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Abstract We present two approaches to the dynamics of an open quantum system coupled
linearly to a non-Markovian fermionic or bosonic environment. In the first approach, we
obtain a hierarchy of stochastic evolution equations of the diffusion type. For the bosonic
case such a hierarchy has been derived and proven suitable for efficient numerical simula-
tions recently (Suess et al. in Phys. Rev. Lett. 113, 150403, 2014). The stochastic fermionic
hierarchy derived here contains Grassmannian noise, which makes it difficult to simulate
numerically due to its anti-commutative multiplication. Therefore, in our second approach
we eliminate the noise by deriving a related hierarchy for density matrices. A similar refor-
mulation of the bosonic hierarchy of pure states to amaster equation hierarchy and its relation
to the hierarchical equations of motion of Tanimura and Kubo is also presented.

Keywords Non-Markovian · Stochastic Schrödinger equation ·Master equation ·Quantum
trajectories · Fermionic · Bosonic

1 Introduction

The theory of open quantum systems has become an important topic inmodern physics and its
applications, since many interesting phenomena of quantum systems emerge only when the
influence of the system’s environment is taken into account [1–3]. However, realistic system-
bath models are often analytically and numerically intractable even if one is only interested
in the relevant degrees of freedom, i.e. the reduced density operator. Nevertheless, a coarse-
grained description is often sufficient for most practical purposes. One standard example
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is an environment of uncoupled harmonic oscillators, which is a good approximation for
weakly coupled delocalized modes [4] or shifted harmonic Born–Oppenheimer surfaces in
molecules [2,5]. Another standard model is an environment of non-interacting fermions.

These environmental models are often simplified further using the Born–Markov approx-
imation for a “memory-less”, weakly coupled environment [1–3]. Recently, there has been a
growing interest in going beyond this Born–Markov approximation, which fails in particular
if the coupling between system and bath is not weak or if one deals with a structured environ-
ment [1,2]. Because of its importance, e.g., for transport through molecules or quantum dots,
various approaches have been developed to go beyond the Born–Markov regime in fermionic
environments (see for example [6–10]).

One powerful approach to obtain the dynamics of the system for such a non-Markovian
setting is non-Markovian quantum state diffusion (NMQSD). The NMQSD approach was
originally derived for a harmonic oscillator environment [11–14].A relatedNMQSDequation
for fermionic environments has been derived recently [15,16]. Within NMQSD one obtains
a stochastic Schrödinger equation of the diffusion type that lives in the Hilbert space of the
system. Its solutions—so called quantum trajectories—yield the reduced density operator
by an average over randomly chosen realizations. The main difference between the bosonic
and the fermionic theory is the noise processes entering the equations of motion: While the
influence of a bosonic environment can be described exactly by a complex-valued colored
Gaussian process, fermionic environments require the use of Grassmannian colored noise.

An obstacle of the NMQSD equations is that it contains the noise not only as a multi-
plicative term, but also within a functional derivative under a memory integral. To tackle
this problem, we have recently derived a hierarchy of pure states (HOPS) for the bosonic
case [17]. This hierarchy consists of a set of coupled equations where the noise enters only
linearly. The price one has to pay is that instead of an intractable memory integral one deals
with an infinite hierarchy of coupled stochastic equations. Fortunately, it turns out that one
can often truncate the hierarchy at quite low order resulting in a system of equations which
can be solved numerically in an efficient way.

One main result of the present work is the derivation of such a hierarchy of pure states
for the fermionic theory, which has a structure very similar to the bosonic one. In contrast
to the bosonic case, where one can easily generate the complex Gaussian noise, a numer-
ical simulation of the fermionic HOPS seems to be unfeasible due to the anti-commuting
Grassmannian processes. Therefore, we will go one step further and eliminate the noise by
deriving a hierarchy of master equations based on the fermionic HOPS, which can be solved
numerically efficient. The corresponding master equation for a bosonic environment based
on the established HOPS [17] is also presented. Although the hierarchical description of pure
state dynamics is quite new, hierarchical equations of motion for density operators of open
quantum systems coupled to bosonic [18–21] or fermionic [6] environments are well estab-
lished tools. In certain special cases, the hierarchy obtained from HOPS is closely related to
the established hierarchical equations of motion (HEOM) of Tanimura and Kubo.

