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In open-system approaches with non-Markovian environments, the process of inserting an individual mode
(denoted as “pseudomode”) into the bath or extracting it from the bath is widely employed. This procedure,
however, is typically performed on basis of the spectral density and does not incorporate temperature. Here, we
show how the (temperature-dependent) bath correlation function (BCF) transforms in such a process. We present
analytic formulas for the transformed BCF and numerically study the differences between factorizing initial state
and global thermal (correlated) initial state of mode and bath, respectively. We find that in the regime of strong
coupling of the mode to both system and bath, the differences in the BCFs give rise to pronounced differences in
the dynamics of the system.
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I. INTRODUCTION

In many open-quantum-system approaches, the micro-
scopic model underlying the environment consists of an
infinite number of harmonic oscillators linearly coupled to
system degrees of freedom [1–3]. The flexibility of this
particular model is owed to the fact that both spectrum and
frequency-dependent coupling of the environmental modes
can be adjusted to reproduce features observed in experiments,
e.g., to describe the effect of polar solvents on dyes [2–4] or
to treat vibrational modes of molecules [2,5]. The spectrum
and the frequency-dependent coupling can be encoded in a
quantity called spectral density (SD), which is a real function
of frequency.

The influence of the environment on the system is eventu-
ally determined by the bath correlation function (BCF) [1,2,6–
8], which quantifies temporal correlations of environmental
degrees of freedom. Via the initial state of the environment,
environment temperature is incorporated in the BCF.

The partitioning of the total system into explicitly treated
degrees of freedom and a rest which is treated by means of
a BCF is not fixed in the first place, and different choices
might be expedient from different (computational) points of
view [5]. That is, in the simulation of molecules embedded
in an environment, one might explicitly include one or more
strongly coupled (important) vibrational modes in the system
part and treat the remaining part effectively. Alternatively, one
could consider only the electronic degrees of freedom of the
molecules as system part, which in turn are coupled to a highly
structured environment. The very same considerations apply in
the case of some electronic degrees of freedom being coupled
to an imperfect (lossy) cavity [9,10]. While an unstructured
environment is more easily handled in simulations, the rapid
growth of the Hilbert space associated with the explicitly
treated environmental modes makes the second choice the
favorable one.

The effect of different system-environment partitioning has
already been discussed in literature [5,11–13], however, the
discussion mostly focused on the SD. In this work, we study
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how the BCF transforms under different system-environment
partitionings. In particular, we examine the effect of two
different initial states, a factorizing and a correlated one, on
the transformed BCF.

We consider an exemplary model consisting of a harmonic
bath coupled to a single mode, called “pseudomode” (PM).
(See [5] for a discussion of how a PM relates to a vibrational
mode.) This PM we then couple to another harmonic oscillator
that acts as a system, thus allowing us to study the influence of
the different BCFs on a system dynamics. For strong coupling
between PM and both system oscillator and Ohmic bath we
find pronounced differences in the dynamics of the mean
occupation number of the system oscillator, thus stressing the
importance to take heed of the initial state of the composite
system in this regime.

The paper is structured as follows: In Sec. II, we introduce
the microscopic model on which our discussion is based. We
outline the procedure according to which BCFs transform and
state analytic formulas for the case of a single PM coupled
to a harmonic bath. In Sec. III, we evaluate the transformed
BCFs numerically and discuss some examples, highlighting
the regimes in which notable differences are induced by
different initial states. Finally, we summarize our findings in
Sec. IV.

Details of calculations are given in three Appendixes: In
Appendix A, we review the definition of BCF and SD on
basis of the microscopic model introduced in the main text. In
Appendix B, we explain how the PM and bath operators can be
transformed into a basis in which the combined Hamiltonian
of PM and bath is diagonal. Lastly, we review in Appendix C
an alternative derivation of the transformed BCFs on grounds
of the Heisenberg equations of motion and state a numerical
recipe to solve the occurring integrodifferential equation.

II. MODEL SYSTEM AND ANALYTIC
TRANSFORMATIONS

In this section, we detail model Hamiltonian and framework
necessary to perform the analytic transformation of the BCF
presented at the end of the section. To that end, we first
review the standard model of a system linearly coupled to
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an environment of independent oscillators (Sec. II A) and
introduce the model Hamiltonian we consider in this work
(Sec. II B). Subsequently, we discuss two particular ways to
partition this Hamiltonian into a system and an environment
part (Sec. II C) and explain how the transformed BCF can
be calculated (Sec. II D). Finally, we specify two initial
environment states and present the corresponding transformed
BCFs (Sec. II E).

A. General properties of a system linearly coupled to an
environment of independent oscillators

We start our discussion by reviewing the standard model of
a system linearly coupled to an environment of independent
oscillators, which will allow us later on to point out differences
in the transformed BCFs most clearly.

In the standard model, the total Hamiltonian is partitioned
into three parts

Htot = HS + HS-E + HE, (1)

where HS denotes the Hamiltonian of the system, containing
the degrees of freedom in which one is interested in, and

HE =
∑

μ

ω̃μc†μcμ (2)

the Hamiltonian of the environment. Here, cμ is the annihila-
tion operator of an environment mode with frequency ω̃μ. An
environment of the form of HE we call diagonal, meaning that
the oscillators are uncoupled.

The Hamiltonian accounting for the interactions between
system and environment reads as

HS-E =
(

LS

∑
μ

kμc†μ + H.c.

