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We derive a hierarchy of stochastic evolution equations for pure states (quantum trajectories) for open
quantum system dynamics with non-Markovian structured environments. This hierarchy of pure states
(HOPS) is generally applicable and provides the exact reduced density operator as an ensemble average
over normalized states. The corresponding nonlinear equations are presented. We demonstrate that HOPS
provides an efficient theoretical tool and apply it to the spin-boson model, the calculation of absorption
spectra of molecular aggregates, and energy transfer in a photosynthetic pigment-protein complex.
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The treatment of the dynamics of realistic open quantum
systems still poses both conceptual and computational
challenges. These arise from non-Markovian behavior due
to a structured environment or strong system-environment
interaction [1,2]. Severe assumptions, like theweak-coupling
or Markov approximation, are often made for practical
reasons. However, they fail for many systems of interest.
Non-Markovian systems are far more challenging and, for
example, may be treated with path integral approaches [3,4]
or hierarchical equations of motion [5,6] for the system’s
reduced density matrix.
In this Letter, we follow a different strategy and derive a

hierarchy of stochastic differential equations for pure states
in the systemHilbert space (quantum trajectories). From this
hierarchy of pure states (HOPS), the exact reduced density
operator is obtained as an ensemble average. Quantum
trajectories are well established in the Markov case, where
single realizations describe continuously measured open
quantum systems or serve as models for spontaneous wave
function collapse. The generalization to the non-Markovian
regime proves challenging and is an active field of research.
Non-Markovian quantum state diffusion (NMQSD) derived
in its general form in Refs. [7–10] constitutes a theory for
non-Markovian quantum trajectories. Other stochastic
approaches with various levels of applicability have been
suggested [11–13]. NMQSD provides a framework for the
still-debated problem of non-Markovian continuous meas-
urement theory [14,15], non-Markovian spontaneous wave
function collapse [16], and complex open quantum dynam-
ics. Examples for the latter are energy transfer in photo-
synthesis [17,18] and absorption of self-assembled dye
aggregates [19].
Although the NMQSD approach is formally exact, it is

difficult to handle because of the appearance of a functional
derivative with respect to a stochastic process. In previous
works, we have replaced that functional derivative by an
operator ansatz. For a few cases, an exact explicit expres-
sion for that operator ansatz is known (see, e.g., [20–23]).

In general, however, to determine the assumed operator
(approximately), we dealt with it in the so-called zeroth
order functional expansion approximation [17,24–26] that
agrees remarkably well with established results for a large
number of problems. However, in certain cases this method
is known to fail (see, e.g., [17,26]). In Ref. [27], a
hierarchical approach is applied to the operator ansatz of
the functional derivative.
It is important to realize that, prior to the present work, we

were able to obtain a nonlinear NMQSD equation for
normalized states only by assuming the replacement ansatz
for the functional derivative [10]. The existence of such a
nonlinear evolution equation is fundamental for an interpre-
tation in terms of wave function collapse or measurement-
conditioned dynamics as well as necessary for an efficient
sampling in trajectory-based open system dynamics. The
HOPS approach to NMQSD presented in this Letter does not
rely on the ansatz and, thus, without further ado provides
the nonlinear equations for normalized quantum trajec-
tories. Therefore, fundamental questions concerning non-
Markovian quantum trajectories can be addressed from a new
angle. Furthermore, HOPS is numerically exact, converges
rapidly, and offers a systematic way to check for convergence
by increasing the number of equations taken into account. In
addition, it offers the advantages of stochastic Schrödinger
equations; e.g., one deals with pure states (and not large
density matrices) and the calculation of independent realiza-
tions can be parallelized trivially.
In the following, we first state the form of the open

system problem we are interested in. After a brief review of
the general NMQSD approach, we present our new theory
for the case of zero temperature and an exponential bath-
correlation function. We derive a linear as well as the
corresponding nonlinear set of equations. An extension to
finite temperature and a more general bath-correlation
function is presented afterwards. We demonstrate the power
of HOPS by applying it to the spin-boson model, the
calculation of absorption spectra of molecular aggregates,
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and energy transfer in a photosynthetic pigment-protein
complex. We use units where kB ¼ ℏ ¼ 1.
The open quantum system.—Let us consider a system