The paper is organized as follows: In Sect. 2 we elaborate on the fermionic theory. First,
we recapitulate the fermionic NMQSD approach in Sect. 2.1 in order to recall the established
theory and introduce our notation. Then, Sect. 2.2 is devoted to the fermionic HOPS and the
hierarchy of density matrices is derived in the following Sect. 2.3. Finally, we discuss finite-
temperature environments in Sect. 2.4. The corresponding theory for bosonic environments is
treated in Sect. 3: Sect. 3.1 summarizes theHOPS construction from [17]. The novel result for
bosonic environments, namely the hierarchy of master equations, can be found in Sect. 3.2.
Its relation to the established HEOM is discussed in Sect. 3.3. Finally, we provide numerical
examples for both methods in Sect. 4. Throughout the paper, we use units where kB = h̄ = 1.
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2 Fermionic Environments

Let us consider the (total) Hamiltonian

Htot = H + Henv + Hint, (1)

where H captures the system’s free dynamics and Henv = ∑
j,λ ω j,λb†j,λb j,λ the dynamics

of an environment consisting of indistinguishable spin-1/2 particles described by fermionic
ladder operators obeying canonical anti-commutator relations

{
b j,λ, b j ′,λ′

}
= 0 and

{
b j,λ, b†j ′,λ′

}
= δ j j ′δλλ′ . (2)

The interaction of system and environment is modeled by a linear coupling Hamiltonian

Hint =
∑

j,λ

(
g∗

j,λL j b
†
j,λ + g j,λL†

j b j,λ

)
. (3)

Here, L j are system operators and g j,λ are complex numbers quantifying the coupling
strength of the respective fermion ( j, λ) to the system. Throughout this paper, we use j
to label independent environments coupling to the system and λ to label distinct physical
modes (i.e. fermions) within each environment. We assume that all system operators com-
mute with environment operators or, put differently, that the system is distinguishable from
the environment. Such a model arises, for example, in the description of tunneling through
a quantum dot or molecules [7]. It is convenient to encode the frequency dependence of the
interaction strengths in the so called spectral densities

J j (ω) =
∑

λ

|g j,λ|2δ(ω − ω j,λ), (4)

which are typically assumed to be continuous functions of frequency.
For now we will confine the discussion to the zero-temperature case with pure initial

condition

|�0〉 = |ψ0〉 ⊗ |0〉 (5)

and treat the more general case of a thermal initial state in Sect. 2.4. Here, |0〉 denotes the
vacuum with respect to all b j,λ. Since the full dynamics governed by the Hamiltonian (1) is
unitary, the full state of system and bath can be described by a pure state |�t 〉 at all times.
The reason for introducing a distinction between system and environment in the first place
is that we are only interested in the reduced state of the former, namely

ρt = Trenv|�t 〉〈�t |. (6)

However, theNMQSD formalism recalled in the next section is formally equivalent to solving
the full Schrödinger equation for |�t 〉.
2.1 Fermionic NMQSD

The theory of non-Markovian quantum state diffusion for fermionic environments has been
derived in [15,16]. Here, we will briefly recapitulate the crucial steps in order to establish
the notation used throughout the paper.
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Similar to the bosonic case, the fermionic NMQSD theory is based on a representation of
the bath degrees of freedom in coherent states |z〉 := ⊗ j ⊗λ |z jλ〉,where a (non-normalized)
fermionic coherent state is defined similarly to its bosonic counterpart by

|z jλ〉 = e−z jλb†jλ |0〉 = |0〉 − z jλb†j,λ|0〉 (7)

Here, the z jλ are anti-commuting Grassmann variables with {z jλ, z j ′λ′ } = {z∗
jλ, z j ′λ′ } =

δ j, j ′ and {z jλ, b j ′λ′ } = {z jλ, b†j ′λ′ } = δ j, j ′ . For more details on these coherent states see
e.g. [22,23].

We now expand the bath degrees of freedom of the full system-environment state with
respect to the coherent states introduced above ψt (z∗) := 〈z|�t 〉. We also absorb the free
time evolution of the environment using the interaction picture with respect to Henv. The
resulting Schrödinger equation for ψt (z∗) then reads

∂tψt (z∗) = −iHψt (z∗) − i
∑

j,λ

g∗
j,λL je

iω j,λt z∗
j,λψt (z∗)

−i
∑

j,λ

g j,λL†
je

−iω j,λt−→∂ z∗
j,λ

ψt (z∗), (8)

where
−→
∂ z∗

j,λ
denotes the left-derivative with respect to z∗

j,λ. In the following we will drop
the arrow from left-derivatives (and only indicate right-derivatives explicitly).