)
. (3)

The coupling Hamiltonian HS-E couples the environment
modes cμ via LS linearly to the system, with strength kμ. It is
convenient to introduce the so-called spectral density encoding
this frequency-dependent coupling as (ω > 0)

J (ω) =
∑

μ

|kμ|2δ(ω − ω̃μ). (4)

Note that we set � = kB = 1 throughout this work.
The relevant quantity typically entering open-quantum-

system approaches such as Redfield [1,2], Caldeira-Leggett
[1,14], and non-Markovian quantum state diffusion (NMQSD)
[6,15] is the bath correlation function, for Hermitian LS, given
by

α(t,t ′) = TrE{[C(t) + C†(t)][C(t ′) + C†(t ′)]ρ̂E(0)}, (5)

with C(t) defined as

C(t) = eiHEt
∑

μ

(k∗
μcμ)e−iHEt ≡

∑
μ

k∗
μcμ(t). (6)

To obtain Eq. (5) in the given form, the total initial state is
taken to be

ρ̂tot(0) = ρ̂S(0) ⊗ ρ̂E(0). (7)

This implies that no correlations between system and en-
vironment exist before the interaction between system and

environment is “turned on.” This assumption, which is typi-
cally introduced by virtue of the ease of computation, estab-
lishes the significance of system-environment partitioning.

For a non-Hermitian system operator LS, the BCF is no
longer given by Eq. (5). Rather, two correlation functions are
required [16], reading as

α1(t,t ′) = TrE{C(t)C†(t ′)ρ̂E(0)} and (8a)

α2(t,t ′) = TrE{C†(t)C(t ′)ρ̂E(0)}. (8b)

If the BCF is stationary, i.e., if α(t,t ′) is a function of the
time difference only α(t,t ′) = α(t − t ′,0), it is convenient to
write α(τ ) ≡ α(τ,0), with τ = t − t ′. Note that the stationarity
of the BCF depends on the initial state of the environment in
general.

If the initial state of the diagonal environment ρ̂E(0), which
enters Eq. (5), is a thermal state (and if LS is Hermitian), the
BCF of the environment is of the “standard” form

α(τ ) =
∫ ∞

0
dω J (ω)

[
coth

(
ω

2T

)
cos(ωτ ) − i sin(ωτ )

]
,

(9)

with τ = t − t ′. In Eq. (9), T is the temperature of the
environment and J (ω) the SD. For a detailed review of SD
and BCF in the standard case, see Appendix A.

B. Model Hamiltonian with PM

We now introduce the total Hamiltonian which we focus on
in this work, which is of the form

Htot = Hrel + Hrel-PM + HPM + HPM-B + HB. (10)

In Eq. (10), Hrel contains the relevant degrees of freedom we
are interested in. This relevant part is via the Hamiltonian

Hrel-PM = (g∗bL† + H.c.) (11)

linearly coupled to the PM, whose Hamiltonian reads as

HPM = �b†b. (12)

Here, L is some operator in the Hilbert space of the relevant
Hamiltonian Hrel, g a coupling constant quantifying the
strength of the coupling, and � the frequency of the PM with
annihilation operator b. In addition, the PM is coupled to a
diagonal bath

HB =
∑

λ

ωλa
†
λaλ, (13)

where ωλ are the frequencies belonging to the bath modes
λ with annihilation operators aλ. The coupling Hamiltonian
HPM-B is taken to be bilinear,

HPM-B =
∑

λ

(κ∗
λaλb

† + H.c.), (14)

with κλ being the coupling constants quantifying the coupling
between PM and bath modes. The generalization of our
discussion to several PMs is straightforward in many cases
of interest (e.g., for single linear chains of PMs [17,18] and
multiple linear chains [19]), and will be addressed at the end
of the section.
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FIG. 1. Illustration of two different ways of performing a system-
environment partitioning in the presence of a PM linearly coupled to
both system and bath. In (I), the system part SI consists of the relevant
system degrees of freedom linearly coupled to the PM, which in
turn is coupled to an (unstructured) environment EI whereas in (II)
the system SII directly couples to a (structured) environment EII
including the PM.

C. System-environment partitioning

We now consider two particular examples of assigning the
PM to the different parts of the total Hamiltonian, illustrated
in Fig. 1. This leads to different choices of the system
Hamiltonian HS, the environment Hamiltonian HE, and the
coupling between them. We denote the two different ways of
partitioning by SI and SII for the system and EI and EII for
the environment, respectively.

1. PM in the system

The first partitioning [(I) in Fig. 1] is to take the PM as part
of the system, which amounts to setting

HSI = Hrel + Hrel-PM + HPM, (15)

HEI = HB, (16)

and

HSI-EI = HPM-B. (17)

Note that the system now contains besides the relevant degrees
of freedom also the PM, and that the environment is in the
standard form of Eq. (1).

2. PM in the environment

The second partitioning is illustrated in panel (II) in Fig. 1.
Here, the system is given by

HSII = Hrel, (18)

while the environment EII contains both PM and bath,

HEII = HPM + HPM-B + HB. (19)

Accordingly, the coupling between system and environment is
given by

HSII-EII = HS-PM. (20)

Note that the resulting Hamiltonian is not in the standard form
of Eq. (1), as the environment is not diagonal. It can, however,
be diagonalized by a simple transformation, as detailed in
Appendix B.

D. Calculation of the BCF

In terms of the SD, it is known how to transform
between different ways of system-environment partitioning
[5,7,11,13,20]. For this procedure, it is sufficient to know the
total Hamiltonian, as the SD is fully encoded in Htot.

