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a b s t r a c t

The validity of the CES approximation is investigated by comparison with direct diagonalisation of a
model vibronic Hamiltonian of N identical monomers interacting electronically. Even for quite short
aggregates ðN J 6Þ the CES approximation is shown to give results in agreement with direct diagonalisa-
tion, for all coupling strengths, except that of intermediate positive coupling (the H-band region). How-
ever, previously excellent agreement of CES calculations and measured spectra in the H-band region was
obtained [A. Eisfeld, J.S. Briggs, Chem. Phys. 324 (2006) 376]. This is shown to arise from use of the mea-
sured monomer spectrum which includes implicitly dissipative effects not present in the model
calculation.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

In a series of papers [1–4] the ‘‘coherent exciton scattering”
(CES) approximation was applied with some success to calculate
the absorption and circular dichroic spectra of a variety of aggre-
gates of dye molecules. According to their structure, such aggre-
gates exhibit continuous J- or H-band absorption (see e.g. Refs.
[5,6]) and the CES approximation, working directly with the con-
tinuous vibronic absorption profile, is able to reproduce both types
of bandshape in detail. The CES approximation includes intra-
molecular vibrations explicitly and coupling to other modes only
implicitly by working with the continuously-broadened experi-
mental spectra. Over the years there have been many other ap-
proaches to the inclusion of vibronic effects on aggregate spectra,
see for example, Refs. [7–15].

The CES approximation is a mean-field type of approximation in
which the exact monomer Green function, involving both elec-
tronic and vibrational degrees of freedom, is replaced by its aver-
age in the vibrational ground state. This allows the aggregate
bandshape to be expressed in terms of the monomer absorption
bandshape; the only fit parameter being the inter-monomer elec-
tronic interaction V. If GðEÞ ¼ ðE� HM � V þ idÞ�1 is the aggregate
Green operator at energy E and gðEÞ ¼ ðE� HM þ idÞ�1 that of the
non-interacting monomers, one has the identity

G ¼ g þ gVG ð1Þ

where HM is the sum of monomer Hamiltonians and V is the elec-
tronic interaction operator between monomers. The CES approxi-
mation corresponds to replacing the exact monomer Green
operator g by hgi, where h. . .i denotes the aggregate vibrational
ground state average. Then

hGi ¼ hgi þ hgVGi ð2Þ

becomes

hGi ¼ hgi þ hgiVhGi ð3Þ

when V is assumed to be independent of vibrations. Eq. (3) has sym-
bolically the solution

hGi ¼ 1
1� hgiV hgi: ð4Þ

However, the physical content of the CES approximation is best
seen by iterating Eq. (3) in a Born series, i.e.

hGi ¼ hgi þ hgiVhgi þ hgiVhgiVhgi þ . . . ð5Þ

If the matrix element Gnm ¼ hpnjGjpmi, where jpni is a state in which
monomer n is excited electronically with all other monomers in
their ground electronic state, is taken, then Eq. (5) becomes

hGnmi ¼ hgnidnm þ hgniVnmhgmi þ
X

n0
hgniVnn0 hgn0 iVn0mhgmi þ . . .

ð6Þ

This shows that whenever electronic excitation is handed on
from one monomer to another, the monomer which de-excites
goes back into its ground vibrational state. This is the essential
ingredient in the CES approximation.
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The CES approximation has been used successfully to describe
the detailed lineshape of various measured aggregate spectra [1–
4] in the intermediate and strong coupling regime. Following
Simpson and Peterson [16] the strong and weak coupling regimes
are defined by the conditions V > D or V < D, respectively, where D
is the width of the monomer absorption spectrum. One speaks
about intermediate coupling when V � D.

In some ways, the CES approximation performs better than it
ought to, in that in its original formulation [17,18] it involves only
the (zero temperature) aggregate ground state, represented as a
simple product of monomer vibrational ground states. However
in the cases to which it has been applied, measurements were
made at room temperature in a variety of solvents which also
interact with the dye molecules. The origin of the success of CES
in this more general context may lie in the recent demonstration
[19] that its essential structure (Eq. (4)) is retained when the aver-
age h. . .i is extended to include finite temperature and averages
over site solvent interactions. This question of temperature and
solvent effects on J-aggregate spectra has been studied extensively
both experimentally [20] and theoretically [21]. In the theoretical
work a purely electronic Hamiltonian was used for the aggregate
but coupling to phonons of the surroundings were considered to
show that temperature effects can be included successfully in this
model. Here, since the CES method includes such effects implicitly,
coupling to phonons of the surrounding will not be considered
explicitly. Rather, we will include the intra-monomer vibrations
and compare the results of the CES approximation with those of
a direct diagonalisation of the aggregate vibronic Hamiltonian.