The main result of [15,16] is that (8) can be recast into a stochastic Schrödinger equation
of the quantum state diffusion type, namely

∂tψt (Z∗) = −iHψt (Z∗) +
∑

j

L j Z∗
j (t)ψt (Z∗)

−
∑

j

L†
j

∫ t

0
α j (t − s)

δψt (Z∗)
δZ∗

j (s)
ds (9)

where the stochastic process Z∗
j (t) = −i

∑
λ g∗

j,λe
iω j,λt z∗

j,λ is characterized by its correlation
function

α j (t) =
∑

λ

∣
∣g j,λ

∣
∣2e−iω j,λt (10)

through

EZ j (t) = E
(
Z j (t)Z j ′(s)

) = 0, E

(
Z j (t)Z∗

j ′(s)
)

= δ j j ′α j (t − s). (11)

Note that the Z∗
t are Grassmannian processes, i.e. values at different times anti-commute

hindering an efficient numerical generation of these processes. Furthermore, Eq. (10) is the
well-known relation of the zero-temperature bath correlation function (BCF) and the spectral
density (4) through a (one-sided) Fourier transform [1].

Besides describing the correlation of the noise process, theBCFalsoweights the functional
derivative at different times under the memory integral in (9). Since this term is non-local in
time as well as in the realization of the processes, it is unclear how it should be evaluated
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1412 D. Suess et al.

in general. We will abbreviate the full memory integral introducing the (left-)derivation
operator1

D j,tψt (Z∗) =
∫

α j (t − s)
δψt (Z∗)
δZ∗

j (s)
ds. (12)

In previous works [15,24], this functional derivative was replaced by an operator ansatz
acting in the system’s Hilbert space δψt (Z∗)/δZ∗

j (s) = Q(t, s, Z∗)ψt (Z∗). For certain
simple models, this ansatz is exact and the Q-operator Q(t, s, Z∗) is independent of the
noise [15]. The latter property can be used to derive a master equation for the reduced
density operator (6). However, no feasible scheme for calculating the Q-operator and, hence,
solving the fermionic NMQSD equation (9) has been found so far. Therefore, we will present
a different approach in the next section that does not rely on the Q-operator ansatz.

2.2 Fermionic Hierarchy of Pure States

In analogy to the bosonic case of Ref. [17] we define auxiliary states2 using the derivation
operators (12)

ψ
(k)
t := Dk1

1,t Dk2
2,t . . . ψt = Dk

t ψt . (13)

In contrast to HOPS for a harmonic oscillator environment, the order of functional derivative
operators is relevant here, since they anti-commute. For the same reason, all auxiliary states
with some k j > 1 vanish as expected from the fact that the Di,t are linear combinations of
fermionic annihilation operators from the microscopic point of view (8). With this notation
the memory integrals in (9) can be written as

ψ
(1,0,...)
t := D1,tψt , ψ

(0,1,...)
t := D2,tψt , . . . (14)

Identifying ψt with ψ
(0)
t allows us to rewrite (9) as

∂tψ
(0)
t = −iHψ

(0)
t +

∑

j

L j Z∗
j (t)ψ

(0)
t −

∑

j

L†
jψ

(e j )

t . (15)

Here, we introduce a more compact notation of (14) using the j th unit vector in R
N e j with

N being the number of processes in (9).
In order to obtain the equations of motion for the auxiliary states (13) we assume that the

BCFs have an exponential form

α j (t) = p je
−γ j |t |−i� j t . (16)

In the following we use the short hand w j = γ j + i� j for the exponent and refer to the tuple
(p j , w j ) as a “mode”. It is easy to generalize to a sum of exponentials similar to the bosonic

1 The integral boundaries in (9) arise from the specific vacuum initial conditions (5); see [17, Footnote 42]
for details.
2 To obtain dimensionless auxiliary states, one can absorb the dimension of the derivative operators D

k j
j,t into

the system’s coupling operators L , which then has the dimension of energy. To be consistent, one also has to
rescale Z∗

t accordingly.
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Hierarchical Equations for Open System Dynamics 1413

case [17]. Such BCFs arise naturally for many models in the finite-temperature case T > 0
as discussed in Sect. 2.4.

For such exponential BCFs we obtain (see Appendix 1 for the details) the hierarchy

∂tψ
(k)
t =

⎛

⎝−iH − k · w + (−1)|k| ∑

j

Z∗
j (t)L j

⎞

⎠ψ
(k)
t

+
∑

j

(−1)|k| j p j L jψ
(k−e j )

t −
∑

j

(−1)|k| j L†
jψ

(k+e j )

t (17)

Here, we have introduced k = (k1, . . . , kN ), w = (w1, . . . , wN ), and k ·w = k1w1 + · · · +
kN wN . Furthermore, we use the notation |k| = k1 + · · · + kJ for the sum over all k j and
|k| j = k j+1 + · · · + kN denotes the sum omitting the first j components. In (17) all states
with some k j /∈ {0, 1} vanish as mentioned below Eq. (13). The initial conditions (5) translate
to

ψ
(0)
0 = ψ0 and ψ

(k)
0 = 0 for k 	= 0. (18)

Equation (17) is our first important result of this paper. It will serve as a starting point for the
derivation of a density matrix hierarchy. Although, an exponential BCF (16) corresponds to
an environment of infinitely many fermions, the hierarchy (17) is completely equivalent to
the unitary time evolution of the system and its environment.