The BCF, however, depends on the environment state,
denoted by ρ̂EI(0) and ρ̂EII(0), respectively, for the two settings
(I) and (II) in Fig. 1. Note that to obtain a total initial state of
form Eq. (7), we need ρ̂tot(0) = ρ̂SI(0) ⊗ ρ̂EI(0) in setting (I)
whereas ρ̂tot(0) = ρ̂SII(0) ⊗ ρ̂EII(0) in setting (II).

Microscopically, the BCF is the (two-time) correla-
tion function of the environment operators in the system-
environment coupling. In setting (I), the environment is
diagonal and we can therefore directly use Eq. (5). For
setting (II), in contrast, the environment EII is not diagonal.
Nonetheless, we can similarly to Eq. (6) write the time
evolution of the environment coupling operator

B(t) = g∗ eiHEIIt b e−iHEIIt ≡ g∗ b(t), (21)

whose time dependence arises via transformation into the
interaction picture with respect to HEII.

For a Hermitian system operator, L = L†, and HS-PM can
be written as HS-PM = L(g∗b + gb†), which has a Hermitian
environment coupling operator. In this case, the BCF is given
by

α(t,t ′) = TrEII{[B(t) + B†(t)][B(t ′) + B†(t ′)]ρ̂EII(0)}
≡ 〈[B(t) + B†(t)][B(t ′) + B†(t ′)]〉EII, (22)

where ρ̂EII(0) denotes the initial density operator of the
environment and the subscript EII of the trace indicates that
the trace is taken over the environmental degrees of freedom.

To evaluate the BCF (22), it is convenient to take advantage
of the existence of a linear transformation between the
PM operator b and the operators in which the Hamiltonian
HEII and the initial state, respectively, are diagonal (cf.
Appendix B). Specifically, we first transform the PM operator
into the basis in which the environment Hamiltonian HEII

is diagonal, b(t) = [Sc̄(t)]0, by means of the transformation
matrix S. The time evolution of the annihilation operators
cμ of the diagonal Hamiltonian HEII, however, is simply
given by cμ(t) = e−iω̃μt cμ. Subsequently, the operators cμ are
transformed into the basis in which the initial state is diagonal,
if necessary, and the BCF is evaluated.

E. Choice of initial states of the environment

As discussed in the previous section, the total initial state
in case (I) is typically taken to be ρ̂tot(0) = ρ̂SI(0) ⊗ ρ̂EI(0).
When moving the PM from the system part to the environment
part, i.e., going from (I) to (II), one could thus reason that
the initial state of the environment EII should be given by
ρ̂EII(0) = ρ̂PM(0) ⊗ ρ̂EI(0). Conversely, if one considers the
PM to be part of the environment EII from the very beginning
on, there is no reason why the PM should be uncorrelated
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with EI. From this point of view, a correlated initial state
between PM and EI seems to be more “natural.” To clarify the
implications of the two aforementioned choices we employ
these initial states when evaluating the BCF in setting (II) in
the following.

1. Factorizing initial state between PM and EI

The first initial state we consider is the one typically
associated with factorizing initial conditions between PM and
bath EI:

ρ̂
F

EII(0) = 1

Z
e−β(�b†b+∑

λ ωλa
†
λaλ), (23)

where β = 1/T is the inverse temperature and the partition
function Z is defined such that TrEII{ρ̂F

EII(0)} = 1. This
particular initial state is widely used, owing to its convenient
properties in analytic calculations. The physical assumption
implied is that during thermal equilibration with an ambient
heat bath no correlations are built up between PM and bath EI,
a reasoning that only holds in the limit of vanishing coupling
between PM and bath since only in this limit independent
thermal equilibration (i.e., equilibration to the respective
canonical states) of two coupled systems exists [21–24] (cf.
also [25,26]).

Evaluating the BCF (22) with factorizing initial state, we
find (see Appendix B for details)

α(t,t ′) = |g|2
∑
μ,ν,η

{S∗
0μS0νSημS∗

ηνe
i(ω̃μt−ω̃ν t

′)n(ωη)

+ S0μS∗
0νS

∗
ημSηνe

−i(ω̃μt−ω̃ν t
′)[n(ωη) + 1]}. (24)

Here, n(ω) is the mean occupation number of an environment
oscillator with frequency ω,

n(ω) = 1

(eβω − 1)
. (25)

Note that Eq. (24) is not in the form of Eq. (9); in fact, we
cannot even write α(t,t ′) = α(t − t ′,0).

2. Thermal (correlated) state of PM and EI

The second initial state we consider we call diagonal initial
state; we thereby denote the canonical state of the environment
EII. This state we obtain for increased coupling between PM
and bath EI since with increasing coupling the equilibrium
state of PM and bath will be given by the thermal state of the
joint PM-bath environment, which no longer factorizes into
a PM and a bath part. Introducing the creation (annihilation)
operators of the eigenmodes of the joint PM-bath system c†μ
(cμ), the global thermal state reads as

ρ̂D
EII(0) = 1

Z
e−β

∑
μ ω̃μc

†
μcμ . (26)

Here, the superscript D denotes a diagonal initial PM-bath
state, implying that at t = 0 PM and bath have jointly evolved
towards a thermal state whose occupation depends on the
eigenenergies ω̃μ of the composite system. As before, Z is
defined such that TrEII{ρ̂D

EII(0)} = 1.

