
tight-binding model where interactions with the substrate are
neglected.

2.1. General formalism

We consider a chain consisting of N non-covalently bound
porphyrin molecules, where each molecule is allowed to have
multiple optically relevant transitions, which we label by
j . Each such transition has an associated transition dipole
moment �µj , which couples the electronic transitions to the
electric field of the incoming light, and in addition induces
an interaction between the various molecular transitions. This
interaction leads to excitations that will be coherently shared
over (part of) the chain. We label the molecules in the chain
by n, and the transitions within a porphyrin by j . The
corresponding Frenkel exciton Hamiltonian is [45, 46]

H =
∑
nj

ωnj |n; j〉 〈n; j | +
∑
njn′j ′

Jjj ′ (n − m) |n; j〉 〈
m; j ′∣∣ ,

(1)

where |n; j〉 is the state where molecule n has the j -th
transition excited, while all others are in the ground state,
and ωnj is its corresponding transition energy. The interaction
Jjj ′(n−m) between transition j on molecule n and transition j ′

on molecule m �= n is mediated through their transition dipole
moments. Typically, we will use point dipole or extended
dipole interactions here, although the formalism allows for
more general expressions for the interactions as well. Note
that a similar formalism may be applied to covalently bound
porphyrin wires, as long as the covalent bonding does not
disturb the relevant electronic wave functions of the porphyrins
to a significant extent. In addition, while we focus on
porphyrins in this paper, the formalism here can be applied to
other molecules with multiple relevant molecular transitions j

as well.
The relevant collective excited states (excitons) that will

be optically excited are the eigenstates of equation (1), which
we can write as

|q〉 =
∑
n,j

cqnj |n; j〉 , (2)

with corresponding eigenenergy Eq . There are N times j

such exciton states, forming a band around the monomer
transition energy with a bandwidth proportional to the
exchange interaction strength.

The linear absorption spectrum is an easily accessible
experimental quantity that allows us to probe the collective,
superradiant nature of the electronic excited states [45, 46].
The molecules couple to incoming light, and in particular
to the electric field of the incoming light, through their
transition dipole moments. Commonly, one considers the
coupling of the transition dipole moments of the molecules
and the electric field of the light as a perturbation to the
Hamiltonian equation (1), and uses the Fermi golden rule. The
effective transition dipole moment of the exciton state q is
�µq = ∑

n,j cqnj �µnj , which leads to an absorption strength of

Oq = ∣∣ �µq · �e∣∣2
, (3)

where �e is the polarization vector of the incoming light. The
absorption strength Oq is a measure of how strongly the
transition from the electronic ground state to the excited state
q couples to the incoming light, and corresponds to the area of
the absorption peak at energy Eq , so that the linear absorption
spectrum is given by

A (ω) =
∑

q

Oqδ
(
Eq − ω

)
. (4)

Generally, while there are Nj states, only a few states
absorb strongly: these are the superradiant states where
the molecules absorb in phase. Note that we will use
the term superradiance for any collective state with a
strongly enhanced absorption strength, and thereby a strongly
enhanced absorption and emission rate. The state in question
need not necessarily feature prominently in the emission
spectrum, due to possible ultrashort lifetimes as a result of
relaxation processes. The linear absorption spectrum will be
dominated by the absorption into the superradiant states. For
(predominantly) negative interactions, the superradiant state
occurs at the bottom of the band, at an energy below the
monomer transition, giving the so-called J -band absorption
peak. For positive interactions, the state that is superradiant is
at the top of the band, i.e. at a higher energy than the monomer
transition—this is referred to as an H-band. Interestingly
enough, as we will see in section 3, one-dimensional porphyrin
chains can exhibit both these features at the same time.

To obtain an absorption lineshape, we employ the
formalism developed in [47]. Here, we assume that the
electronic transitions couple weakly to acoustic phonon modes,
allowing for relaxation to lower lying exciton states. The
corresponding dephasing leads to a thermal broadening effect.
We refer to [47] for a detailed discussion; in addition,
the relevant expressions have been included in appendix D.
We do not include coupling of the electronic transitions
to the vibrational modes of the porphyrin (e.g. vibronic
progressions), as this goes beyond the scope of the present
work. Within this approach, one includes exciton dephasing
rates �q , and the absorption is given by

A (ω) =
∑

q

Oq

π

�q(
ω − Eq

)2
+ �2

q

. (5)