Note that (17) is a finite system of 2N coupled equations (as before, N denotes the number
of modes). This is in marked contrast to the bosonic case of Ref. [17], where one has an
infinite system of equations, which has to be truncated for all practical purposes. Although
now the system (17) is finite, for a large number of modes N it becomes intractable large for
numerical simulations quickly. Therefore, as in the bosonic case, it is useful to truncate the
system in an appropriate way. One possibility would be to exclude all states with |k| > K,
where K is called the truncating order. Comparing calculations with increasing order allows
for a systematic check of convergence. Another possible truncation criterion is |w · k| > W ,
whereW is a “maximal energy”. However, even with a suitable truncation, direct simulation
as for the bosonic HOPS is problematic since Grassmannian stochastic processes are hard to
simulate.

2.3 Fermionic Master Equation Hierarchy

From the stochastic trajectories we obtain the reduced density operator by (see Ref. [15],
Eq. (17))

ρt = E
(|ψt (Z∗)〉〈ψt (−Z∗)|) = E

(|ψt (Z∗)〉〈ψ̃t (Z∗)|), (19)

wherewehave defined ψ̃t (Z∗) = ψt (−Z∗).Put intowords: ψ̃t (Z∗) is the solution of (9) eval-
uated at −Z∗. Therefore, for each realization ψt (Z∗) one would have to compute ψt (−Z∗)
as well by propagating (17) with Z∗ replaced by −Z∗.

Our aim is to get rid of the problematic noise processes in (17) by constructing a hierarchy
of density operators similar to that for the pure states (13). To this end, we introduce auxiliary
density operators by
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1414 D. Suess et al.

ρ
(m,n)
t = E

(
|ψ(m)

t 〉〈ψ̃(n)
t |

)
(20)

with ψ̃
(n)
t (Z∗) = ψ

(n)
t (−Z∗). Using the equations of motion (17) we find

∂tρ
(m,n)
t = −i

[
H, ρ

(m,n)
t

]
− (m · w + n · w∗)ρ(m,n)

t

+ (−1)|m| ∑

j

L jE

(
Z∗

j (t)|ψ(m)
t 〉〈ψ̃(n)

t |
)

+ (−1)|n| ∑

j

E

(
|ψ(m)

t 〉〈ψ̃(n)
t |(−Z j (t))

)
L†

j

+
∑

j

(
(−1)|m| j p j L jρ

(m−e j ,n)

t + (−1)|n| j p∗
j ρ

(m,n−e j )

t L†
j

)

−
∑

j

(
(−1)|m| j L†

jρ
(m+e j ,n)

t + (−1)|n| j ρ
(m,n+e j )

t L j

)
(21)

This equation still contains the Grassmann processes in the averages. However, these can
be eliminated using the Grassmannian Novikov theorem (see Ref. [15] and Appendix 2).
Finally, we obtain the following hierarchy of density operators

∂tρ
(m,n)
t = −i

[
H, ρ

(m,n)
t

]
− (

m · w + n · w∗) ρ
(m,n)
t

+
∑

j

(−1)|m| j p j L jρ
(m−e j ,n)

t +
∑

j

(−1)|n| j p∗
j ρ

(m,n−e j )

t L†
j

−
∑

j

(
(−1)|m| j L†

jρ
(m+e j ,n)

t − (−1)|n|ρ(m+e j ,n)

t L†
j

)

+
∑

j

(
(−1)|m|L jρ

(m,n+e j )

t − (−1)|n| j ρ
(m,n+e j )

t L j

)
(22)

This constitutes the second main result of the present work. As for the stochastic fermionic
hierarchy (17), this is a finite set of 22N equations. The initial conditions follow trivially
from the initial conditions for the pure states hierarchy (18) and the definition of the auxiliary
density operators (20):

ρ
(0,0)
0 = |ψ0〉〈ψ0| and ρ

(m,n)
0 = 0 for m,n 	= 0. (23)

For numerical purposes it might again be advantageous to use a suitable truncation. Also,
the accuracy of a truncated hierarchy can be increased by approximating truncated auxiliary
operators using a so called terminator [17].