For the diagonal initial state the BCF reads as (τ = t − t ′)

α(τ ) = |g|2
∑

μ

|S0μ|2{eiω̃μτ n(ω̃μ) + e−iω̃μτ [n(ω̃μ) + 1]}.
(27)

Note that Eq. (27) is of the same form as in the standard case
[cf. Eq. (A5)] and can hence be written in the standard form
Eq. (9) with transformed SD.

3. Discussion

Equations (24) and (27) allow for several observations.
First, the BCF comprises of the time evolution of the
eigenmodes of the PM-bath environment weighted by the
populations of the eigenmodes in the initial state. Second,
we explicitly see that in case of a diagonal initial state we
obtain a stationary BCF, whereas in the case of factorizing
initial conditions the BCF is nonstationary (for small times).
This is to be expected since for a PM-bath environment in
thermal equilibrium the expectation value of any number
operator (e.g., b†b) should not depend on time, which is exactly
what we observe if we set τ = 0 in Eq. (27). [As α(t,t ′) ∝
〈b†(t)b(t ′) + b(t)b†(t ′)〉EII, the stationarity of 〈b†(t)b(t)〉EII can
be directly read off from the BCF.]

The procedure outlined above can be generalized straight-
forwardly to, e.g., linearly coupled chains of PMs of which
the last PM is possibly coupled to a diagonal harmonic bath
[13,18], directly coupled PMs with independent baths [27],
or a combination of both [19]. As the BCF of the system
is determined by the correlation function of the PM operator
directly coupled to the system, we simply need to adjustHEII in
the above treatment; the calculation of the BCF then proceeds
in the exact same manner as detailed above.

Since the neglect of initial correlations can lead to notice-
able differences in the dynamics [22,28,29], depending on the
parameters of the underlying Hamiltonian, we now turn to the
discussion of numerical examples.

III. NUMERICAL EXAMPLES

A. Evaluation of the transformed BCFs

In our numerical examples, we take as spectral density for
EI an Ohmic SD with exponential cutoff (ω > 0),

JEI(ω) = ηωe−ω/, (28)

where  is the cutoff frequency and η a scaling for the overall
coupling strength. For numerical purposes, we sample JEI(ω)
at discrete frequencies ωλ. The couplings κλ of Eq. (14) we
obtain by evaluating the quadrature [5]

κλ =
√

J (ωλ)�ωλ, (29)

with �ωλ = (ωλ+1 − ωλ−1)/2 for λ = 2, . . . ,N − 1; �ω1 =
ω2 − ω1 and �ωN = ωN − ωN−1.

The sampling range is chosen such that the full SD is
covered. For the particular cases shown, we use N = 4000 bath
oscillators for the numerical discretization, with equidistantly
spaced frequencies, starting from 0.002 . For the sake of
clarity of presentation, we choose the PM frequency close to
the maximum of the Ohmic SD, setting � = 1.5 . This choice
renders the coupling between PM and bath strongly dependent
on the overall scaling of the SD, which is quantified by η.
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FIG. 2. (Color online) Bath correlation functions α(t,t ′)/|g|2 for different coupling strengths η and different reference times t ′. The left
column [panels (a) and (c)] shows the BCF for weak PM-bath coupling η = 0.25, whereas the right column [panels (b) and (d)] shows a
strong-coupling regime η = 1.0. In the first row [panels (a) and (b)] the reference time of the BCF is set to t ′ = 0, in the second row [panels
(c) and (d)] t ′ = 32.5 −1. Solid blue lines indicate the real part of the BCF with factorizing initial state [Eq. (23)], dashed green lines the real
part of the BCF with diagonal initial state [Eq. (26)]. Dotted lines show the corresponding imaginary parts. The insets in panels (c) and (d)
provide a detail of the short-time dynamics, while the inset in (a) shows the SD JEI(ω) (dashed red line) with the position of the PM indicated
by a solid vertical line. The BCFs were calculated using T = 46  and � = 1.5 .

Note that the HamiltonianHEII is positive for all parameters
employed in the numerical calculations discussed in this
section, and that the finite recurrence time of the BCF is large
enough to observe complete decay of the BCF.

We now evaluate the BCFs (24) and (27) with the described
numerical procedure for different couplings η and times t ′.
Using the SD of Eq. (28), this yields the BCFs displayed in
Fig. 2. There, the left column [Figs. 2(a) and 2(c)] corresponds
to relatively weak coupling η = 0.25 whereas in the right
column [Figs. 2(b) and 2(d)] the PM is relatively strongly
coupled to the bath EI, η = 1.0. Furthermore, the first row
[Figs. 2(a) and 2(b)] show the BCF evaluated at t ′ = 0 while
the second row [Figs. 2(c) and 2(d)] show the BCF evaluated
at t ′ = 32.5 −1.

As can be seen from Figs. 2(a) and 2(b), at t ′ = 0 pro-
nounced differences emerge between the two different initial
conditions (blue versus green) as the coupling η is increased.
On the one hand, the damping of the BCF is increased in the
presence of strong coupling η = 1.0 (note that the overall time
of equilibration of the BCF increases as well), which results in
different dynamics for the two different initial states. On the
other hand, the initial values of the BCFs, α(0,0), change,
highlighting the increasing differences between the initial
states that manifest themselves in the dynamics of the BCF.