Although the original derivation [17,18] suggests that the CES-
approximation is applicable to strong coupling, in Ref. [22] it was
claimed that it should only be valid for weak coupling. Our subse-
quent comparison with experiment [1] indicates validity for both
strong and intermediate coupling. To further throw light on these
questions, in this work the validity of the CES approximation will
be examined in detail in its original form, in which an average is
taken over the vibrational ground state only. In Section 2 the meth-
od of calculation is described. In Section 3 the results are presented
and in Section 4 our conclusions as to the limits of validity of the
CES method are given.

2. Theoretical method for calculation of aggregate spectra

2.1. Direct diagonalisation of the vibronic Hamiltonian

We will consider an aggregate consisting of N identical mono-
mers having only one excited electronic state upon which vibra-
tional manifolds are built. For an arbitrary monomer n, the
ground state is the product jvnijani where jvni is the electronic
ground state, and jani denotes the vibrational state with quantum
number an, in this electronic state (we assume Born–Oppenheimer
(BO) separability within a monomer). In a corresponding notation
the excited vibronic state of monomer n is designated by the prod-
uct j/nijbni. Throughout this work v and a will be used for the elec-
tronic ground state and its vibrational state and / and b for the
excited electronic state and its vibrational state.

The aggregate Hamiltonian is the sum of the monomer Hamilto-
nians Hn and the inter-monomer interaction operator V

HA ¼ HM þ V ¼
X

n

Hn þ V : ð7Þ

In the following it is assumed that the electron–electron interaction
V is independent of nuclear co-ordinates. In previous work [1–
4,17,18] (and as used in Eq. (6)) we defined one-exciton aggregate
electronic states, where monomer n is in the excited electronic state
and all others in the ground state, as

jpni ¼ jv1ijv2i � � � j/ni � � � jvNi: ð8Þ

Here we generalise this notation to define an aggregate vibronic
state in which monomer n is excited electronically and in vibra-
tional state jbni and all other monomers in the ground electronic
state with vibrational quantum number ai for monomer i. This gen-
eralised basis is written

jpn; mni ¼ jpnija1i � � � jbni � � � jaNi ð9Þ

i.e. mn denotes the sequence of vibrational quantum numbers
ða1 � � �bn � � �aNÞ. Note that this simple product basis is a BO basis
for the aggregate as a whole. However, the inter-monomer interac-
tion mixes these basis states to give no BO separation of the total
aggregate eigenfunctions. In this chosen basis the matrix elements
of the aggregate Hamiltonian are

hpn; mnjHAjpm; ~mmi ¼ �mn dnmdmn~mm þ Vnmhbnj~anihamj~bmi

�
YN
i¼1

i 6¼n;m

dai ~ai
: ð10Þ

with

�mn � �a1 þ � � � þ �bn þ � � � þ �aN : ð11Þ

Here �bn is the energy of monomer n in the vibrational state jbni of
the excited electronic state and �ai that of monomer i in the vibra-
tional state jaii of the electronic ground state. The quantum num-
bers ~an and ~bm are elements of the sequence ~mm. The Franck–
Condon (FC) factor hanjbni denotes the overlap of vibrational state
bn of the excited electronic state with vibrational state an of the
ground electronic state.

