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Coupling of a nanomechanical oscillator and an atomic three-level medium

A. Sanz-Mora, A. Eisfeld, S. Wüster, and J.-M. Rost
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We theoretically investigate the coupling of an ultracold three-level atomic gas and a nanomechanical mirror
via classical electromagnetic radiation. The radiation pressure on the mirror is modulated by absorption of a probe
light field, caused by the atoms which are electromagnetically rendered nearly transparent, allowing the gas to
affect the mirror. In turn, the mirror can affect the gas as its vibrations generate optomechanical sidebands in the
control field. We show that the sidebands cause modulations of the probe intensity at the mirror frequency, which
can be enhanced near atomic resonances. Through the radiation pressure from the probe beam onto the mirror,
this results in resonant driving of the mirror. Controllable by the two-photon detuning, the phase relation of the
driving to the mirror motion decides upon amplification or damping of mirror vibrations. This permits direct
phase locking of laser amplitude modulations to the motion of a nanomechanical element opening a perspective
for cavity-free cooling through coupling to an atomic gas.
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I. INTRODUCTION

The manipulation of an ever more diverse variety of
nanomechanical oscillators [1] using the intricate control over
electromagnetic fields provided by quantum optics is the sub-
ject of quantum optomechanics [2,3]. Interfacing light fields
in tailored quantum states with mechanical systems deeply
in the quantum regime promises applications in quantum
information transfer between different spectral realms [4–8],
studies of the quantum-classical transition [9], as well as
new impulses for fundamental physics [10], predominantly
gravitational wave detection [11,12].

A key benefit of nanomechanical systems is their coupling
to electromagnetic radiation over a wide range of the spectrum.
This facilitates interfacing with diverse quantum devices, such
as optical cavities [2], Josephson circuits [13], or quantum
dots [14] in hybrid setups. A newly emerging group of
hybrid setups involves atomic or molecular systems [15–26].
They enable the exploitation of the versatile toolkit of cold
atom quantum manipulations for the control of mechanical
systems. Recent work has established that coupling internal
states of atomic or molecular ensembles to nanomechanical
oscillators yields intriguing features, such as atom-mirror
entanglement [19,20,27] and mechanical squeezing [21].

Here we present a scheme to affect nanomechanical
oscillators in the classical regime that does not require a
cavity, in contrast to many of the proposals listed above.
Instead, control of the mechanical motion of a mirror is
achieved by coupling it to an ultracold gas with running
wave laser fields [15,16,25]. In our case, the atoms from the
cold gas interact with two laser beams under the condition
of electromagnetically induced transparency (EIT) [28], as
sketched in Fig. 1. An EIT control beam is reflected by the
mirror before interacting with the atomic gas. Any vibrations
of the mirror imprint a phase modulation onto this EIT control
beam, producing sidebands of the control field detuned by the
mirror frequency. This causes a modulation of the intensity of
the transmitted probe beam with the mirror frequency. This
effect is maximal when the mirror frequency matches the
energy gap between two atomic eigenstates. The probe beam
causes driving of the mirror at its resonance frequency through

radiation pressure. Whether this driving amplifies or damps
the mirror motion depends on the relative phase shift between
probe beam amplitude modulations and mirror oscillation.

We show that this relative phase shift can be adjusted by
choice of the overall two-photon detuning of the EIT lasers.
At the semiclassical level discussed here, the scheme allows
phase locking the amplitude modulations of a laser to motion of
a mechanical element. Equivalently, the atomic cloud allows
the conversion of phase modulations of one light field (the
control beam), into amplitude modulations of another (the
probe beam).

This article is organized as follows: In Sec. II we discuss
our setup of mirror, atomic cloud, and light fields followed by
the physical model describing this arrangement in Sec. III.
Subsequently we analyze the dynamical response of the
system, first of the atomic medium to a constantly oscillating
mirror, Sec. IV A, and then of the mirror being driven by the
response of that medium, Sec. IV B. In Sec. IV C we investigate
in which parameter regime the ensuing coupling between
mirror and medium shows prospects for manipulations of the
mirror, before concluding in Sec. V.