Considering the BCFs evaluated at t ′ = 32.5 −1, shown
in Figs. 2(c) and 2(d), we observe that the BCFs obtained from
different initial states look very similar, with the strongest
difference being a transient equilibration dynamics present for
factorizing initial conditions, which gets more noticeable in
the strong-coupling case. The differences found between the
different initial states for t = t ′ = 0 have almost vanished for

t = t ′ = 32.5 −1 [cf. Figs. 2(a) and 2(c) and 2(b) and 2(d),
respectively], due to the fact that equilibration has already
taken place before t = 32.5 −1.

The nonstationarity of the BCF for factorizing initial con-
ditions is related to what is called “initial slippage” if a system
is coupled to a Markovian environment. In such systems, a
non-Markovian feature can be present at small times due to
the fact that Markovian dynamics for the total system requires
correlations between system and environment that are not
present initially if factorizing initial conditions are employed
[1,30]. Hence, slippage of initial conditions can remedy non-
Markovian dynamics introduced by an initially uncorrelated
system-environment state. In the same manner, the BCFs
displayed in Fig. 2 need some time to equilibrate for factorizing
initial conditions before reaching “stationarity” [28].

B. Corresponding SDs

The SD, as defined in Eq. (4), is fully determined by the
total Hamiltonian. Consequently, it should not depend on the
initial state of the environment. For a diagonal environment,
however, the SD can be extracted from the BCF owing to the
relation (9) between BCF and SD.

That is, for the diagonal initial state, the SD can be obtained
by Fourier transforming Eq. (27) with respect to the time
difference τ and dividing by the factor 2π [n(ω) + 1] [cf.
Eq. (A9)]. For factorizing initial state, we can rewrite Eq. (24)
as a function of the center-of-mass coordinate tc.m. = (t + t ′)/2
and the time difference τ = t − t ′ and perform a Fourier
transformation with respect to τ .

The spectral densities corresponding to the parameters of
Fig. 2 are shown in Fig. 3. For large times tc.m., tc.m. � 120 −1,
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FIG. 3. (Color online) Spectral density JEII(ω) (black, solid line) for (a) η = 0.25 and (b) η = 1.0 obtained from Fourier transformation of
the BCF (for details, see text). As the BCFs for diagonal and factorizing initial state (evaluated at tc.m. = 130 −1) coincide, they yield identical
SDs. In both panels, the red, dashed line indicates the original SD of the Ohmic bath, which has been scaled by the factor denoted in red. All
other parameters are as in Fig. 2.

the difference between the Fourier transformations obtained
from the BCFs using a diagonal and a factorizing initial state,
respectively, vanish. For this reason, we show only a single SD
in Fig. 3.

The SDs obtained from the BCFs perfectly agree with the
analytical result of [5], which has been obtained by direct
transformation of the SD. [Note that in Ref. [5] another
convention for the SD has been used, i.e., the SD is defined as
ω2J (ω) in our convention. For a discussion of the advantage
of the convention employed in this paper, see [27].]

As shown in Fig. 3, for weak coupling η = 0.25 the
SD exhibits only a single peak at approximately the PM
frequency �, with a width proportional to the coupling η.
For large coupling η = 1.0, the single peak is split into two
and the coupling strength at the PM frequency is reduced. This
illustrates that for large PM-bath coupling, the bath properties
indeed become essential for a system coupled to the PM.

C. Corresponding system dynamics

We now turn to analyzing the effect of the features seen
in Fig. 2 on a system observable. To that end, we specify the
system operator L (L†) in Eq. (11) as the annihilation (creation)
operator d (d†) of a harmonic oscillator with frequency �sys,
with the associated system Hamiltonian reading as

HSII = �sysd
†d. (30)

This particular set of non-Hermitian coupling operators allows
us to conveniently evaluate the dynamics of the total system
via diagonalization, as outlined in Sec. II D. The corresponding
correlation functions α1(t,t ′) and α2(t,t ′) defined in Eqs. (8a)
and (8b) can be easily read off from Eqs. (24) and (27).

Setting in the above parameters η = 1.0, �sys = 0.46 ,
and requiring nsys(0) ≡ 〈d†(0)d(0)〉EII = 0, we obtain Fig. 4
for two different system-PM couplings g/ = 0.3 and g/ =
0.08. Note that only α1(t,t ′) is shown in Fig. 4 since for the pa-
rameters chosen, α2(t,t ′) is indistinguishable from α1(t,t ′) on
the scale of the figure. The reason for choosing �sys relatively
small is that the steady-state value of nsys(t) decreases with

increasing �sys, such that absolute differences in nsys(t) are
suppressed for large system frequencies. Likewise, we have to
choose η large in order to assure that the system dynamics is
affected by the bath, being mediated via the PM.