2.4 Thermal Initial State of the Bath

Clearly, the pure state hierarchy (17)—and therefore also the density operator hierar-
chy (22)—depends crucially on the bounded domains of the memory integrals. These only
arise for an initial vacuum state of the bath (5) as indicated in the footnote on page 6. Remark-
ably, it is possible to map the equations of motion corresponding to an initial thermal state
of the bath

ρtot(t = 0) = |ψ0〉〈ψ0| ⊗ ρth (24)
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to the established zero-temperature NMQSD equation (9). Here, the thermal bath state for

temperature T is given by ρth = e− Henv−μNenv
T /Z, with the chemical potential μ and the

partition function Z = Trenv e− Henv−μNenv
T . Note that ρtot in (24) describes an uncorrelated

state of the system and the bath and, therefore, is not the genuine thermal equilibrium state
of the total system, i.e. with respect to Htot in Eq. (1). By doubling the degrees of freedom
using the well-known Bogoliubov transformation [14,24,25] the resulting NMQSD equation
reads [16]

∂tψt = −iHψt +
∑

j

L j Z∗
j (t)ψt +

∑

j

L†
j W ∗

j (t)ψt

−
∑

j

L†
j

∫ t

0
α j (t − s)

δψt

δZ∗
j (s)

ds (25)

−
∑

j

L j

∫ t

0
β j (t − s)

δψt

δW ∗
j (s)

ds,

where we now have another auxiliary process W ∗
j (t) for each original process Z∗

j (t). The
correlation functions α j (t) and β j (t) in (25) also characterize these noise processes:

E

(
Z j (t)Z∗

j (s)
)

= α j (t − s) =
∫ ∞

0
J j (ω)(1 − n̄ j (ω))e−iω(t−s) dω (26)

E

(
W j (t)W ∗

j (s)
)

= β j (t − s) =
∫ ∞

0
J j (ω)n̄ j (ω)eiω(t−s) dω, (27)

with all other relations being zero similar to (11). Here, n̄ j (ω) denotes the Fermi-Dirac
distribution function (now with a possibly different chemical potential for each independent
bath) n̄ j (ω) = (e(ω−μ j )/T + 1)−1.

In the case of self-adjoint coupling operators L j = L†
j one can go on step further and

combine each Z∗
j (t) and W ∗

j (t) into the sum processes Z̃∗
j (t) = Z∗

j (t)+W ∗
j (t).Remarkably,

the corresponding correlation function

α̃ j (t) = α j (t) + β j (t) =
∫ ∞

0
J j (ω)

{
cos(ωt) − i tanh

( ω

2T

)
sin(ωt)

}
dω (28)

is also the well known thermal correlation function for a spin bath [1]. In conclusion, the
resulting finite temperature NMQSD equation in this case is identical to the zero-temperature
version (9) except for the thermal BCF.

Besides incorporating the effects of finite temperature on the system’s dynamics, the
thermal BCF (28) also provides a natural way to obtain the crucial decomposition of the BCF
as a sum of exponentials. Here, we will only sketch the idea following the detailed exposition
for a bosonic environment in Ref. [26]: Due to the symmetric behavior under reflection at
the origin of the term in braces in (28), a symmetric continuation

J̃ (ω) =
{

J (ω) : ω ≥ 0
J (−ω) : ω < 0

(29)

lets us expand the integral boundaries in (28) to the whole real axis

α(t) = 1

2

∫ ∞

−∞
J̃ (ω)

{
cos(ωt) − i tanh

( ω

2T

)
sin(ωt)

}
dω. (30)
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1416 D. Suess et al.

Closing the integral contour in the upper/lower complex half plane and employing the residual
theorem yields exactly the sought after sum of exponentials provided we can express the
integrand as a sum of poles. A BCF given as a sum of exponentials like (16) can then be
treated completely analogous to the zero-temperature case. Many realistic spectral densities
can be well approximated as a finite sum of poles [25,27–29]. Combined with a suitable
sum-over-poles scheme for the hyperbolic tangent, i.e. the Matsubara decomposition [30],
continued fraction expansion [31], or the Padé decomposition [32], one obtains the BCF as
a sum of exponentials.3 We also note that systems coupled to non-Markovian environments
with exponential BCFs are sometimes treated within the framework of “pseudo modes”
[5,33–35], where the system is amended by suitably chosen oscillators, that are coupled to
Markovian environments.

3 Bosonic Environments

The bosonic microscopical Hamiltonian is identical to (1)—the Hamiltonian used in the
previous section—except that the environment’s creation and annihilation operators b†j,λ and
b j,λ are replaced by their bosonic counterparts. In other words, the anti-commutators in
Eq. (2) are replaced by commutators

[
b j,λ, b j ′,λ′

] = 0 and
[
b j,λ, b†j ′,λ′

] = δ j j ′δλλ′ . (31)

Without any approximation, such amodel leads to thewell-knownNMQSDequation [11–14],
which agrees with Eq. (9) except for the noise Z∗: In contrast to the fermionic case, the noise
process in the bosonic equation is complex valued and, therefore, efficiently implementable
for large classes of BCFs [36].