The eigenstates and eigenenergies of the aggregate are defined
by

HAjWli ¼ EljWli: ð12Þ

We designate by jp;0i the absolute vibronic aggregate ground state
i.e.

jp;0i ¼
YN
i¼1

jviijai ¼ 0i: ð13Þ

Then the aggregate absorption cross-section energy dependence is
given by the absorption strength

AðElÞ ¼ hp;0j~E � ~DAjWli
��� ���2 ð14Þ

where ~E is the light polarisation vector and the aggregate dipole
operator ~DA is the sum of monomer operators ~Dn. To evaluate Eq.
(14) further an identity is inserted between ~DA and jWli so that

AðElÞ ¼
X
m;mm

~E � p;0
X

n

~Dn

�����
�����pm; mm

* +
pm; mmjWlh i

�����
�����

2

ð15Þ

The dipole matrix element appearing in Eq. (15) can be simplified to
give

p;0j~Dnjpm; mm

D E
¼ an ¼ 0j vnj~Dnj/n

D E
jbn

D E
dnmdmm ;ð0���bn ���0Þ: ð16Þ

Consistent with our assumption that V is independent of vibra-
tions, we make the Condon approximation that ~Dn is independent
of vibrations so that the dipole transition matrix element of mono-
mer n is

hanjhvnj~Dnj/nijbni �~dnhanjbni: ð17Þ

The absorption strength Eq. (14) then reduces to

AðElÞ ¼
X
n;bn

~E �~dnhan ¼ 0jbnihpn; ð0 . . . bn . . . 0ÞjWli
�����

�����
2

: ð18Þ
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The aggregate (stick) spectrum is then given by

AðEÞ ¼
X

l

AðElÞdðE� ElÞ: ð19Þ

The dimension of the basis Eq. (9) and therefore the number of
terms in the summation Eq. (19) depends on the number of vibra-
tional states taken into account. If all monomers have ng vibra-
tional states of the ground electronic state and ne vibrational
states of the excited electronic state, the dimension is given by

dim ¼ N � ne � nN�1
g : ð20Þ

Therefore the number of absorption sticks is already large (about
10,000) for an aggregate of ten monomers with two vibrational
states in each electronic state. Note that the dimension depends
crucially on the number ng of vibrational states of the electronic
ground state.

In the special case that we assume that all N monomers are
identical and arranged in a circle, the dimension of the matrix to
be diagonalised can be reduced by a factor N using a transition to
a delocalised excitonic basis rather than the localised basis Eq.
(9). For simplicity we specialise V to nearest-neighbour coupling.
How the delocalised states are constructed is illustrated first by
considering the simple case of a cyclic trimer ðN ¼ 3Þ. The excitonic
basis consists of states jk; m1i, with k ¼ 2p=3;4p=3;2p, which are
simply a superposition

jk; m1i ¼
1ffiffiffiffi
N
p eikjp1; ðb1;a2;a3Þi

�
þ e2ikjp2; ða3;b1;a2Þiþe3ikjp3; ða2;a3; b1Þi

�
ð21Þ

of the three possible shifts of the jp1; m1i state along the cyclic
aggregate. In general, for a cyclic N-mer the excitonic basis jk; m1i is

jk; m1i ¼
1ffiffiffiffi
N
p

XN

n¼1

eiknSn�1jp1; m1i; ð22Þ

with k ¼ 2pj=N; j ¼ 1; . . . ;N and where Sm is a shift operator shift-
ing both the electronic and vibrational excitation on the aggregate
by m monomers to a higher monomer index i0 ¼ iþm, i.e.

Smjp1; m1i ¼ jp1þm; ðaNþ1�m . . . b1 . . .aN�mÞi: ð23Þ

The action of Sm is also illustrated in Fig. 1.
Denoting by W � Vn;nþ1 the nearest-neighbour interaction be-

tween the monomers and defining

C �
W for N ¼ 2 ðdimerÞ
2W for N > 2

�
ð24Þ

the matrix elements of HA in the exciton basis Eq. (22) are

hk; m1jHAjj; ~m1i ¼ �m1 dm1~m1 þ e�ik
� C

2
b1j~a2h i aNj~b1

D EYN�1

i¼2

dai ~aiþ1

þeik C
2
hb1j~aNiha2j~b1i

YN�1

i¼2

daiþ1 ~ai

#
dkj: ð25Þ

Note that m1 ¼ ðb1;a2; . . . ;aNÞ. From Eq. (25) one sees that HA is
diagonal in the exciton k basis i.e. the eigenvalue problem