For strong coupling of the PM to both system [g = 0.3 ,
Fig. 4(a)] and bath, we observe a marked difference in the
mean occupation number nsys(t) between the results attained
from using different initial states. This difference highlights
that in case of a strongly coupled PM the initial state of
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FIG. 4. (Color online) Bath correlation function α1(t,0)/|g|2
(solid lines) and system mean occupation number nsys(t) ≡
〈d†(t)d(t)〉EII (dashed lines) for different initial conditions and
different coupling strengths g. In the upper panel (a), g = 0.3 ,
whereas the lower panel (b), g = 0.08 . Thin blue lines indicate
the BCF with factorizing initial state [Eq. (23)], thick green lines
indicate the BCF with diagonal initial state [Eq. (26)]. Only the
real parts of the BCFs are shown. The inset shows the PM mean
occupation number nPM(t) ≡ 〈b†(t)b(t)〉EII for g = 0.3  (dashed
line) and g = 0.08  (solid line) for both initial states. Except for
η = 1.0 and �sys = 0.46 , the parameters of Fig. 2 have been used.
Note that α1(t,0) is approximately α(t,0)/2 in Fig. 2.
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the environment becomes important for the transient system
dynamics. In contrast, the equilibrium values of both nsys(t)
and nPM(t) are independent of the initial state [28]. If we
decrease the coupling g to the system mode (or, similarly,
the coupling η to the bath oscillators), the difference in
the dynamics decreases [cf. Fig. 4(b)] and the appropriate
choice of initial conditions of the environment becomes less
important. The same applies for choosing �sys large, as this
results in a lower steady-state value of nsys(t) and consequently
smaller overall deviations.

Besides, the time it takes for the system to equilibrate
increases as g is decreased [cf. Fig. 4(b)], as the equilibration
of the system only proceeds via interaction with the PM.
Conversely, the PM equilibrates faster for small system-PM
coupling g (cf. inset) since in this case the strong PM-bath
coupling dominates the equilibration dynamics of the PM.
This again illustrates that for small system-PM coupling, it is
indeed valid to assume a factorized initial environment state
since the differences induced by the BCF rapidly vanish from
the system’s point of view.

For low-bath temperature, the differences in the dynamics
persist, however, they become hardly observable due to the
steady-state values (as well as the initial conditions) being
significantly smaller as compared to high-bath temperature.
Hence, at low temperature, absolute deviations are reduced
while relative deviations are preserved.

Our numerical simulations show for different initial en-
vironment states pronounced differences in the transient
dynamics of a system that via a PM strongly couples to
an Ohmic bath. Thus, any scheme sensitive to the transient
behavior of the BCF crucially depends on the choice of initial
conditions of the total system.

IV. CONCLUSIONS

We have analytically and numerically studied the BCF
resulting from effectively treating a harmonic oscillator (PM)
linearly coupled to a harmonic bath as part of the bath, for
a factorizing and a correlated initial state between PM and
bath, respectively. We outlined the procedure to analytically
derive the transformed BCF and discussed concrete examples
for regimes in which the differences in the BCFs arising
from different initial states manifest themselves in a different
dynamics of the system, which we take to be a harmonic
oscillator linearly coupled to the PM. This establishes a simple
framework to evaluate transformed BCFs of PMs coupled to a
harmonic bath.

In particular, we find that in the case of a correlated (diag-
onal) initial state, the BCF features all the properties typically
assumed for a BCF [i.e., stationarity, detailed balance, and the
relation Eq. (A9) between the Fourier transform of the BCF
and the SD]. By contrast, for a factorizing initial state these
properties do not apply, owed to the nonstationarity of the BCF
in this case. Only after a transient equilibration dynamics that
can induce different system dynamics, they are recovered.

The significance of the BCF lies in the fact that it
quantifies the effect of the environment, including environ-
ment correlations and temperature, on the system degrees of
freedom. Hence, our analysis complements the investigation
of bath transformations (e.g., the mapping of a structured bath

consisting of many harmonic oscillators to a linear chain of
oscillators [17–19]) which focused on the SD.

Our findings highlight that (i) the differences between
the BCFs for the different initial states chosen (factorizing
and diagonal initial state) are negligible for small PM-bath
coupling or PM-system coupling, respectively, as expected,
yet (ii) these differences can have strong impact on the
system dynamics if the PM is strongly coupled to both
system and bath. Therefore, in case of a strongly coupled
PM, an appropriate initial state of the environment has to be
used for the transformation of the BCF when considering a
system’s dynamics in the presence of finite temperature. This
emphasizes the relevance of accounting for correlations in
strongly coupled systems, which is not specific to our particular
system [14,24,31]. The question as to which initial state is to
be considered as appropriate cannot be answered a priori, but
has to be answered in consideration of the specific case.
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APPENDIX A: MICROSCOPICAL DEFINITIONS
OF BCF AND SD

We consider the same total Hamiltonian as introduced in
Eq. (1),

Htot = HS + HS-E + HE, (A1)

consisting of a system part HS, an environment part HE

[Eq. (2)], and a coupling part HS-E [Eq. (3)] accounting for
the interaction between system and environment.

Following Sec. II A, the BCF for a Hermitian system
coupling operator LS is given by [cf. Eq. (5)]

α(t,t ′) =
〈∑

μ,μ′
[k∗

μcμ(t) + H.c.][k∗
μ′cμ′(t ′) + H.c.]

〉
E

=
∑

μ

|kμ|2(〈cμ(t)c†μ(t ′)〉E + 〈c†μ(t)cμ(t ′)〉E), (A2)

where the second equality sign holds if the initial environment
density operator ρ̂E(0) is taken to be a function of the number
operators c†μcμ. Here, the angle brackets denote the trace over
the environment 〈. . .〉E = TrE{ρ̂E(0)}.

Thermal environment

In the following, we take the environment to be in a thermal
state

ρ̂E(0) = 1

Z
e−β

∑
μ ω̃μc

†
μcμ , (A3)

where Z is defined such that TrE{ρ̂E(0)} = 1 and β is the
inverse temperature β = 1/T .