The local environment of the porphyrin monomers
changes from molecule to molecule, and the inhomogeneities
resulting from such local interactions lead to disorder in the
monomer properties. Such disorder is known to lead to
localization of the exciton wave functions [48, 49]. However,
since the experimental systems that we are interested in
typically consist of mostly short chains, i.e. shorter than
the localization length, finite size effects dominate over
localization effects [50]. Therefore, we can treat the systems as
being homogeneous to an excellent approximation. Numerical
calculations indeed confirm that the results presented in this
paper do not change appreciably upon the inclusion of realistic
amounts of disorder. In the following, we ignore disorder, and
coupling to internal and external vibrations is only included as
a thermal broadening mechanism, as discussed above.
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Figure 1. Geometry of flat-lying porphyrins on a surface. The direction of the transition dipole moments of the Qx and Qy transitions of the
first molecule are denoted by the red arrows. All other porphyrins are oriented in the same way, with their transition dipole moment
orientations denoted by grey arrows. The geometry is fully fixed by the interporphyrin distance a and the angle θ between the transition
dipole moment of the Qx transition and the horizontal x ′-axis.

2.2. Non-disordered porphyrin chains

Upon defining the interactions and energies in equation (1), the
framework provided in section 2.1 already allows for a direct,
brute force numerical calculation of the optical properties of the
porphyrin chains under consideration. However, it is insightful
to first consider the non-disordered case (i.e., ωnj = ωj in
equation (1)) in more detail. We will focus on the main results
here, leaving the details to appendix A.

In the absence of disorder, we can partially diagonalize
the Hamiltonian equation (1) by applying the transformation
|k〉 = ∑

n ckn|n〉 (k = 1...N) that would diagonalize a chain
with one transition per molecule [24, 45],

H =
∑

k


∑

jj ′
ωk,jj ′ |kj〉 〈

kj ′∣∣

 ≡

∑
k

H(k). (6)

The partial diagonalization then leads to a set of j × j -
Hamiltonians that remains to be diagonalized. We denote the
exciton coefficients of this remaining diagonalization by dsj .

The full diagonalization can then be written as

|k; s〉 =
∑
nj

ckndsj |n; j〉 , (7)

and we can calculate the effective transition dipole moment of
the exciton state (k, s) through

�µks =
∑
nj

ckndsj �µnj . (8)

As detailed in appendix A, only a few values of k give
significant contributions to the absorption spectrum. More
specifically, the absorption spectrum is dominated by the
values of k corresponding to superradiant states, in particular
k = 1, where the various molecules absorb in phase. The
existence of off-diagonal contributions in the corresponding
j × j -Hamiltonian H(k) leads to an additional Davydov
splitting and a redistribution of absorption strength over the
j peaks [24, 45]. The important point here is that the physics
of the full system can be understood as a j × j -Hamiltonian,
where each element corresponds to a Hamiltonian contribution

for one transition per molecule. In addition, the dominant
contribution to the absorption spectrum is given by the j × j -
Hamiltonian for the superradiant transition k = 1. Finally,
note that the exciton energies and absorption strengths, as given
in appendix A, have a dependence on the chain length N . This
is particularly pertinent since, in experiment, the chains are
typically fairly short (i.e. where that the length dependence is
strongest), and some distribution over chain lengths will occur.

3. Absorption of porphyrin chains

We now proceed with the numerical calculation of typical
absorption spectra that are to be expected in various
experimental situations. Firstly, we need to define the
geometry of the system, in particular the relative positions
and orientations of the porphyrins. We consider both systems
where the porphyrins are lying flat on the surface [33], and in
addition, we consider chains of tilted porphyrins [30–32]. As
detailed in appendix B, we can show analytically that for flat-
lying porphyrins with degenerate transitions, the absorption
spectrum is independent of the orientation.

After defining the geometry by specifying the molecular
positions, the magnitude and orientation of the corresponding
transition dipole moments, and the transition energies, the
absorption spectrum is straightforwardly calculated by the
methods in section 2.1. We focus on the Q-band here,
since these are the lowest energy electronic excited states and
therefore have a relatively long lifetime. A similar analysis
can be made for the Soret band, but here one should keep
in mind that fast decay and relaxation processes can occur.
Without loss of generality, we define the x ′-axis as connecting
the centres of the molecules (each a distance a apart) and the
y ′-axis perpendicular to it, and we denote the angle that the
Qx transition dipole moment vector makes with the x ′-axis
by θ , as also shown in figure 1. Since the Qy transition has
its dipole moment oriented perpendicular to the Qx transition,
θ fully defines the in-plane geometry. Explicitly, we have
�µx = µx(cos θ, sin θ, 0) and �µy = µy(sin θ, − cos θ, 0). To
construct a tilted geometry, we require two additional angles
α and β, as defined in appendix C.