HAjWkki ¼ EkkjWkki ð26Þ

can be solved separately for each k ¼ 2p=N; . . . ;2p with
k ¼ 1; . . . ; ne � nN�1

g (ng and ne are the numbers of vibrational states
taken into account in the ground and excited electronic state of
each monomer, see Eq. (20)). The absorption strength (see Eq.
(18)) from the aggregate ground state jp;0i to the eigenstate jWkki
is given by

AðEkkÞ ¼
1
N
~E �
XN

n¼1

eikn~dn

�����
�����

2

�
Xne�1

b1¼0

ha1 ¼ 0jb1ihk; ðb1;0 . . . 0ÞjWkki
�����

�����
2

: ð27Þ

The first factor on the r.h.s. is the effective electronic dipole mo-
ment of the aggregate in exciton state k and depends upon the
aggregate geometry. In the simplest case where all monomer di-
poles are parallel, this factor reduces to Nj~E �~d1j2dk;2p. In this case,
to calculate the absorption spectrum, only the block k ¼ 2p of the
Hamiltonian matrix (25) needs to be diagonalised and the stick
spectrum is given by (see Eq. (19))

AðEÞ ¼
X

k

AðE2p;kÞdðE� E2p;kÞ ð28Þ

with

AðE2p;kÞ ¼ N ~E �~d1

Xne�1

b1¼0

ha1 ¼ 0jb1ihk; ðb1;0 . . . 0ÞjW2p;ki
�����

�����
2

: ð29Þ

Calculations of the aggregate spectrum from Eq. (29) using the
eigenfunctions and eigenenergies from direct diagonalisation of
the aggregate Hamiltonian will be presented and referred to as
DD calculations.

2.2. The monomer spectrum

All that is required to specify the vibrational shape of the mono-
mer spectrum and carry through the calculation of the aggregate
spectrum are the monomer Franck–Condon factors between vibra-
tional states of upper and lower electronic states (for the definition
see the discussion after Eq. (11)). Hence the calculations can be
made for arbitrary ground and excited state BO potential surfaces.
However, to conform with a large body of work, particularly using
the second quantisation formalism, we will consider here that
upper and lower potentials are both harmonic of the same curva-
ture, with a shift Q of the minimum of the upper surface w.r.t. the
minimum of the lower. Here Q is the vibrational coordinate giving
rise to a single dominant vibrational progression in the monomer
spectrum. Despite its simplicity this model gives a surprisingly
good fit to the spectra of a large variety of organic molecules. It
has the advantage that the FC factors can be calculated analytically
[23] and the monomer spectrum obtained in a simple analytic
form. Denoting the harmonic vibration frequency by x and defin-
ing the Huang–Rhys factor [23] by

X ¼ x
2�h

Q 2; ð30Þ

Fig. 1. Sketch of the action of the shift operator S. As example S2 is considered. The excited electronic state is highlighted in gray.
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the absorption strength of the monomer from the ground state
(where a ¼ 0), which is of relevance to the CES approximation, is

MðEÞ ¼
Xne�1

b¼0

Xbe�X

b!
dðE� b�hxÞ: ð31Þ

The width (standard deviation) of the monomer spectrum in this
case of a Poissonian distribution is given by

D ¼
ffiffiffiffi
X
p

�hx: ð32Þ

Examples of monomer spectra for various values of the parameter D
are shown in Fig. 2. As is well-known, for small X, i.e. small D, the
Poisson distribution gives only one dominant peak (Fig. 2a) but be-
comes progressively more Gaussian as X increases and the progres-
sion broadens. Here and in the following the absorption strength is
given in arbitrary units. All energies, including r and D are given in
units of �hx.

2.3. The CES approximation

It is clear from the discussion of the introduction that the CES
approximation is equivalent to performing the diagonalisation of
Section 2.1 in a basis in which in the ground electronic state only
the ground vibrational state is included. Then transfer of excitation
to or from a monomer must proceed through this state as can be
seen from the expansion (6) of the CES approximation. However
the effect of the CES approximation on the absorption lineshape
is better illustrated by the form (4). The imaginary part of the
monomer function hgðEÞi is proportional to the monomer absorp-
tion strength Eq. (31). Once Imhgi � gI is determined, the real part
can be calculated from the Kramers–Kronig dispersion relation.
Then the aggregate absorption strength can be calculated from
ImhGi, where hGi is given by expression (4).