The time evolution of the environment operators cμ can be
calculated by means of the Heisenberg equations of motion
(cf. Appendix C),

∂tcμ(t) = ieiHEt [HE,cμ]e−iHEt = −iω̃μcμ(t), (A4)

where the time dependence refers to the interaction picture
with respect to HE, cμ(t) = eiHEt cμ e−iHEt .
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Using the usual commutation relation [cμ,c
†
μ′] = δμμ′ and

evaluating the trace in Eq. (A2) in the number basis | nμ 〉, we
find

α(t,t ′) =
∑

μ

|kμ|2{e−iω̃μ(t−t ′)[n(ω̃μ) + 1] + eiω̃μ(t−t ′)n(ω̃μ)},

(A5)

with the mean occupation number n(ω) of the environment
oscillator with frequency ω defined as

n(ω) ≡ 1

(eβω − 1)
=

∑
n n e−βωn∑
n e−βωn

. (A6)

Performing a Fourier transformation with respect to τ ≡
t − t ′, we get

α(ω) = 2π
∑

μ

|kμ|2{[n(ω̃μ) + 1]δ(ω − ω̃μ)

+ n(ω̃μ)δ(ω + ω̃μ)}. (A7)

By means of the relation n(−ω) = −[n(ω) + 1] and the
definition

j (ω) =
∑

μ

|kμ|2δ(ω − ω̃μ), (A8)

we can rewrite Eq. (A7), reading as

α(ω) = 2π [n(ω) + 1] [j (ω) − j (−ω)] . (A9)

Following [27,32], we now define the spectral density J (ω) as

J (ω) = j (ω) − j (−ω) (A10)

and obtain, after performing the inverse Fourier transform and
rearranging using 1 + 2n(ω) = coth[ω/(2T )], the standard
expression [cf. Eq. (9)]

α(τ ) =
∫ ∞

−∞

dω

2π
e−iωτ α(ω)

=
∫ ∞

−∞
dω J (ω) [n(ω) + 1] e−iωτ

=
∫ ∞

0
dω J (ω)

[
coth

(
ω

2T

)
cos(ωτ ) − i sin(ωτ )

]
.

(A11)

This is the well-known result for a linearly coupled harmonic
environment in thermal equilibrium.

APPENDIX B: ENVIRONMENT TRANSFORMATION

Here, we show how the environment Hamiltonian HEII

comprising both PM and bath is diagonalized. That is,
following [5], we rewrite Eq. (19) as

HEII = ā†Mā, (B1)

where the vector ā contains all environment annihilation
operators

ā = (b,a1,a2, . . . ,aN )T , (B2)

and the matrix M all environment couplings and energies

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

� κ∗
1 κ∗

2 . . . κ∗
N

κ1 ω1 0 . . . 0

κ2 0 ω2
. . .

...
...

...
. . .

. . . 0
κN 0 . . . 0 ωN

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B3)

The Hermitian matrix M can be diagonalized by means of a
unitary transformation,

M = SDS†, (B4)

where the diagonal matrix D contains the eigenenergies of the
composite bath

D =

⎛
⎜⎝

ω̃0 0
. . .

0 ω̃N

⎞
⎟⎠. (B5)

With these definitions, the new annihilation operators of the
environment become c̄ = S†ā where c̄ = (c0,c1, . . . ,cN )T .
The initial creation and annihilation operators are obtained
from the new ones via the inverse transformation ā = Sc̄. Note
that for a discrete number N of aλ operators there are N + 1
cμ operators.

APPENDIX C: ALTERNATIVE DERIVATION OF THE BCF
ON BASIS OF HEISENBERG EQUATIONS OF MOTION

In this section, we review a method alternative to the one
introduced in Sec. II D to calculate the BCF for the two
initial states introduced in Sec. II E [Eqs. (23) and (26)] by
calculating the time dependence of the PM operator b not
via diagonalization, but rather by means of the Heisenberg
equations of motion.

The Heisenberg equations of motion for the PM operator b

can be easily derived by evaluating the time derivative

∂tb(t) = ieiHEIIt [HEII,b]e−iHEIIt

= −i�b(t) − i
∑

λ

κ∗
λaλ(t), (C1)

where the time dependence as before refers to the interaction
picture with respect toHEII, b(t) = eiHEIIt b e−iHEIIt , and b(0) =
b. Likewise, for aλ we have

∂taλ(t) = ieiHEIIt [HEII,aλ]e−iHEIIt

= −iωλaλ(t) − iκλb(t). (C2)

Formally, integrating Eq. (C2), we find

aλ(t) = e−iωλt aλ(0) − iκλ

∫ t

0
ds e−iωλ(t−s)b(s), (C3)

which we can insert into Eq. (C1), yielding

∂tb(t) = −i�b(t) −
∫ t

0
ds

∑
λ

|κλ|2e−iωλ(t−s)b(s)

− i
∑

λ

κ∗
λe−iωλt aλ(0). (C4)
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Defining K(t − s) ≡ ∑
λ |κλ|2e−iωλ(t−s), we can write the

solution of Eq. (C4) as

b(t) = U (t)b(0) − i
∑

λ

κ∗
λaλ(0)

∫ t

0
ds U (t − s)e−iωλs,

(C5)
where U (t) is determined from the integrodifferential equation
[33]

∂tU (t) = −i�U (t) −
∫ t

0
ds K(t − s)U (s). (C6)

Note that U (t) is only defined for t � 0, with the initial
condition reading U (0) = 1. Albeit for a continuous bath
spectrum an analytic calculation of U (t) for specific spectral
densities is possible via Laplace transforms [34], we focus
on a numerical scheme for solving Eq. (C6) in the following,
relying on numerical diagonalization.