II. SETUP

Our atom-optomechanical setup consists of an ensemble of
trapped, noninteracting ultracold atoms, coupled to a mirror
of mass M , see Fig. 1. The center of mass position zm of
the mirror may oscillate around its equilibrium position z = 0
with frequency ωm. For the atoms we consider three relevant
internal electronic states, |g〉, |s〉, and |e〉. The states |g〉, |s〉
are long-lived metastable ground states, while |e〉 decays to |g〉
with a rate �p, as sketched in the inset of Fig. 1. Each of two
laser beams pass through the atom cloud and reflects once from
the mirror. The probe beam (wave number kp, frequency ωp)
couples the states |g〉 and |e〉 resonantly with Rabi frequency
�p. It passes through the atomic cloud before reflecting off
the mirror and leaving the system. The control beam (wave
number kc, frequency ωc) couples the states |s〉 and |e〉 with
Rabi frequency �c and detuning �c. In contrast to the probe
beam, it reflects off the mirror first, then passes through the
cloud and finally leaves the system.
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FIG. 1. Schematic diagram of EIT medium (dots) coupled to a
mechanically oscillating mirror via probe and control lasers with
different optical paths. (Inset) Energy level diagram of the EIT
medium, realizing a � scheme. We also indicate the control laser
sidebands due to mirror vibrations and spontaneous decay [29].

A central feature of our setup is that the two light beams are
operated under typical conditions for EIT, �p � �c. At the
EIT resonance �c = 0, atoms in the medium settle into a so
called dark state, |d〉 ∼ �c |g〉 − �p |s〉, in which excitation
to the decaying state |e〉 is suppressed through quantum
interference, causing the gas to become transparent for the
probe beam [28]. Since this transparency is a subtle quantum
interference phenomenon, it allows sensitive probing of the
coupling to the mechanical oscillator, which perturbs the EIT
conditions and therefore is expected to have a noticeable effect.

Since the control beam is reflected off the vibrating
mirror surface, the time-dependent boundary condition on its
electromagnetic field causes a modulated Rabi frequency

�c(t) = �cexp[i kczm(t)] ≈ �c[1 + i kczm(t)], (1)

which will provide the desired perturbation of perfect EIT
conditions. In the last step of (1) we assume that the mirror
displacement is small compared to the optical wavelength,
although this simplification is not crucial for the physics
described later. For constant harmonic motion of the mirror,
zm(t) = z0 cos (ωmt), the power spectrum of the control Rabi
frequency acquires sidebands ωc ± ωm as in multichromatic
EIT [30–34]. We will show that the phase modulation of
the control field causes a time-dependent modulation of the
transmission of the probe beam through the medium, or in
short, the phase modulation of the control beam is turned into
an amplitude modulation of the probe beam.

Due to the radiation pressure exerted by the probe beam
on the mirror, we obtain a closed feedback loop, where the
running wave fields are used to separately mediate the two
directions of mutual coupling between the nanomechanical
mirror and the EIT medium.

III. MODEL

We now formalize the setup presented in the preceding
section, treating the light fields and the mirror classically, but
the atomic EIT medium quantum mechanically. This is valid
for sufficiently large amplitudes of mirror motion compared to

the zero-point motion, and optical fields that are sufficiently
coherent and intense to neglect quantum fluctuations.

A. Mirror

The classical mirror is described by Newton’s equation for
a driven harmonic oscillator

Mz̈m(t) + Mω2
mzm(t) = F (t), (2)

where F (t) is the external driving force due to the radiation
pressure by the probe and control beams given by

F (t) = 2[Wp(t) + Wc]/c. (3)

The power Wp(t) of the probe beam reflecting off the mirror
may be time dependent due to varying transmission properties
of the atomic medium. In contrast, the reflected control beam
power Wc is constant as the beam only passes the medium
that could absorb it after reflection off the mirror. Possible
backscattering of control beam light by the atoms can be fully
avoided by shielding and optical diodes.