3.1 Bosonic Hierarchy of Pure States

Due to the similarities of the underlying NMQSD equations, the fermionic (Eq. (17)) and
bosonic hierarchy of pure states [17, Eq. (13)]

∂tψ
(k)
t =

⎛

⎝−iH − k · w +
∑

j

Z∗
j (t)L j

⎞

⎠ ψ
(k)
t

+
∑

j

k j p j L jψ
(k−e j )

t −
∑

j

L†
jψ

(k+e j )

t (32)

are remarkably similar. Besides the obvious sign prefactors in (17) and the different noise
processes, the crucial difference is number of auxiliary states: Whereas the fermionic hier-
archy is always finite due to the condition k j ∈ {0, 1}, its bosonic counterpart is originally
infinite with k j ∈ N0. Only a suitable truncation turns the latter into a practical scheme [17].

3.2 Bosonic Master Equation Hierarchy

Clearly, the similarities of the two pure state hierarchies carries over to the hierarchy of
density matrices: The construction of the bosonic master equation hierarchy

3 Of course, one can also try to approximate the BCF directly by a sum of exponentials.
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∂tρ
(m,n)
t = −i

[
H, ρ

(m,n)
t

]
− (

m · w + n · w∗) ρ
(m,n)
t

+
∑

j

m j p j L jρ
(m−e j ,n)

t +
∑

j

n j p∗
j ρ

(m,n−e j )

t L†
j (33)

−
∑

j

[
L†

j , ρ
(m+e j ,n)

t

]
+

∑

j

[
L j , ρ

(m,n+e j )

t

]

runs along the same lines as the derivation in Sect. 2.2. In contrast to Eq. (20), the density
operators arise without a reflection of the noise for the 〈ψ(n)

t (Z∗)|, i.e.
ρ

(m,n)
t = E

(
|ψ(m)

t 〉〈ψ(n)
t |

)
. (34)

Here, the indices m j , n j ∈ N0 are not bounded from above and, therefore, the hierarchy is
infinite in principle and has to be truncated for numerical simulations. Note the close relation
between the fermionic and bosonic equations: besides the prefactors m j and n j in (33),
which are irrelevant for m j , n j ∈ {0, 1}, the two hierarchies only differ in the additional sign
factors (−1)|m| and (−1)|n| in (22). Furthermore, Eq. (33) is solved with the same initial
conditions (23) as the fermionic hierarchy. For particular systems, our hierarchy Eq. (33) is
similar to the ones derived in [37,38].

3.3 Relation to the Hierarchical Equation of Motion (HEOM)

ForHermitian system coupling operators and real ω j , one can simplify Eq. (33) considerably

by introducing new auxiliary operators that combine operators ρ
(m,n)
t with the same order

|m| + |n|:

ρ
(n)
t = (−i)|n|

n1∑

l1=0

. . .

nN∑

lN =0

(−1)|l|
(

n1

l1

)

. . .

(
nN

lN

)

ρ
(n−l,l)
t (35)

Under the stated assumptions, these distinct combinations of auxiliary operators satisfy closed
equations of motion obtained from (33), namely

ρ̇
(n)
t = −i[H, ρ

(n)
t ] − n · wρ

(n)
t − i

∑

j

n j

(
p j L jρ

(n−e j )

t − ρ
(n−e j )

t L j p∗
j

)

−i
∑

j

[
L j , ρ

(n+e j )

t

]
(36)

This already resembles the hierarchical equations of motion [19, Eq. (4.4)] very closely. The
two equations agree completely if we employ the exponential decomposition of the BCF
used in the derivation of HEOM, namely a Matsubara expansion for the coth and a Drude-
Lorentz spectral density. However, we typically prefer to use a Padé expansion of the coth
as described in e.g. Refs. [25,26].

4 Numerical Examples

In order to demonstrate the feasibility and strengths of the master equation hierarchy and also
highlight some of its shortcomings compared to the HOPS, we will provide some numer-
ical examples in this section. For that matter, we choose the relatively simple spin-boson
model [39], which nevertheless can displays highly non-Markovian behavior and is therefore
well suited for benchmarking. This model consists of a two-level system with a free time
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Fig. 1 Time evolution of the spin-boson model in the non-Markovian regime with ε =0, p =2�, γ =�/2,
and � = 2� calculated using the master equation hierarchy (33) for different orders of the truncation order
K. We show the expectation value of the system’s σz (left) and the smaller eigenvalue of the reduced density
operator (right). Going to orders larger thanK = 10 (black dashed line) did not lead to an appreciable change
in the results
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Fig. 2 Comparison of the master equation hierarchy (left) and the HOPS (right). The same parameters as in
Fig. 1 are chosen. The HOPS results is averaged over 10,000 realizations. As a reference, the master equation
hierarchy result of Fig. 1 with K = 10 is shown

evolution governed by H = −�
2 σx + ε

2σz coupled to an environment of harmonic oscilla-
tors. We employ a single-mode bath correlation function α(t) = p exp(−γ |t | − i�t) and a
coupling operator L = σz . In order to truncate the (generally infinite) hierarchy (33), we set
all auxiliary states ρ

(m,n)
t with |m| + |n| > K to zero.