To this end, we first define auxiliary coefficients Uλ(t)
whose dependence on t is via a simple exponential and the
integration boundary only

Uλ(t) = κλ

∫ t

0
ds e−iωλ(t−s)U (s). (C7)

By means of this definition, we are able to cast Eq. (C6) into
a set of coupled equations

∂tU (t) = −i�U (t) −
∑

λ

κ∗
λUλ(t), (C8a)

∂tUλ(t) = κλU (t) − iωλUλ(t). (C8b)

Introducing the vector ū(t) = [U (t),U1(t), . . . ,UN (t)]T , we
can rewrite Eqs. (C8a) and (C8b) as

∂t ū(t) = −iGū(t), (C9)

with the matrix G given by

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

� −iκ∗
1 −iκ∗

2 . . . −iκ∗
N

iκ1 ω1 0 . . . 0

iκ2 0 ω2
. . .

...
...

...
. . .

. . . 0
iκN 0 . . . 0 ωN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (C10)

The Hermitian matrix G can be diagonalized via the transfor-
mation T † GT = D, yielding the eigenvalues ω̄μ. Defining
ū = T v̄, the differential equation (C9) becomes

∂t v̄(t) = −iDv̄(t), (C11)

which has the simple solution v̄(t) = e−iDt v̄(0) with v̄(0) =
T †ū(0), where ū(0) = (1,0, . . . ,0)T . Taking the first com-
ponent of the full expression ū(t) = T e−iDtT †ū(0), which
gives U (t), and writing [ū(0)]μ = δ0μ, we arrive at the simple
expression

U (t) =
∑

μ

|T0μ|2e−iω̄μt . (C12)

The above reformulation allows one to map the solution
of an integrodifferential equation onto an eigenvalue problem
which involves only matrix multiplication and diagonalization,
which is numerically more robust with respect to the numer-
ical time step than straightforward numerical integration of
Eq. (C6). Note that the approach used requires K(t − s) to
be given as a sum of exponentials that reproduce when being
differentiated with respect to time.

We can now employ the above results to obtain alternative
analytic expressions for the BCFs of the two initial states
introduced in Eqs. (23) and (26). For factorizing initial
conditions [Eq. (23)], the trace in Eq. (22) is readily evaluated,
yielding

α(t,t ′)/|g|2 = U (t)U ∗(t ′) [n(�) + 1] + U ∗(t)U (t ′)n(�)

+
∑

λ

|κλ|2
∫ t

0
ds

∫ t ′

0
ds ′{U (t − s)

×U ∗(t ′ − s ′)e−iωλ(s−s ′) [n(ωλ) + 1]

+U ∗(t − s)U (t ′ − s ′)eiωλ(s−s ′)n(ωλ)}. (C13)

Here, n(ω) is the mean occupation number of the
harmonic oscillator of frequency ω, as introduced in
Eq. (A6).

For diagonal initial conditions [Eq. (26)], it is advisable
to first linearly transform the operators b, aλ into the eigen-
basis of the joint environment, outlined in Appendix B. We
find

α(t,t ′)/|g|2 =
∑

μ

|S0μ|2{U (t)U ∗(t ′)[n(ω̃μ) + 1] + U ∗(t)U (t ′)n(ω̃μ)} +
∑
λ,τ,μ

κ∗
λκτSλμS∗

τμ

∫ t

0
ds

∫ t ′

0
ds ′

×{U (t − s)U ∗(t ′ − s ′)e−i(ωλs−ωτ s
′)[n(ω̃μ) + 1] + U ∗(t − s)U (t ′ − s ′)ei(ωλs−ωτ s

′)n(ω̃μ)}

+ i
∑
λ,μ

S0μS∗
λμκλ

{
U (t)

∫ t ′

0
ds U ∗(t ′ − s)eiωλs[n(ω̃μ) + 1] + U (t ′)

∫ t

0
ds U ∗(t − s)eiωλsn(ω̃μ)

}

− i
∑
λ,μ

S∗
0μSλμκ∗

λ

{
U ∗(t ′)

∫ t

0
ds U (t − s)e−iωλs[n(ω̃μ) + 1] + U ∗(t)

∫ t ′

0
ds U (t ′ − s)e−iωλsn(ω̃μ)

}
. (C14)
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Note that the above results assume a Hermitian system operator
L of the system-PM coupling [cf. Eq. (11)].

The procedure allowing us to arrive at Eqs. (C13) and (C14)
is straightforward: We (i) derived the Heisenberg equations of
motion for the PM operator, (ii) linearly transformed the time-
independent (t = 0) operators of the Heisenberg equations of
motion into the operators with respect to which the initial state
is diagonal (cf. Appendix B), and (iii) evaluated the trace of
the BCF [Eq. (22)] in this basis.

Analogously to the procedure described in Sec. II D, the
scheme summarized above can be generalized to, e.g., linearly

coupled chains of PMs with the last PM(s) possibly coupled
to a terminating bath [17,18], direct coupling of PMs to
independent baths [27], or a combination of both [19]. Since
the terminating baths are usually taken to be independent, the
BCFs of the PMs can be derived by successively solving
the Heisenberg equations of motion following the above
approach. Starting at the PM which is coupled to the system
and subsequently transforming the PM and bath operators
into the basis in which the initial states are diagonal, the
BCFs can be evaluated with respect to the given initial
states.
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