linearly coupled to a bath of harmonic oscillators. The
Hamiltonian is a sum

Htot ¼ H ⊗ 1þ 1 ⊗ HB þHint ð1Þ

of the system Hamiltonian H, the bath Hamiltonian
HB ¼ P

λωλa
†
λaλ, and the interaction Hamiltonian

Hint ¼
X

λ

ðg�λL ⊗ a†λ þ gλL† ⊗ aλÞ: ð2Þ

Here, L is an operator in the system’s Hilbert space and a†λ
the creation operator of bath mode λ. The interaction
strength between the system and that mode is quantified
by the complex number gλ. Let us emphasize that the form
of Eq. (2) does not imply a rotating wave approximation.
In many important cases, one has in fact L ¼ L†. It is
convenient to encode the frequency dependence of the
interaction strength by the so-called spectral density
JðωÞ ¼ P

jjgjj2δðω − ωjÞ. The latter is related to the
bath-correlation function αðτÞ by [2]

αðτÞ ¼
Z

∞

0

dω JðωÞ
�

coth

�
ω

2T

�

cosðωτÞ − i sinðωτÞ
�

;

ð3Þ

where T is the temperature. Note that αð−τÞ ¼ α�ðτÞ.
In the following, we are interested only in the dynamics

in the system Hilbert space and, in particular, the reduced
density matrix obtained by tracing over the bath degrees of
freedom.
Non-Markovian quantum state diffusion.—For now, let

us consider initial conditions jΨ0i ¼ jψ0i ⊗ j0i, where j0i
is the vacuum state for all aλ in the bath Hilbert space (zero
temperature). The reduced density matrix is

ρt ¼ TrBfjΨtihΨtjg; ð4Þ
where TrB denotes the partial trace over the bath degrees of
freedom and jΨti is the solution of the Schrödinger
equation i∂tjΨti ¼ HtotjΨti.
By using a coherent state representation of the bath

degrees of freedom, the reduced density matrix can be
obtained from an ensemble average over trajectories of
(non-normalized) pure states jψ tðz�Þi in the system Hilbert
space via

ρt ¼ Efjψ tðz�Þihψ tðz�Þjg; ð5Þ
where z ¼ zt is a complex Gaussian stochastic process
with mean E½zt� ¼ 0 and correlations E½ztzs� ¼ 0 and
E½zðtÞz�ðsÞ� ¼ αðt − sÞ. The time evolution of the states
jψ tðz�Þi is determined [9,10] by

∂tψ t ¼ −iHψ t þ Lz�tψ t − L†
Z

t

0

ds αðt − sÞ δψ t

δz�s
ð6Þ

with initial conditions ψ t¼0 ¼ ψ0.
While Eq. (5) with (6) determines the reduced density

operator exactly, in general, it is unclear how to solve
Eq. (6) due to the functional derivative ðδψ tÞ=ðδz�sÞ.
In previous works, we replaced this expression by

an operator acting in the system Hilbert space:
ðδψ tÞ=ðδz�sÞ ¼ Oðt; s; z�Þψ t. For some special cases, this
operator can be determined exactly [10,28]. However, in
general, approximation schemes are necessary (e.g.,
the zeroth order functional expansion approximation
[17,25]). Here, we will proceed differently without any
approximation.
HOPS.—First, Eq. (6) is written as

∂tψ t ¼ −iHψ t þ Lz�tψ t − L†ψ ð1Þ
t ; ð7Þ

with the auxiliary pure state

ψ ð1Þ
t ≔

Z
t

0

dsαðt − sÞ δψ t

δz�s
: ð8Þ

We now construct a hierarchy of equations by first con-

sidering the time derivative of ψ ð1Þ
t . Note that one can write

ψ ð1Þ
t ¼ Dtψ t, where [29]

Dt ¼
Z

∞

−∞
dsαðt − sÞ δ

δz�s
: ð9Þ

Then _ψ ð1Þ
t ¼ ∂tðDtψ tÞ ¼ _Dtψ t þDt _ψ t. Reversing the

argument that led to Eq. (9) allows us to write
_Dtψ t ¼

R
t
0 ds _αðt − sÞðδψ tÞ=ðδz�sÞ.