As mentioned in section 2.1, and detailed in appendix D,
we include thermal broadening of the exciton states to obtain
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Figure 2. Three typical absorption spectra for a porphyrin chain of
length N = 5, for several combinations of parameters: equipotent
and degenerate transitions (blue line), degenerate transitions of
different strength (red), equipotent and non-degenerate transitions
(black). All shown spectra are for θ = 30◦. For all parameters, the
spectrum is dominated by two peaks.

a lineshape. Specifically, we perform the calculations at
approximately room temperature, kBT = 200 cm−1=̂286 K,
and we choose a linear spectral density with a prefactor
W0 = 0.05.

3.1. In-plane porphyrins

In this section, we show some typical absorption spectra for
realistic parameters. Here, we consider porphyrin chains that
lie flat on the surface; given the physical size of a typical
porphyrin, we take a lattice parameter of a = 2.5 nm. We
express all transition frequencies with respect to a reference
energy ω0 = (ωx +ωy)/2, i.e. in the plots in figure 2 to figure 6
the frequency ω is relative to ω0. For degenerate transitions,
this implies that ωx = ωy = ω0=̂0. We take transition dipole
moments of the order of µx = µy = 8 D, which is the
correct order of magnitude for porphyrins [22, 24, 38], as also
discussed in section 2. Generally, the shifts calculated here will
be proportional to µ2, as shown below as well as in appendix A.
Therefore, the shifts and the corresponding energy splitting
will be more pronounced for Soret band transitions than for Q

band transitions. For the flat-lying porphyrins, the orientation
is fully defined by the angle θ between the Qx transition and the
x ′-axis, the latter being in the direction of the vector connecting
the porphyrins (see figure 1). In the simulations in figure 2 to
figure 4, we consider chains of length N = 5, while we discuss
the length dependence and distributions over the chain lengths
in figure 5.

A few typical absorption spectra are shown in figure 2.
The absorption spectrum is generically dominated by two
main peaks. These correspond to the eigenstates of the 2 × 2
Hamiltonian matrix for the superradiant k-state; the absorption
strength of the two superradiant states of the uncoupled system
is redistributed over the two new eigenstates. This typically
leads to a redshifted J -peak, and a blueshifted H -peak. For
typical parameters corresponding to flat-lying porphyrins, the
interactions and energy spacings between the excitonic levels
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Figure 3. Peak position (upper two graphs), absorption strength
(third graph) and polarization (bottom graph) of the two main
superradiant peaks as a function of the orientation angle θ , for
degenerate transitions. Thick lines: J -transition, thin dashed lines:
H -transition. All curves are for degenerate transitions. The blue
curve corresponds to equally strong transitions µx = µy = 8 D, the
red curve is for µx = 9 D, µy = 7 D, and black is for µx = 10 D,
µy = 6 D. For the first case (blue lines), there is no orientational
dependence; in the more general case, the peak positions and
absorption strengths vary ∝ cos(2θ) between the two extremes.

are of the order of tens up to a few hundred cm−1. Again,
energy splitting magnitudes for superradiance in the Q band
transitions tend to be on the lower end of this range, while the
energy splitting is larger for Soret band transitions. Either way,
the typical energy spacings are small compared to the thermal
energy kBT = 200 cm−1, and it becomes apparent that all
states have a comparable dephasing rate and correspondingly, a
comparable linewidth. This is clearly visible in figure 2, where
the two peaks have similar widths. To succinctly summarize
the dependence of the absorption spectra on changes in the
various parameters, we show plots such as figure 3 and figure 4.
In figure 3 and figure 4, we show how the peak position (i.e., the
transition energy of the superradiant peaks), the absorption
strengths and the polarization of these peaks depend on the
orientation angle θ . Figure 3 shows results for degenerate
transitions with different transition dipole moments, while
figure 4 does the same for non-degenerate transitions with
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Figure 4. Peak position (upper two graphs), absorption strength
(third graph) and polarization (bottom graph) of the two main
superradiant peaks as a function of the orientation angle θ . Thick
lines: J -transition, thin lines: H -transition. All curves are for
equally strong transitions µx = µy = 8 D; the blue curve
corresponds to degenerate transitions ωx = ωy = 0, while the black
curve is an example of non-degenerate transitions,
ωy − ωx = 50 cm−1. For the first case, there is no orientational
dependence (blue lines); in the more general case, the peak positions
again vary ∝ cos(2θ) between the two extremes. In the bottom plot,
the polarizations of the J and H transitions are identical.

equal transition dipole moments. In all cases, we use thin lines
for the (typically blueshifted) H -transition, and thick lines for
the (typically redshifted) J -transition.