Under conditions of perfect EIT, that is �c = 0 and without
modulations of the coupling beam, the reflected probe beam
power would be the incoming probe beam power Wp(t) = Wp0.
However, since the control beam modulates the transmission
properties of the atomic medium, the probe beam power
impinging on the mirror will be a function of the incoming
probe beam power and time, i.e., Wp(t) = f (Wp0,t). To
determine the function f , we have to study the atomic medium,
which is described in Sec. III B.

The model could easily be extended to include intrinsic
damping and driving of the mirror induced by its coupling to a
thermal environment at a finite temperature due to the mirror
clamping.

B. Atomic medium

The atomic medium consists of N noninteracting atoms
at positions rn. The interaction of each atom with the two
laser beams is described in the dipole- and rotating-wave
approximation by the internal Hamiltonian

Ĥ (n)/� = 1
2

[
�c(rn,t)σ̂

(n)
es − �p(rn,t)σ̂

(n)
eg + H.c.

] + �cσ̂
(n)
ss ,

(4)

where transition operators σ̂
(n)
βα = [|β〉 〈α|]n act on atom n only.

The density matrix for the nth atom ρ̂(n) evolves according
to a Lindblad master equation

˙̂ρ(n) = − i

�
[Ĥ (n),ρ̂(n)] + L[ρ̂(n)], (5)

where the superoperator L describes spontaneous decay of
atom n from level |e〉 to |g〉 [29,35], and thus L[ρ̂(n)] =
L̂nρ̂

(n)L̂
†
n − (L̂†

nL̂nρ̂
(n) + ρ̂(n)L̂

†
nL̂n)/2 with decay operator

L̂n = √
�pσ̂

(n)
ge . Collisional dephasing could be described

by Eq. (5) but is negligible at the ultracold temperatures
considered here.

Since the light fields causing the couplings �p,c(rn) in
Eq. (4) are affected by the response of the atoms in the medium
through which they propagate, Eq. (5) has to be solved jointly
with the optical propagation equations for the light fields
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(Maxwell-Bloch equations). However, it is known that for
c.w. fields, the medium settles into a steady state beyond some
initial transient time, providing an optical susceptibility χ (r) =
2d2

egρge(r)/[�ε0�p(r)] for the probe beam, where deg is the
transition dipole moment of the probe transition and ρge(r) =∑

n〈σ̂ (n)
ge 〉δ(r − rn) is the collective atomic coherence. In the

linear regime and for a homogeneous complex susceptibility
χ (r) ≡ χ ′ + iχ ′′ the transmitted power through a medium of
length L is W = W0 exp [−kpLχ ′′], where W0 is the incoming
power (we split complex numbers as z = z′ + iz′′ into real part
z′ and imaginary part z′′).

For the setup in Fig. 1 the phase modulation (1) of the
control Rabi frequency precludes a genuine steady state.
However, if the modulation period is slow enough compared
to the time it takes probe beam phase fronts to pass through
the medium, we can nonetheless obtain a simple response of
the medium, as argued in Appendix A. The medium is then
described by a time-dependent susceptibility χ (t) = Sρge(t)
with S = 2d2

egN /[�ε0�p]. Here ρge(t) is determined from the
solution of Eq. (5) for a single atom standing representative
for the entire medium, and N = ∑

n δ(r − rn) is the density
of the medium. For this solution of (5) including coupling to
the mirror, we assume the following probe power to impinge
on the mirror:

Wp(t) = Wp0 exp [−kpLχ ′′(t)] ≈ Wp0[1 − Aρ ′′
ge(t)], (6)

with A = kpLS = d �p/�p, where we have used the optical
depth d = 6πNLk−2

p of the medium. This specifies the
function f of Sec. III A.

Using the power (6) for the probe radiation pressure (3)
and Eq. (1) for the phase modulation of the control beam,
the master equation (5) and Newton’s equation (2) become a
coupled system of differential equations.

C. Light fields

The semiclassical model of the preceding two sections
treats the propagating probe and control beams as classical
electromagnetic fields. It further neglects the travel time of
optical beams between mirror and all atomic positions in
the atom cloud, which hence has to be much shorter than
the dynamical time scale of the problem that we study. The
latter time scale is given by the mirror period Tm = 2π/ωm, so
that the above assumptions are well satisfied for mirrors with
frequencies in the MHz–GHz range and typical optical path
lengths.