In order to illustrate the derivation of the hierarchy of
equations most clearly, we first consider a bath-correlation
function of the form

αðτÞ ¼ ge−wτ ðτ ≥ 0Þ and αðτÞ ¼ α�ð−τÞ ðτ < 0Þ
ð10Þ

with w ¼ γ þ iΩ. As shown, for example, in Refs. [30,31],
sums of such exponentials are well suited to approximately
describe a large class of spectral densities and also finite
temperature. For such an exponential correlation function,
one has _Dtψ t ¼ −wDtψ t and thus obtains

∂tψ
ð1Þ
t ¼ −wDtψ t − iHDtψ t þLDtz�tψ t −L†D2

tψ t ð11Þ

¼ ð−iH − wþ Lz�t Þψ ð1Þ
t þ αð0ÞLψ ð0Þ

t − L†ψ ð2Þ
t ;

ð12Þ

with ψ ðkÞ
t ≔ Dk

tψ t. In the first equality, we used (6) as well
as the fact thatDt commutes with all system operators. The
second equality follows from the commutator relation

PRL 113, 150403 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

10 OCTOBER 2014

150403-2



½Dt; z�s � ¼ αðt − sÞ. By considering the time derivatives of

ψ ðkÞ
t , one gets coupled stochastic equations for an infinite

hierarchy of pure states (HOPS):

∂tψ
ðkÞ
t ¼ ð−iH − kwþ Lz�t Þψ ðkÞ

t

þ kαð0ÞLψ ðk−1Þ
t − L†ψ ðkþ1Þ

t ; ð13Þ

with ψ ð0Þ
t¼0 ¼ ψ0 and ψ ðkÞ

t¼0 ¼ 0 for k > 0. Solving the
infinite system Eq. (13) is equivalent to solving Eq. (6),

with ψ t ¼ ψ ðk¼0Þ
t . This is our first important result.

Clearly, our HOPS approach Eq. (13) has a similar
structure as hierarchical equations of motions in the density
operator formalism [5].
Truncation.—In order to transform Eq. (13) into a

practical scheme, we truncate the hierarchy at finite order.
In the present work, we use the following “terminator”:

ψ ðkþ1Þ
t ≈

αð0Þ
w

Lψ ðkÞ
t ð14Þ

for some suitable k large enough (see Supplemental
Material [32]). Such a truncation is motivated by similar
considerations as in Ref. [5]. By inserting the terminator
into (13), we obtain a closed system of kþ 1 coupled
equations. We remark that the use of this particular
terminator is not essential. We have also found a good

performance by using ψ ðkþ1Þ
t ¼ 0 with an appropriate k.

Markov limit.—The terminator (14) ensures the usual
Markov limit in zeroth-order HOPS (see Supplemental
Material [32]).
Nonlinear evolution equation.—For fundamental issues

related to continuous measurement or spontaneous col-
lapse, a theory for normalized pure states is much preferred.
Moreover, the Monte Carlo determination of the density
operator according to Eq. (5) converges much faster if
the contributions of individual realizations ψ tðz�Þ are of
the same order of magnitude (importance sampling). We
therefore transform the linear equation (6) to a nonlinear
form with the help of a Girsanov transformation [10] to
ensure the correct statistics, and we find the following
nonlinear hierarchy [33]:

_~ψ ðkÞ
t ¼ ð−iH − kwþ ~ztLÞ ~ψ ðkÞ

t

þ kαð0ÞL ~ψ ðk−1Þ
t − ðL† − hL†itÞ ~ψ ðkþ1Þ

t : ð15Þ

Here, ~zt ¼ z�t þ
R
t
0 dsα

�ðt − sÞhL†is, and h·is denotes the

normalized average over ~ψ ð0Þ
s . The terminator is the same as

in the linear case, i.e., ~ψ ðkþ1Þ ¼ ½αð0Þ=w�L ~ψ ðkÞ. Finally, the
average in Eq. (5) can now be performed over the