The simplest cases occur for angles θ = 0◦ or θ = 90◦,
where the off-diagonal elements of the 2 × 2-Hamiltonian
H(k) all vanish. That is, the optical response is identical
the sum of those of two decoupled chains, each of which
provides one dominant peak to the absorption spectrum (see
appendix A for detailed expressions). For θ = 0◦, there
is a redshifted absorption peak due to the Qx-transitions at
E0

J = ωx − 2�µ2
x , and a blueshifted absorption peak due

to the Qy-transitions at E0
H = ωy + �µ2

y , where � is a
positive constant depending on the spatial dependence of the
interactions1. The absorption strengths are proportional to

1 For nearest neighbour interactions, we have � = 1, while for full
dipole–dipole interactions, we have � ≈ 1.2/a3.

respectively ω2
x and ω2

y . At θ = 90◦, the role of the two
transitions is interchanged: absorption into the Qy-transitions
produces a peak at E90

J = ωy −2�µ2
y , while the Qx-transitions

lead to a peak at E90
H = ωx +�µ2

x , with peak areas proportional
to respectively µ2

y and µ2
x . Obviously, in the general case, we

may have ωx �= ωy and µx �= µy , so that the magnitudes of the
shifts and the molecular transition energy that the exciton states
are shifted away from (i.e., ωx or ωy) are different, leading
to different absorption spectra for the two cases θ = 0◦ and
θ = 90◦. Note that, when the transitions Qx and Qy are
degenerate (ωx = ωy) and equally strong (µx = µy), we
have E0

J = E90
J and E0

H = E90
H . As is shown in appendix B,

we can analytically prove the stronger statement that the
absorption spectrum is, in this case, completely independent of
θ . Generally, other values of θ lead to exciton states of a mixed
Qx and Qy-nature. Note that the symmetry of the geometrical
arrangement dictates that the results should be symmetric in θ

and periodic over 180◦.
In figures 3 and 4, we show the dependence of the

transition energies and absorption strengths on the orientation
angle θ , for various combinations of transition energies and
transition dipole moments. In both plots, the blue lines are for
equally strong (µx = µy = 8 D) and degenerate (ωx = ωy)
transitions. Furthermore, in figure 3, the red and black curves
are for degenerate but not equally strong transitions, with red
corresponding to µx = 9 D and µy = 7 D, and black to
µx = 10 D and µy = 6 D. On the other hand,in figure 4,
the black curve shows the results for equally strong but non-
degenerate transitions, ωy − ωx = 50 cm−1. In all cases,
thin dashed lines correspond to the blueshifted superradiant
transition, and thick lines to the redshifted superradiant
transition. Calculations have also been done for the case
where the transitions are neither degenerate nor equally strong.
Also in this situation, the results are in agreement with the
previous analysis and the observable quantities such as peak
shifts, absorption strengths and polarizations follow a similar
dependence on the orientation angle θ (not shown). For
all these parameter combinations, the extrema of the exciton
energies and absorption strengths coincide with the two cases
θ = 0◦ and θ = 90◦ discussed above, with the appropriate
values for ωx , ωy , µx and µy inserted. For intermediate values
of θ , the eigenstates of the superradiant Hamiltonian matrix
are of a mixed Qx and Qy character and interpolate between
these two extremes. Both the energies and absorption strengths
have a ∝ cos(2θ) dependence, consistent with the symmetry
and periodicity requirements. It should be noted that the total
absorption strength of the two peaks is constant in θ ; the mixing
only leads to a redistribution of absorption strength over the
eigenstates, but the total amount of absorption strength in the
doublet is conserved.

Besides the exciton energies and absorption strengths, we
also calculate the polarization D, which we quantify by

D = |Fh − Fv|
Fh + Fv

, (9)

where Fh and Fv are the absorption strengths in the horizontal
(x ′) and vertical (y ′) direction, respectively. That is,
Fh = |�µ · x̂ ′|2 and Fv = |�µ · ŷ ′|2 where x̂ ′ (ŷ ′) is the unit

6



J. Phys. D: Appl. Phys. 47 (2014) 305301 S M Vlaming and A Eisfeld

−150 −100 −50 0 50 100
0

5

10

15

20

ω (cm−1)

ab
so

rp
tio

n 
(a

.u
.)

 

 

λ=1
λ=3
λ=5
λ=7

Figure 5. Absorption spectra for various chain length distributions:
Poissonian distributions with average lengths λ = 1 (red), λ = 3
(green), λ = 5 (blue), and λ = 7 (black). All energies are with
respect to the monomer transition energy. All chains have the same
orientational angle of θ = 30◦, and identical monomer transitions
with µx = µy = 8 D and ωx = ωy = ω0; the discussion is equally
valid for any other parameter combination. The monomer peak at
ω = 0 cm−1 is clearly visible, and dimer and trimer peaks around
−45 and −60 cm−1 are identifiable for average lengths λ = 1 and
λ = 3. The peaks for longer chain lengths become closely spaced
and may broaden into one large peak.

vector in the x ′ (y ′) direction. This quantity yields D = 1 for
transitions that are polarized fully horizontally or vertically,
while smaller values correspond to deviations from these two
extrema. Only in the cases θ = 0◦ and θ = 90◦ are
the eigenstates perfectly polarized in the horizontal (x ′) and
vertical (y ′) directions; however, figures 3 and 4 show that
also in intermediate cases, the eigenstates are still significantly
polarized in the horizontal and vertical directions for the J -
peak and H -peak, respectively.