IV. VIBRATING MIRROR COUPLED TO ATOMIC CLOUD

In the following we analyze the consequences of coupling
a vibrating mirror to an atomic �-type EIT medium with the
model developed in Sec. III. In a first step, we take into account
the phase modulation of the control beam by the vibrating
mirror, but neglect all radiation pressure on the mirror. This
yields an analytically solvable time-periodic model, presented
in Sec. IV A. In a second step, we close the feedback loop by
incorporating radiation pressure on the mirror. As shown in
Sec. IV B this gives rise to interesting dynamics, which can be
understood using the results of Sec. IV A.

A. Time-periodic model

If the driving force F (t) is neglected in Eq. (2), the mirror
will undergo harmonic oscillations zm(t) = z0 cos (ωmt)
with amplitude z0. These oscillations give rise to
constant strength sidebands in the control light field
�c(t) = �c[1 + η(eiωmt + e−iωmt )/2], with relative amplitude
η = kcz0. This prevents the atomic system (5) from settling
into a genuine steady state, which suggests the construction
of an asymptotic solution in terms of Fourier components
of the density operator: ρ̂ = ∑∞

l=−∞ ρ̂l exp [−ilωmt], see for
example Ref. [30]. For long times (�pt 
 1) we demand the
Fourier amplitudes to become steady

∂

∂t
ρ̂l = 0. (7)

Due to the presence of sidebands, Eqs. (7) and (5) create an
infinite hierarchy of coupled equations for the ρ̂l . We truncate
the hierarchy at second order by neglecting all ρ̂l with |l| > 1,
in what amounts to a first order perturbative expansion in η.
We thus keep only a constant density operator ρ̂0 (the usual
steady state solution for η = 0) and its first harmonics at the
mirror frequency ρ̂±,

ρ̂(t) � ρ̂0 + ρ̂+e−iωmt + ρ̂−eiωmt . (8)

We are now interested in modulations of the imaginary
part of the probe coherence ρ ′′

ge = Im[ρge] (as before we
split complex numbers as z = z′ + iz′′ into real part z′ and
imaginary part z′′). These modulations will affect absorption
by the medium according to Eq. (6). We define

ρ ′′
ge(t) = ρ ′′

0,ge + δρ ′′
ge cos (ωmt + α), (9)

where now α is the relative phase between absorption
modulations and mirror motion and δρ ′′

ge is the (real)
amplitude of such modulations.

From our solution of Eq. (7) we find

ρ+,ge(�c)

= iη�̃p|�̃c|2ω̃m

(2i�̃c + |�̃c|2)(2i[1 − 2iω̃m][�̃c − ω̃m] + |�̃c|2)
,

(10)

where we have defined scaled quantities as x̃ = x/�p and
expanded ρ̂± to first order in �̃p, requiring �̃c 
 �̃p and
�̃p � 1, which amounts to typical EIT conditions. From (10)
we can determine δρ ′′

ge and α in (9) as δρ ′′
ge = |ρ+,ge(�c) −

ρ+,ge(−�c)| and α = arg[ρ+,ge(�c) − ρ+,ge(−�c)] + π/2,
where arg[z] is the argument of the complex number z. Here
we have used the expansion (8) and the fact that ρ∗

−,ge(�c) =
ρ+,ge(−�c).

Figure 2(a) demonstrates that Eq. (10) correctly describes
the long-term evolution of the atomic system. We show
ρ ′′

ge(t) from a numerical solution to the master equation (5)
with Newton’s equation (2), ignoring the driving force in
Eq. (2) [F (t) = 0], but initializing mirror oscillations zm(t) =
z0 cos (ωmt) with z0 > 0. This numerical solution is compared
with the predictions of Eqs. (9) and (10). After an initial
transient phase of the full model until t�p � 1, the probe
coherence is modulated at the mirror frequency with amplitude
and phase described by Eq. (10). The modulation scales
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FIG. 2. Asymptotic response of atomic system to constant control
beam sidebands, from numerical solutions of Eq. (5). We show the
imaginary part of the probe transition coherence ρ ′′