In Fig. 1 we show the results of the master equation hierarchy for different values of
the truncation order K. Clearly, the lowest order calculations give unphysical results: The
expectation value of σz for K = 2 even converges to a limit greater than one. This is due to
the reduced density operator ρt not being positive semidefinite, as one can see on the right
hand side. ForK = 1, 2 the smallest eigenvalue of ρt becomes negative for some times. Only
for higher orders does the reduced density operator become admissible, and the result for
truncation order 6 is a good approximation to the exact result.

In contrast, the HOPS converges fast with respect to the truncation order as can be seen in
Fig. 2. The results obtained from HOPS can be considered converged already at truncation
orderK = 2. From the construction of the auxiliary density matrices in Eq. (34) it is clear that
the pure state hierarchy contains higher order effects compared to the master equation hierar-
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Fig. 3 Same as Fig. 1, but for a fermionic environment using the master equation hierarchy (22). Note that
K = 2 is exact up to numerical errors

chy at same truncation order. Finally, the reduced density operator obtained as an ensemble
average over quantum trajectories E|ψt (Z∗)〉〈ψt (Z∗)| will always be positive semidefinite.

The fermionic case, where the stochastic pure state formulation is not feasible for numeric
implementation, is shown in Fig. 3. Since we only treat the case of a single exponential mode,
there are only two nontrivial values for the truncation order, namely K = 1, 2. Although the
smallest eigenvalue in the truncated first-order case also becomes negative and deviates from
the exact case (K = 2), the expectation values of σz agree for both.

5 Conclusions

In the present work we have considered an open system model with a fermionic environment
which is coupled linearly to the system. The twomain results are the derivation of a hierarchy
of pure states (17) and the corresponding hierarchy for density matrices (22). The starting
point was the general stochastic NMQSD equation that contains Grassmannian noise as well
as a functional derivative with respect to this noise under a memory integral. The hierarchy
of pure states (17) no longer contains this functional derivative, however, it still contains the
Grassmann noise, which hinders efficient numerical simulations. In contrast, the hierarchy for
density matrices (22) also gets rid of the noise making it suitable for numerical simulations.

Both, the hierarchy of pure states (17) and the hierarchy for density matrices (22), are
actually finite and allow to compute the reduced density operator of the system exactly.
However, the number of coupled differential equations scales as 2N for the pure state hierarchy
and as 22N for the hierarchy for densitymatrices.Note that the objects entering these equations
have the dimension D of the system Hilbert space in the case of the pure state hierarchy and
D2 for the matrix hierarchy. Since for a large number of modes N the size of the problem
becomes numerically intractable, it is necessary to truncate the hierarchy in a suitable way.
This can be done along the lines discussed at the end of Sect. 2.2.

In the second part of the paper we showed that the construction of a density operator
hierarchy from a hierarchy of pure states is also feasible for bosonic environments. Since in
this bosonic case, both, Eq. (32) and (33) are suitable for numerical simulations, a detailed
comparison of their performance is needed to asses their respective strengths andweaknesses.
However, the brief comparison in Sect. 4 indicates that HOPS converges faster with respect
to the truncation order. Furthermore, it always yields physical (i.e., positive semidefinite)
reduced density operators. Themain disadvantage ofHOPS, namely the necessity to calculate
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many realizations, is easily coped with in practice since the computation of independent
realizations is embarrassingly parallel.

Within the approaches presented in this work it is also possible to treat systems coupled
to both types of environments. Generalizations to multiple distinguishable kinds of fermions
or to a spin bath (e.g. arising as low-temperature limit of localized modes [40]) are possible
as well. This makes the hierarchical approach presented in this a paper a highly flexible tool
in the field of open quantum system dynamics.

Acknowledgments DS acknowledges support by the Excellence Initiative of the German Federal and State
Governments (Grant ZUK43), theAROunder contractsW911NF-14- 1-0098 andW911NF-14-1-0133 (Quan-
tum Characterization, Verification, and Validation), and the DFG.

Appendix 1: Derivation of the Fermionic Hierarchy of Pure States

The derivation for the fermionic hierarchy of pure states is very similar to that of the bosonic
one discussed in [17]. To have a compact notation, we ignore the condition k j ∈ {0, 1} for
our derivation. In the end, it will turn out that these conditions are trivially incorporated due
to the structure of the hierarchy.