As shown in appendix A, the peak positions are length
dependent. Since an experimental absorption spectrum
will probe chains of different lengths, we also consider a
distribution over chain lengths here. The discussion here can
be applied to an arbitrary length distribution, which could
possibly be extracted from experiment, but we will illustrate
the approach for one specific choice of distribution. As a model
description, we consider a Poissonian distribution over chain
lengths Ñ , P(Ñ) = (λÑ/Ñ !) exp(−λ), where λ is the average
chain length [8]. Depending on the details of the distribution
over lengths, the bare peak width of a single peak and the
separation in energy between peaks for chains of different
lengths, such a distribution may either lead to a series of peaks
(each peak being a superradiant transition for a specific chain
length N ) and/or a broadening. The latter occurs when the
separation in energy between superradiant peaks of different
chain lengths is smaller than or comparable to the peak width.

In figure 5, we show absorption spectra for length
distributions of various average width λ. As an example,
figure 5 shows the spectra for equally strong and degenerate
transitions, but the behaviour discussed here is identical
for other parameter choices. The various spectra consist
of weighted sums of absorption spectra for a fixed chain

length. It should be noted that, in our formalism, the
monomer peak acquires no thermal broadening and is therefore
strongly visible in our numerical simulations. This peak is
convoluted with a narrow Lorentzian of width η = 1 cm−1

for visualization purposes. For short chain lengths, the peaks
for different chain lengths are well separated; for increasingly
longer chains, the peak position converges to a fixed value
independent of N . As a consequence, length distributions
with a short average chain length such as λ = 1 (red curve
in figure 5), we can still distinguish peaks for different chain
lengths, in particular N = 1 up to N = 3. For increasing
average chain lengths (e.g., λ = 7, black curve in figure 5),
different lengths lead to closely spaced superradiant peaks,
which for this amount of broadening, cannot be resolved
separately and lead to a broadened main peak. From an
experimental point of view, it might be worthwhile to increase
the spectral resolution by decreasing the temperature. Recent
experiments [8] have studied fluorescence and fluorescence
excitation spectra, where the latter quantity is analogous to
the absorption spectrum, for PTCDA complexes on KCl(1 0 0)
surfaces, and this has been shown to lead to strongly reduced
broadening effects. We anticipate that similar experiments on
the porphyrin wires studied here could be sufficiently sensitive
to resolve the predicted structure in the absorption spectra.

3.2. Tilted porphyrin chains

Recent studies have shown that it is possible to create
non-covalently bound, effectively one-dimensional porphyrin
structures on insulating substrates. Meyer and co-workers
[30–32] have synthesized chains of tilted porphyrins, both
on monolayers and along step edges. In particular,
cyanoporphyrins have been shown to form nanowires (among
other observed geometries) on a KBr(0 0 1) substrate [30, 31],
preferably along the straight step edges. The porphyrins are
tilted with respect to the surface and stabilized by electrostatic
interactions of the side groups with the surface, with π–π

stacking between the porphyrin rings.
The methodology introduced in the present work can

also be applied to porphyrin chains where the molecules
do not lie flat on the surface. An experimental realization
is provided by the cyanoporphyrin systems on KBr(0 0 1)
substrates, as studied by the Meyer group [30–32]. Here,
the porphyrins form chain-like structures that are stabilized
by a combination of electrostatic interactions between the
porphyrin side groups and the substrate, and π–π interactions
between the porphyrins. The π–π -stacking and the periodicity
of the substrate lattice therefore determines the geometry
of the structures. We generate a tilted geometry in the
way detailed in appendix C. We choose somewhat different
parameters in this section as compared to section 3.1, in order to
more closely correspond to the experimental situation of [31].
Specifically, the tiled geometry allows for a strongly reduced
lattice parameter, which has been reported to be approximately
a = 0.6 nm [31]. Also, given the asymmetry of the porphyrin
and the reported estimated transition dipole moment [30]
of µ = 4.4 D, we choose reduced and unequal transition
dipole moments with respect to section 3.1, µx = 4.4 D and
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Figure 6. Absorption peak positions for a tilted porphyrin chain of
length N = 5, with geometrical parameters θ = 30◦, α = 40◦,
β = −40◦. The two main peaks have a similar area, despite their
large difference in broadening. The small peaks in the centre of the
plot are higher order contributions, i.e. the k = 3 states of
appendix A.