ge(t) that causes ab-
sorption, using �c = 4.13 MHz × 2π , ωm = 8.00 MHz × 2π , �p =
0.32 MHz × 2π , and �c = 10.00 MHz × 2π , �p = 6.10 MHz ×
2π . (a) Evolution of ρ ′′

ge as a function of time (in units of �−1
p )

for η = 0.08. The inset shows a zoom on the asymptotic behavior,
where the black dashed stems from our analytic solution Eq. (10).
(b) The amplitude δρ ′′

ge of these oscillations scales linearly with the
sideband strength η; (•) are data points, and the line guides the eye.

linearly with η, justifying our early truncation of the hierarchy
resulting from (7). Note that any mean coherence is nearly
suppressed (ρ ′′

0,ge ≈ 0).
Through changes in radiation pressure, the periodic modu-

lation of the transparency of the atomic medium just discussed
will give rise to a periodic driving of the mirror through Eq. (6).
This driving is automatically resonant. By determining the
phase relation between driving and mirror motion as well as
the amplitude of this driving, we can predict the response of
the mirror from classical mechanics. To this end we plot in
Fig. 3 δρ ′′

ge and α of Eq. (9) according to Eq. (10) for various
mirror frequencies ωm and detunings �c. The amplitude δρ ′′

ge

is maximal approximately at �c = ±�max, with

�max = ωm

2

[
1 + |�̃c|2 −

√
(1 − |�̃c|2)2 + |�̃c|4

ω̃2
m

]
(11)

as shown in Fig. 3(a) as a red dashed line. Equation (11) is
valid when �p is small compared to other energies. We can
further expand Eq. (11) in the quantities |�̃c|−2 and ω̃−1

m , which
are small for cases considered here and get the even simpler
expression

�max �
∣∣∣∣�2

c − 4ω2
m

4ωm

∣∣∣∣, (12)

which we will exploit in Sec. IV C.
We can also see in Fig. 3 that a wide range of relative

phases between the amplitude modulation of the probe beam,
and the phase modulation of the control beam (or mirror
motion) can be accessed through variations of the detuning
�c. The physical origin of the sharp features in Fig. 3 is a
resonance between the mirror frequency and energy gaps in the
atomic system. To see this, let us decompose (4) for one atom
as Ĥ (t) = Ĥ0 + V̂ (t), where the perturbation is V̂ (t)/� =
f (t)Ĝ, with Ĝ = i

2η[�cσ̂es − H.c.] and f (t) = cos (ωmt). Let
us define eigenstates |ϕj 〉of Ĥ0 via Ĥ0 |ϕj 〉 = Ej |ϕj 〉. We now

FIG. 3. (a) Amplitude δρ ′′
ge of the oscillations in the imaginary

part of the probe transition coherence ρ ′′
ge as a function of mirror

frequency ωm and optical detuning �c, using Eq. (10). �c =
64.00 MHz × 2π , η = 0.08, other parameters as in Fig. 2. The
red dashed line shows the peak position according to Eq. (11).
(b) The phase α of the first harmonic of ρ ′′

ge relative to the
mirror oscillation, see (9). Note that the apparent discontinuity
for �c > 0 is a meaningless 2π jump arising from plotting the
phase continuously along the �c axis. Plots in (c) and (d) are cuts
through (a) and (b), respectively, at the indicated values of mirror
frequency ωm = 21.30 MHz × 2π (brown), ωm = 32.00 MHz × 2π

(gray), ωm = 48.00 MHz × 2π (gold), and ωm = 56.00 MHz × 2π

(green). Black dashed lines are a comparison of Eqs. (9) and (10)
with direct numerical solutions of Eq. (7).

assume the system has relaxed into the EIT ground state |ϕd〉,
but otherwise we ignore spontaneous decay here.

It is clear that whenever ωm = |Ed − Ej |/� for some j =
d, the perturbation will cause resonant transitions to |ϕj 〉. This
is the case for ωm fulfilling (12). Since in this scenario the
superposition of |ϕd〉 and |ϕj 〉will beat at the mirror frequency,
also ρge is modulated with ωm. We have confirmed this picture
using time-dependent perturbation theory.