normalized states ~ψ t ≡ ~ψ ðk¼0Þ
t =j ~ψ ðk¼0Þ

t j.
Generalizations.—We now generalize the results of the

previous section to bath-correlation functions of the form

αðτÞ ¼
XJ

j¼1

gje−wjτ for τ ≥ 0 ð16Þ

with wj ¼ γj þ iΩj. As shown, for instance, in Ref. [30],
such a representation can be achieved for realistic appli-

cations. We then define auxiliary states ψ ðkÞ
t ¼ ψ ðk1;…;kJÞ

t ,
where the index kj refers to the order with which the
corresponding mode wj appears in the hierarchy. One can
choose the truncation order independently for each
mode. In the examples shown below, we have used the
“triangular” condition jkj ≔ k1 þ � � � þ kJ ≤ K. Details
about the multimode HOPS equation and the terminator
can be found in Ref. [32].
Note that, depending on the situation, different trunca-

tion conditions might be more efficient. Furthermore, one
can also treat independent environments (n ¼ 1; 2;…) with
different coupling operators Ln along the same lines as
required for the quantum aggregates below.
Finite temperature.—The case T > 0 can be mapped to

the zero-temperature case by using the thermofield method
doubling the number of processes required [10,34,35].
Remarkably, a system with a self-adjoint coupling operator
(i.e., L ¼ L†) admits a description in terms of the zero-
temperature non-Markovian quantum state diffusion equa-
tion (6) by introducing a sum process with correlation (3) in
combination with a Padé decomposition of the hyperbolic
cotangent [35,36].
Spin-boson model.—As a first example, we consider the

spin-boson model [37], where the system Hamiltonian is
H ¼ − 1

2
Δσx þ 1

2
ϵσz and the coupling to the bath is

mediated by L ¼ σz. It is used to demonstrate the con-
vergence of the method with respect to the truncation order
of the hierarchy and with respect to the number of
realizations. In particular, we show the superior convergence
properties of the nonlinear equation. This can be clearly
seen in Fig. 1, where the dependence of the solution on the

FIG. 1 (color online). Dynamics of the spin-boson model.
(a) Nonlinear equation, (b) linear equation. In both cases,
Δ ¼ 1, ϵ ¼ 0, and the parameters of the spectral density are
given by g ¼ 2 and w ¼ 0.5þ 2i. The blue, green, and red lines
represent 100, 1000, and 10 000 realizations, respectively. The
order of the hierarchy is K ¼ 8. The inset in (a) shows the
convergence (for 10 000 realizations) with respect to the order of
the hierarchy. The dotted, dashed, and solid line are orders one,
two, and four, respectively.
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number of trajectories is shown for the nonlinear [Fig. 1(a)]
and the linear equation [Fig. 1(b)]. While the nonlinear
solution already converges for 1000 trajectories (and even
for 100 trajectories is close to the converged solution), the
linear equation shows large fluctuations even for 10 000
trajectories. Previous work [38] indicates that there is no
significant difference between the linear and nonlinear
variant in the weak coupling (Redfield) regime. However,
in the strong coupling regime considered here, the nonlinear
version shows far superior convergence properties. The
inset displays how the solution of the nonlinear equation
converges with respect to the order of the hierarchy:
We observe converged results already at K ¼ 4. The
convergence is discussed in more detail in Ref. [32].
The quantum aggregate.—As an example, for a more

challenging setting we consider a generic system described
by a Hamiltonian H ¼ P

nϵnjnihnj þ
P

nmVnmjnihmj,
where jni denotes a basis of the (small) Hilbert space
of the system. In application to molecular aggregates,
jni denotes a localized electronic excitation at “site” n
of the system. Each excitation couples to its own bath,
that is, Hint ¼

P
n

P
λðg�nλLn ⊗ a†nλ þ gnλL

†
n ⊗ anλÞ and

Ln ¼ jnihnj.
As an important application, we consider transfer of

electronic excitation within the photosynthetic Fenna-
Matthews-Olson (FMO) complex. To demonstrate the fast
convergence of HOPS, we compare with the numerical
hierarchical equation of motion calculations of Ref. [39].
As can be seen in Fig. 2, already the first order of HOPS
agrees almost perfectly with the result of Ref. [39] obtained
in the (density matrix) hierarchical equations of motion
(HEOM) approach. The HEOM computations have also
been confirmed by using numerical exact path integral
methods [41]. Details about the parameters used and the
convergence properties of HOPS can be found in Ref. [32].
Next, we consider absorption of a linear aggregate:

Linear absorption can be calculated from the linear non-
Markovian quantum state diffusion by using only the single
trajectory ψ tðz� ¼ 0Þ; i.e., no averaging over different
realizations of the stochastic processes is needed [26,35].
We will now show that within our pure state hierarchy fast

convergence of the optical spectra can be achieved. To this
end, we employ the same model system as in Ref. [26],
namely, parallel transition dipoles and identical monomers.
In that case, the absorption strength for light with frequency
ν can be calculated as [26]

AðνÞ ¼ Re
Z

∞

0

dt eiνtMðtÞ; ð17Þ

where M is the correlation function

MðtÞ ¼ μ2hψ0ðz�Þjψ tðz�Þijz�¼0: ð18Þ

Here, μ denotes the magnitude of the monomer’s transition
dipoles. We have compared our HOPS calculations with
numerically exact pseudomode calculations [26]. For all
cases considered, we found perfect agreement with the
results of Ref. [26] (not shown here). In Ref. [26], only very
short aggregates with N ¼ 2 and N ¼ 3 (ignoring temper-
ature) were considered due to the huge numerical effort of
the pseudomode approach. With HOPS, we are now able to
study longer chains at finite temperature numerically exact.
As an example, in Fig. 3, the absorption spectrum of a chain
of seven monomers is shown for the case of negative (left)
and positive (right) interaction V together with the case of
noninteracting monomers (middle). We have chosen a
spiky spectral density [shown in the inset in panel (a)]
and set the reorganization energy Er ¼

R
∞
0 dwJðwÞ=w as

the unit of energy. For the shown parameters jVj ¼ 0.5 and
T ¼ 0.2, we are in the complicated case where all quantities
are of the same order of magnitude and non-Markovian
effects become clearly visible. Note that the spectra
converge faster at lower energies, so that already for small
orders of the hierarchy one has a good description of the
important low energy part of the spectrum.
Conclusions and outlook.—The examples above dem-

onstrate that our HOPS is very suitable to treat the dynamics
of realistic open quantum systems covering strong coupling
as well as highly non-Markovian regimes. HOPS allows for
the determination of normalized quantum trajectories as
required for a continuous measurement or collapse inter-
pretation. Based on a pure state representation, HOPS is

FIG. 2 (color online). Transfer of electronic excitation energy
within the FMO complex. The parameters are taken from
Refs. [39,40] and can be found in Supplemental Material [32].
Solid line, result of Ref. [39]; dotted line, HOPS first order;
dashed line, HOPS second order.

FIG. 3 (color online). Absorption of a linear chain of N ¼ 7
monomers with parallel transition dipoles for different values of
the interaction V. The inset shows the spectral density used. The
reorganization energy Er ¼

R
∞
0 dwJðwÞ=w is chosen as the unit

of energy. The temperature is T ¼ 0.2. Colors indicate different
orders of the hierarchy (blue, K ¼ 5; green, K ¼ 6; red, K ¼ 7).
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numerically efficient and converges fast towards the exact
results. While previous applications of non-Markovian
quantum state diffusion rested on either analytically solv-
able models or approximation schemes, HOPS provides a
numerically exact solution with a systematic control over
potential errors. Note that our formalism is not based on the
unraveling of a given master equation such as, e.g., non-
Markovian quantum jumps [42,43]. We obtain the reduced
density operator directly from a closed system-environment
model. Since time-dependent Hamiltonians can be included
within the HOPS approach, one can treat, e.g., the inter-
action with an electromagnetic field as in femtosecond or
2D spectroscopy. Moreover, our quantum-trajectory-based
formulation might help to shed light on quantum variants
of fluctuation theorems [44,45]. We strongly believe that
HOPS represents a fruitful approach to the study of
dynamics of open quantum systems.
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