µy = 3 D. For clarity, we choose equal transition energies
and will not show results for other parameter sets, but it
should be noted that the generic double-peaked structure of
the absorption spectrum remains the same.

Due to the close proximity of the molecules, it is more
accurate to use extended dipole interactions [51], where
instead of point dipoles, we consider the Coulomb interactions
between two spatially separated positive and negative charges.
The value of the point charges and their separation should be
chosen such that the correct transition dipole moment vector
is reproduced. This leaves the charge separation distance
as the single free parameter, which in these simulations, we
take as L = 0.6 nm [24]. Note that the spectra presented
here are only meant as qualitative predictions; the precise
magnitude of the energy shifts depends strongly on the precise
relative orientation of and distance between the molecules.
As a consistency check, it should be noted that the shifts we
obtain for Soret band transitions are typically of the order
of a few thousand cm−1, which is of a similar order of
magnitude as the shifts that have been observed in cylindrical
porphyrin aggregates, where the porphyrin molecules are
similarly closely stacked [20–22, 24].

In figure 6, we show the absorption peak positions for the
geometrical parameters θ = 30◦, α = 40◦, β = −40◦, as a
typical example. As can be seen in figure 6, the qualitative
behaviour in the case of tilted porphyrins is quite similar to
the flat-lying porphyrin structures; again, the absorption is
dominated by two peaks of comparable area, where one tends
to be redshifted while the other is blueshifted with respect
to the monomer transition. However, the tilted orientation
allows for a much closer packing of the porphyrins, and
correspondingly much stronger interactions and larger shifts.
In this case, the thermal energy kT = 200 cm−1 is smaller than
or at most comparable to the energy spacing of the various
exciton levels. This implies that the J -peak dephases only
very slowly due to a lack of relaxation channels, leading to
a narrow absorption peak. In contrast, the H -peak has an
abundance of relaxation pathways into lower lying exciton
states, implying a short lifetime and a correspondingly strong

broadening, as is confirmed in figure 6. Note, however, that
despite their strongly different linewidths, the areas of these
two peaks are of comparable magnitude. In tilted porphyrin
chains, the transition dipole moments will in general also
have an out-of-plane component. However, there is still a
tendency for the superradiant blueshifted state to be polarized
mostly perpendicular to the x ′-axis, and for the superradiant
redshifted state to be polarized mostly parallel to the x ′-axis.
Generally, the increased number of orientational degrees of
freedom prohibits a simple analysis of the precise magnitude
of the shifts, as was possible in the planar case discussed in
section 3.1.

Also in the case of tilted porphyrin chains, a distribution
over chain lengths will occur in practice. This leads to a total
absorption that is a weighted sum of absorption contributions
for fixed length N , where longer chain lengths lead to larger
peak shifts and with the peak shifts eventually converging to
the long chain length limit; this is completely analogous to the
situation for planar porphyrin structures. The main difference
lies in the magnitude of the peak shifts, which tends to be on
the order of several hundreds of cm−1 for these close-packed
tilted porphyrin structures, and up to several thousands of cm−1

for Soret band transitions, as compared to the shifts of tens to
at most hundreds of cm−1 for the planar porphyrin chains.
This leads to superradiant peaks for different chain lengths N

that are far more clearly separated as compared to the planar
geometry, and this suggests that a tilted porphyrin arrangement
provides an experimentally more straightforward test of the
predictions given here. Depending on the homogeneous and
thermal broadening of the individual peaks, the main peaks
for different chain lengths may be spectrally resolved if the
separation between peaks is at least of a similar size as the peak
widths. This suggests that such a series of peaks is most likely
to be visible in the low energy range of the spectrum, where the
narrow J -peaks reside. Likewise, as mentioned in section 3.1,
low temperature experiments analogous to those by Müller
et al [8] are expected to lead to strongly reduced broadening
and a corresponding increase in the spectral resolution.

4. Conclusions

We have shown that a number of porphyrin structures on
surfaces that have recently been experimentally realized
should exhibit interesting collective optical properties. In
particular, the coupling between the transition dipole moments
of the porphyrin molecules leads to collective electronic
excitations, which spectroscopically will be manifested
through superradiant effects in both the Soret band and the
Q-band. Generally, for a fixed chain length, the absorption
spectrum in either band will be dominated by two such
superradiant peaks where one will be redshifted and the other
will be blueshifted with respect to the monomer transition
energy. Their energies, polarizations and absorption strengths
can be understood in terms of Davydov splitting between
the superradiant transitions resulting from the Qx and Qy