B. Interacting mirror and atomic cloud

Based on the previous section, we now determine the
consequences of enabling feedback from the atomic medium
onto the mirror through varying radiation pressure forces in
Eqs. (2) and (3). We only consider radiation pressure from the
modulated part of the probe beam,

F (t) = −Wp0A Im[ρ+,gee
−iωmt + ρ−,gee

iωmt ], (13)

thereby assuming that the mirror is already oscillating around
a new equilibrium position

zeq = 2
Wc + Wp0(1 − Aρ

′′
0,ge)

Mω2
mc

, (14)

023816-4



COUPLING OF A NANOMECHANICAL OSCILLATOR AND . . . PHYSICAL REVIEW A 93, 023816 (2016)

FIG. 4. Average energy Ē(t) of the vibrating mirror per mechan-
ical period Tm = 2π/ωm in units of �ωm from a numerical integration
of Eqs. (2) and (5), with the values of the time axis being scaled
in units of Tm and using M = 2.00 × 10−20 kg; other parameters as
in Fig. 2. In this parameter regime, for red detuning �c = −�max,
the mirror motion gets damped (a), whereas for a blue detuning
�c = +�max it gets amplified (b). Black dashed curves represent the
model developed in Sec. IV B and we find good agreement.

due to the radiation pressure by the control beam and the
constant part of the probe beam. For simplicity we set zeq = 0
from now on.

Using the driving force (13), we numerically solve the
coupled Newton equation (2) and master equation (5). As
can be seen in Fig. 4, the mirror can be driven such that
its oscillation amplitude increases or decreases depending on
�c. For a more quantitative description, we make the ansatz
zm(t) = Z(t) cos (ωmt), where the amplitude Z(t) is expected
to vary very little during one mirror period Tm. The average
energy of the oscillator per period is Ē(t) = 1/2Mω2

mZ̄2(t).
Inserting the ansatz into Eq. (2), exploiting the slow variation
of Z(t), and using Eq. (13), we find the solution

Z̄(t) = Z̄(0)e−�efft/2, (15)

�eff = F0d �p

Mωm�p
Re[ρ+,ge(�c) − ρ+,ge(−�c)]

= kcF0d �p

Mωm�p

[
δρ ′′

ge

η

]
sin(α), (16)

where the overline denotes a time average over one mirror
period. Details are shown in Appendix B. In (16) we use
F0 = 2Wp0/c and α can be determined from (10). Note that
depending on the relative phase shift α between mirror motion
and transparency modulations, the quantity �eff can actually
describe damping or amplification. In Fig. 3 we see that the
effect on the mirror will be largest at the resonant feature near
�max, with damping for negative detuning and amplification
for positive detuning as long as ωm < �c/2. For ωm > �c/2
the two phenomena are swapped.

We validate the model (15) by comparing the predicted
energy of a driven oscillator, using the analytical result for the
atomic coherence (10), with the energy from a full numerical
solution of Newton (2) and master equation (5). We find good
agreement as shown in Fig. 4. Our conclusions on damping
and amplification are not altered by the inclusion of mirror
coupling to an additional external heat bath, e.g., through
mirror clamping. To this end we have included friction and
a stochastic driving force as usual [3], which for small but

FIG. 5. Effective optical damping rate �eff for �c = �max. In
(a) we show the dependence on the mirror mass M and the mirror
frequency ωm for fixed Rabi frequencies �p and �c; in (b) we fixed
M and ωm and vary the Rabi frequencies.

realistic environmental coupling rates up to 1 kHz did not alter
the mechanism.

The results of the present section suggest an optical
technique that makes use of atomic absorption to obtain a
tailored optical driving force in order to control the mechanical
state of a vibrating mirror.

C. Range of applicability

For given oscillator parameters ωm and M , the results of
the preceding sections enable us to determine optical EIT
parameters �p,c, �c, for which the damping or amplification
of the mirror is maximal [Eq. (11)]. For these we show
the effective damping rate �eff of (16) in Fig. 5 for a
variety of mirror parameters. Additionally, we also show the
performance as a function of �p,c for fixed mirror parameters.