We start by taking the time derivative of ψ
(k)
t . Using its definition (13) we find

∂tψ
(k)
t = (∂tDk

t )ψt + Dk
t (∂tψt ) (37)

For the first term on the right hand side we use4 (∂t D j,t )ψt = −w j D j,tψt due to the
exponential BCF (16). For the second term on the right hand side we use that all system
operators commute with all D j,t and obtain

∂tψ
(k)
t = −k · wψ

(k)
t

−iHψ
(k)
t +

∑

j

L jDk
t Z∗

j (t)ψt

︸ ︷︷ ︸
(∗)

−
∑

j

L†
jD

k
t D j,tψt

︸ ︷︷ ︸
(∗∗)

(38)

To obtain a closed equation for the auxiliary states, we want the D j,t ordered as in the
definition (13). In (∗∗) we have to move D j,t to the correct position (note the ordering
in (13)):

Dk
t D j,t = (−1)kN Dk1

1,t . . . D j,t DkN
N ,t

= (−1)k j+1+···+kN Dk1
1,t . . . D

k j +1
j,t · · · DkN

N ,t . (39)

In (∗) we have to bring Z∗
j (t) in front of Dk

t . This can be achieved by noting that
{D j,t , Z∗

j ′(s)} = δ j j ′ α j (t j − s). We then find

4 The bounded integral domain in the memory integral that appears in the final equation is due to vacuum
initial conditions (5).
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Dk
t Z∗

j (t) = (−1)kN Dk1
1,t . . . Z∗

j (t)DkN
N ,t

= (−1)k j+1+···+kN D1,t . . . D
k j
j,t Z∗

j (t) . . .

= (−1)|k| j D1,t . . .
(
−D

k j −1
j,t Z∗

j (t)D j,t + D
k j −1
j,t p j

)
. . .

= . . .
(

D
k j −2
j,t Z∗

j (t)D2
j,t − D

k j −1
j,t p j + D

k j −1
j,t p j

)
. . .

= . . .
(
(−1)k j Z∗

j (t)D
k j
j,t + (k j mod 2)p j D

k j −1
j,t

)
. . .

= (−1)|k| Z∗
j (t)D

k
t + (−1)|k| j (k j mod 2)p jD

k−e j
t , (40)

where |k| and |k| j have been defined below Eq. (17).
Combining (39) and (40) leads to the (apparently) infinite hierarchy of pure states for

fermionic environment

∂tψ
(k)
t =

⎛

⎝−iH − k · w + (−1)|k| ∑

j

Z∗
j (t)L j

⎞

⎠ψ
(k)
t

+
∑

j

(−1)|k| j (k j mod 2)p j L jψ
(k−e j )

t

−
∑

j

(−1)|k| j (−1)|k| j L†
jψ

(k+e j )

t . (41)

Note that all states with some k j /∈ {0, 1}—which should be zero actually—only couple to
other states also satisfying this condition: Due to the modulo function in the term coupling
to states “below” in the hierarchy, states with some k j /∈ {0, 1} that are initially zero always
remain zero. Therefore, the closed and finite hierarchy with all k j ∈ {0, 1} and equation (41)
can be written as (17).

Appendix 2: Derivation of Master Equation Hierarchy

In this appendix we provide the Novikov theorem, which is essential to get from Eqs. (21) to
(22). The Novikov theorem allows us to get rid of the explicit dependence of the Grassmann
processes in the second and third line of (21) by a “partial integration”. For the fermionic
case the Novikov theorem has been discussed in [15] (see Eqs. (22) and (23) therein). We
need two variants of the Novikov theorem:

E

(
|ψ(m)

t 〉〈ψ̃(n)
t |Z j (t)

)
= −E

( ∫

ds α j (t − s)
−→
δ

δZ∗
j (s)

|ψ(m)
t 〉〈ψ̃(n)

t |
)

= −ρ
(m+e j ,n)

t (42)

and

E

(
Z∗

j (t)|ψ(m)
t 〉〈ψ̃(n)

t |
)

= −E

( ∫

ds α j (t − s)∗
∣
∣
∣ψ

(m)
t 〉〈ψ̃(n)

t

∣
∣
∣

←−
δ

δZ j (s)

)

= ρ
(m,n+e j )

t , (43)

where in the second line of each equationwe have used the definition of the auxiliarymatrices
(20) and the definitions (12) and (13). In the second equation the right-functional derivative
appears and we have used
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−→
δ ψ̃t (Z∗)
δZ∗

j (s)
=

−→
δ ψt (−Z∗)

δZ∗
j (s)

= −
−→
δ ψt (Z ′∗)
δZ ′

j
∗
(s)

∣
∣
∣
∣
∣

Z ′∗=−Z∗
. (44)

These two equations (42) and (43) show that it is possible to express the averages in the
second and third line of (21) containing the noise process explicitly by the auxiliary density
operators.
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