transitions.
For porphyrin structures where the porphyrins lie flat

on the surface, inter-porphyrin distances are relatively large,

8



J. Phys. D: Appl. Phys. 47 (2014) 305301 S M Vlaming and A Eisfeld

resulting in couplings and peak shifts of the order of tens to a
few hundred cm−1. If the Qx and Qy transitions are equally
strong and degenerate, the absorption spectrum is shown to
be independent of the relative orientation of the porphyrins.
This orientational invariance is broken if the transitions are
not degenerate or have different transition dipole moments.
In that case, the energies and absorption strengths depend
sinusoidally on the orientation angle. Tilted porphyrins lead
to a qualitatively similar picture; however, these systems allow
for a much closer spacing of the porphyrins, so that the inter-
porphyrin couplings and resulting absorption peak shifts are
considerably larger, already reaching hundreds of cm−1 for
the relatively weak Q-band transitions and which can be of
the order of thousands of cm−1 for Soret band transitions.
The two-peaked structure of the absorption spectrum for a
given chain length is also observed here. The considerably
larger interporphyrin interactions and resultant shifts suggest
that tilted porphyrin geometries, rather than flat porphyrin
geometries, provide a better experimental test of the absorption
spectra predicted here.

Experimentally, there will be a distribution over chain
lengths. Such a distribution will lead to a series of peaks in
the absorption spectrum, where each peak corresponds to the
superradiant transition for a given chain length. If the peaks
are sufficiently closely spaced with respect to their widths, the
spread in chain length leads to a broadening of the excitonic
peak. We anticipate that low-temperature experiments,
analogous to those performed in [8] for PTCDA molecules on
KCl(1 0 0) substrates, give a considerable increase in spectral
resolution and could thereby probe the predicted absorption
peak structure.

Appendix A. Expressions for non-disordered chains

In the absence of disorder, we have ωnj = ωj . We do allow
for different transition energies and different transition dipole
moments for each transition. In that case, the Hamiltonian
reads

H =
∑
nj

ωj |n; j〉 〈n; j | +
∑
njn′j ′

Jjj ′ (n − m) |n; j〉 〈
m; j ′∣∣ .

(A1)

The interactions Jjj ′(n − m) are taken as dipole–dipole
interactions between transition j on molecule n, and transition
j ′ on molecule m �= n. The point dipole–dipole interaction
between two transition dipole moments �µmj and �µnj ′ , located
at positions �rm and �rn respectively, is given by the well-known
expression

Jjj ′ (n − m) = �µmj · �µnj ′

r3
− 3

( �µmj · �rnm

) ( �µnj ′ · �rnm

)
r5

,

(A2)

where we have defined �rnm = �rn −�rm and r = |�rnm|. Then, the
interactions Jjj ′(n − m) for the various combinations of j and
j ′ all have the same distance dependence, so that the various
sub-Hamiltonians Hjj ′ are diagonalized by the same transform.
Moreover, this transform is the transform |k〉 = ∑

n ckn|n〉
that diagonalizes the chain with one transition per molecule;

application of this transformation leads to a set of j × j -
matrices H(k) that remain to be diagonalized.

The exciton chain with one transition per molecule
provides a useful reference case, from which we can
understand the more general case of multiple transitions
per molecule, as discussed in the main text of this
paper. The remainder of appendix A, and specifically
equations (A3)–(A5), concern results and discussion for
a chain with one transition per molecule. In this case,
the absorption is dominated by one superradiant transition,
where all the molecules absorb in phase. For a chain
with one transition per molecule and with nearest-neighbour
interactions J , H = ∑

n ω0|n〉〈n| + J
∑

n(|n〉〈n + 1| + |n +
1〉〈n|), we can solve explicitly for the wave functions, energies,
absorption strengths and so forth. The wave function for
exciton state k is

ckn =
√

2

N + 1
sin

(
πkn

N + 1

)
, (A3)

with energy

Ek = ω0 + 2J cos

(
πk

N + 1

)
, (A4)

and absorption strength

Ok = 1 − (−1)k

N + 1
cot2 πk

2 (N + 1)
. (A5)

It is easily seen that the k = 1 state contains the bulk
of the absorption strength, while the remainder is shared
by the other odd states. Corrections can be obtained for
including interactions beyond the nearest neighbour, leading
to some additional shifts, but the qualitative discussion is
identical [52, 53].

The sign of the interaction, and thus also the energy
of the superradiant state, depend on the orientation of the
molecular transition dipole moment with respect to the vector
connecting the molecules in the chain, where θ is the angle
between the two. This directly results from substituting the
molecular transition dipole moments �µ into the dipole–dipole
interaction expression, equation (A2). The interactions are
negative for θ < 54.7◦, which are referred to as J -aggregates
and where the superradiant peak is lower in energy than the
monomer peak, and the interactions are positive for θ > 54.7◦,
the H -aggregates with a superradiant absorption peak with a
blueshifted energy. Note that for θ = 0◦, the magnitude of the
interactions is twice as large as for the case of θ = 90◦ (see
equation (A2)), besides differing in sign. In addition, it should
be noted that the energies and absorption strengths are length
dependent.