Crucially underlying Fig. 5 are our assumptions for light-
field and medium properties. We have assumed a 87Rb
medium of density N = 6.40 × 1012 cm−3 and length L =
242.00 μm. Assigning the states |g〉 = |5S1/2,F = 1〉, |s〉 =
|5S1/2,F = 2〉, and |e〉 = |5P1/2,F

′ = 2〉, the Rabi frequen-
cies used in Fig. 5 then roughly correspond to powers
Wp0 � 5.66 nW and Wc � 1.60 mW at beam waists of wp =
560.00 μm for the probe and wc = 720.00 μm for the control
beam. The transition frequencies used are ωp ≈ ωc � 2.37 ×
1011 MHz × 2π . The decay rate �p � 6.10 MHz × 2π .

For this set of parameters, cooling rates in excess of
typical environmental coupling strengths are accessible for
rather light mirrors M � 10−18 kg with frequencies ωm ≈
10–100 MHz × 2π . Note that the feature at ωm = �c/2 is due
to the absence of atomic response at this frequency, as evident
in Fig. 3(a). Larger damping rates for heavier mirrors could be
obtained with a larger probe power Wp0. In the present scheme
they are restricted by the requirement �p < �c. Variations
of the scheme can be achieved by choosing a higher lying
decaying state |e〉, which would decrease the transition matrix
element deg and thus allow larger Wp0 for identical Rabi
frequency �p. However, simultaneously this would typically
reduce the decay rate �p.

V. CONCLUSIONS AND OUTLOOK

We have described an interface of the classical motion of
a harmonically oscillating nanomechanical mirror with the
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internal state dynamics and hence optical properties of a three-
level, �-type atomic medium. Our atom-optomechanical setup
exists in free space, without any cavity. Coupling between
mirror and atomic system is provided by the probe and control
light fields that render the ultracold atomic gas transparent,
due to electromagnetically induced transparency (EIT).

Depending on the choice of the EIT two-photon detuning,
amplitude modulations of the probe light beam caused by the
atomic medium are phase locked to the mirror oscillation. We
have provided analytical expressions for the dependence of
phase and strength of the modulations on the detuning. The
setup can also be seen as transferring phase modulations on
one optical beam onto amplitude modulations of another.

When the modulated probe beam is made to interact with
the mirror, oscillatory motion of the latter can be damped or
amplified. We derive the effective damping (amplification) rate
of the mirror, using a single atom type description of the EIT
medium and a Fourier expansion of the density matrix in the
presence of constant sidebands. The achievable damping rates
exceed typical coupling strength of mirror to their thermal
environment for light and fast mirrors (M � 10−18 kg, ωm �
20 MHz × 2π ).

Our results provide the basis for a thorough understanding
of the corresponding quantum-mechanical setup, which
appears as a good candidate for a cavity-free cooling
scheme [15,25], that may complement established cavity
cooling techniques [2,3,36,37]. This will be the subject of
future work.

Further interesting perspectives arise when our setup is
extended towards Rydberg physics: EIT media where the
second ground state |s〉 is replaced by a highly excited
(and therefore also long-lived) Rydberg state |r〉 [38–44],
have recently been used for the creation of single-photon
sources [45,46] and proposed to enable nonlocal nonlinear
optics [47]. Much of the physics presented here is similar if |s〉
is replaced by a Rydberg state |r〉. Since this state |r〉 would
be highly sensitive to interactions with other Rydberg atoms,
the control of mirror motion by further quantum mechanical
atomic elements may be feasible also without an optical cavity.
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APPENDIX A: SIMPLIFIED OPTICAL RESPONSE