Appendix B. Orientational invariance for flat-lying
porphyrin chains

For a chain of in-plane porphyrins, we have �µn,(j=x) = �µx =
µx(cos θ, sin θ, 0) and �µm,(j=y) = �µy = µy(sin θ, − cos θ, 0).
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We can then write out the various forms that Jjj ′(n − m) can
take (again, a is the lattice constant):

Jxx (n − m)

µ2
x

= 1 − 3 cos2 θ

|n − m|3 a3
(B1)

Jyy (n − m)

µ2
y

= 1 − 3 sin2 θ

|n − m|3 a3
(B2)

Jxy (n − m)

µxµy

= Jyx (n − m)

µxµy

= −3 cos θ sin θ

|n − m|3 a3
. (B3)

As mentioned before, application of the transformation
|k〉 = ∑

n ckn|n〉 to equation (A1) partially diagonalizes the
Hamiltonian. For each value of k, this leads to the Hamiltonian
matrix

H(k) =
(

ωx 0
0 ωy

)
+

f (k)

a3

×
(

µ2
x

(
1 − 3 cos2 θ

) −3µxµy cos θ sin θ

−3µxµy cos θ sin θ µ2
y

(
1 − 3 sin2 θ

) )
.

(B4)

In the case of degenerate and equally strong transitions Qx

and Qy , that is, ωx = ωy ≡ ω0 and µx = µy ≡ µ, this result
simplifies greatly. Labeling the two eigenstates by s = ±, the
eigenenergies are

Eks = ω0 +
f (k)µ2

2a3
(−1 ± 3) . (B5)

Note that the eigenenergies are independent of the orientations
of the porphyrins. The normalized eigenvectors are given by

�d+ = (− sin θ, cos θ) , (B6)

�d− = (cos θ, sin θ) . (B7)

The corresponding transition dipole moments are easily
found by filling in equation (8), and are seen to be independent
of the orientation angle θ as well,

�µk+ =
(∑

n

ckn

) 
µ cos θ


cos θ

sin θ

0


 + µ sin θ


 sin θ

− cos θ

0







= µ

(∑
n

ckn

) 
1

0
0


 , (B8)

�µk− =
(∑

n

ckn

) 
−µ sin θ


cos θ

sin θ

0


 + µ cos θ


 sin θ

− cos θ

0






= µ

(∑
n

ckn

) 
 0

−1
0


 . (B9)

In other words, the entire absorption spectrum is
independent of the orientation of the porphyrins.

Appendix C. Geometry for tilted porphyrin chains

To generate a chain of tilted porphyrin molecules, we
start out from flat-lying porphyrin molecules, so that
the transition dipole moments of the two transitions are
�µx = µx(cos θ, sin θ, 0) and �µy = µy(sin θ, − cos θ, 0). We
generate a tilted geometry by applying two additional (internal)
rotations to the molecules. First, we rotate around the x ′-axis
over an angle α. Subsequently, we rotate around the new
rotated y ′-axis over an angle β. We employ the convention
that positive signs correspond to counterclockwise rotations
when looking towards the origin, and both angles are allowed
to have both positive and negative values. This corresponds to
applying the rotation matrix

A =

 cos β 0 sin β

sin α sin β cos α − sin α cos β

− cos α sin β sin α cos α cos β


 (C1)

to the transition dipole vectors. A subsequent calculation of
the interactions, through point-dipole interactions, extended
dipole interactions or some other method of choice, then fully
defines the Hamiltonian.

Appendix D. Thermal line broadening

We use the formalism developed in [47] to obtain a lineshape
for the excitonic transitions. That is, we allow for a coupling of
the excitons with acoustic phonons in the environment, which
we treat as a perturbation. From Fermi’s golden rule, we obtain
phonon-induced scattering rates from exciton state s to exciton
state r ,

Wrs = W0S (|ωr − ωs |) G (ωr − ωs)
∑

n

c2
snc

2
rn, (D1)

i.e. the product of an overall amplitude W0, a one-phonon
spectral density S(ω), a thermal occupation factor G(ω), and
an overlap factor between the initial and final state. The
thermal occupation factor is given by G(ω) = n(ω) for
ω > 0, and by G(ω) = 1 + n(−ω) for ω < 0, with
n(ω) = (exp(ω/kBT ) − 1)−1 being the thermal occupation
of a phonon mode of energy ω. The relaxation channels that
are included in this way lead to a dephasing of the exciton
states, and the dephasing rate of exciton state s is simply given
by �s = 1

2

∑
r Wrs .
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391 302
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