For the system shown in Fig. 1, the probe and control beams
are coupled to an atomic medium with Rabi frequencies �p

and �c. We assume the control field propagates inside the
gas with group velocity c and it is thus undisturbed by the
response of the atoms [48]. The evolution of the probe field
is however determined by a wave equation in the presence
of a source. This source is the medium polarization at the
probe field frequency Pp = P (+)

p + c.c., given as the sum of
its positive (P (+)

p ) and negative ([P (+)
p ]∗) frequency parts,

respectively. For a one-dimensional description of the medium
along z, the polarization is given by the collective slowly

varying atomic coherence between |g〉 and |e〉, ρge(z,t), via
P (+)

p (z,t) = degρge(z,t) exp[i(kpz − ωpt)], where ρij (z,t) =∑
n〈σ̂ (n)

ij (t)〉δ(z − zn). Then within the slowly varying enve-
lope approximation (SVEA) [49] the wave equation for the
probe field reads

[∂t + c ∂z]�p(z,t) = iωp

2

6π �p

k3
p

ρge(z,t). (A1)

Equations (A1) and (5) form the so called set of Maxwell-
Bloch equations.

Under usual stationary conditions of EIT one considers c.w.
probe and control light fields impinging on the medium. It is
then assumed that locally the density matrix elements ρij (z,t)
settle into their steady state determined from ˙̂ρ = 0 in Eq. (5).
Assuming a linear and homogeneous response of the medium
we can define χ�p ≡ 6π �p

k3
pL

ρge. The propagation Eq. (A1) can

now be analytically solved from z = 0 to z = L to yield

�pL ≈ �p0(1 + ikpLχ/2), (A2)

under the condition |kpLχ | � 1. Here �p0 denotes the Rabi
frequency of the incoming probe beam, while �pL is that after
passing through the medium of length L.

In our scenario the control beam has a residual time
dependence at the mirror frequency, as a result the probe beam
is also modulated in time. As long as the propagation of the
probe beam adiabatically follows the time evolution of the
coupling beam, we can assume a modulated steady state to
be locally attained everywhere in the medium, according to
Eq. (7). Considering the case in which retardation effects are
negligible, L � c/ωm, we then integrate again Eq. (A1) from
z = 0 to z = L to obtain a simple probe beam transmission
through the medium as

�pL(t) ≈ �p0

(
1 + ikp

2
L[χ0 + χ1e

−iωmt + χ−1e
iωmt ]

)
.

(A3)

For this, we assumed a linear response χ(n)�p0 = 6π �p

k3
pL

ρ(n)ge,

where the χn are independent of �p0(n = 0, + ,−). This
linearity was explicitly confirmed for cases considered here.

APPENDIX B: EFFECTIVE DAMPING OF THE
MIRROR’S OSCILLATION AMPLITUDE

The dynamics of the nanomirror oscillations can be recast
in terms of the complex variable bm(t) = [zm(t) + i

pm(t)
Mωm

], with
pm(t) = Mżm(t) the canonical momentum associated with
the displacement coordinate zm(t). Newton’s equation (2) is
then equivalent to ḃm(t) + iωmbm(t) = i F (t)

Mωm
, and damping

and amplification of the nanomirror motion will be reflected
in the time evolution of its mechanical energy E(t) =
1/2Mω2

mb∗
m(t)bm(t). Written in units of length and neglecting

fast rotating terms (∝e±2iωmt ), the time evolution of the
amplitude of motion of the mirror Z = √

b∗
mbm reads

Ż(t) � F0

2Mωm

d �p

�p
Re[δρ ′′

ge(t)ei(α−π/2)]. (B1)

Here δρ ′′
ge and α are derived in Sec. IV A for constant mirror

oscillations. Since the amplitude of mirror oscillations is
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now allowed to change in time, we make the replacement
δρ ′′

ge(t) �→ [δρ ′′
ge/η]kcZ(t) in Eq. (B1), where we used the

linear dependence of δρ ′′
ge on the mirror oscillation amplitude

∼η found in Sec. IV A. The relative phase α does not depend
on Z(t) and hence remains constant.

We can finally solve equation (B1) coarse grained in time
(t > Tm) by averaging over one mirror period to remove small

variations of Z(t), and obtain

˙̄Z(t) = − kcF0

2Mωm

d �p

�p

[
δρ ′′

ge

η

]
Z̄(t) sin α, (B2)

with the solution (15) and (16) in Sec. IV B.
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