For a stick monomer spectrum, the Rehgi � gR is readily calcu-
lated and the function 1=gRðEÞ is shown in Fig. 3 (see also Ref.
[1]). This function diverges at the discrete energy points where
the monomer absorbs (given by the energy values b�hx). Outside
of these points the function hgi is wholly real so that the aggre-
gate function hGi has poles (and hence there is absorption) where
the coupling strength C ¼ 1=gR (for the definition of C see Eq.
(24)). These poles are given by the intersection of horizontal lines
(representing different coupling strength C) with the function
1=gRðEÞ. From Fig. 3 one sees that the location of aggregate
absorption depends sensitively on the sign and magnitude of C.
As discussed in detail in Ref. [1] this explains the qualitative dis-
similarity of J- and H-band spectra. At the aggregate absorption
energies El (poles) gI ¼ 0 so the expression (4) is not defined.

Nevertheless [1] one can calculate the absorption function of
the aggregate as

AðEÞ ¼
X

l

og�1
R

oE

� ��1

E¼El

dðE� ElÞ: ð33Þ

This shows that the absorption strength at a particular pole is inver-
sely proportional to the slope of g�1

R at that point. Hence only the
poles where g�1

R has gradient in the order of unity absorb apprecia-
bly and these points are denoted by circles in Fig. 3. One also notes
that in the CES approximation the number of poles is limited by the
number ne of vibrational states included on the upper potential irre-
spective of the number N of monomers considered.

3. Numerical results

All calculations, both direct diagonalisation (DD) and CES calcu-
lations yield stick spectra. The CES results in fact were obtained
from the DD calculation by restricting to the ground vibrational
state only (i.e. ng ¼ 1), but it was checked that the results agreed
with those obtained from Eq. (33). To facilitate comparison of
CES and DD results the calculated stick spectra have been convo-
luted with a narrow Gaussian of standard deviation r ¼ 0:1�hx.
As can be seen in Fig. 2 this width is small enough to clearly resolve
the individual peaks of the monomer absorption spectrum.

The dimension of the Hamiltonian matrix Eq. (25) is ne � nN�1
g

and computer time for diagonalisation therefore escalates, particu-

0
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8

0 1 2 3 4 5 0 1 2 3 4 5
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Δ

Fig. 2. Monomer spectra of different width (standard deviation) D convoluted with narrow Gaussians (of standard deviation r ¼ 0:1). All energies are in units of �hx.
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Fig. 3. Monomer function 1=gR as a function of energy E. The width of the monomer
spectrum is D ¼ 0:8. The absorption strength at each pole is indicated by the size of
the circle. The dashed horizontal lines are for energies C ¼ �1:5 and C ¼ 1:2.
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larly as ng increases. However all DD spectra have been checked for
convergence and the cases presented have a minimum 95% overlap
with the spectra with ng and/or ne increased by unity. For all spec-
tra shown, we have used ne ¼ 9. In Fig. 4 our convergence criterion
is illustrated for a typical example.

There are three parameters deciding the shape of the aggregate
spectrum, namely, the coupling strength C, the monomer spectral
width D and the size N of the aggregate. In the comparisons pre-
sented, representative points in this 3-dimensional space are cho-
sen. To some extent parameters C and D can be combined into the
Simpson–Peterson (SP) parameter C=D, where strong coupling has
jCj=D > 1 and weak coupling jCj=D < 1. Although this is a very
rough measure, it will emerge that, for N � 2, the CES approxima-
tion is good for both weak and strong coupling and only may have
problems in the intermediate positive regime. Similarly, it has been
shown that the CES approximation is not good for dimers ðN ¼ 2Þ,
since electronic excitation is trapped indefinitely on just two
monomers (see Ref. [24]). This conclusion is reinforced by the re-
sults presented here, except in the case of weak coupling.

In considering these comparisons, two sum rules satisfied by
both DD and CES spectra [25,17] should be kept in mind. One is
that the total absorption strength of any spectrum is equal to that
of the monomer (first sum rule SR1) and secondly that the mean
energy of the spectrum (first moment) is shifted from that of the
monomer by exactly the coupling energy C (second sum rule SR2).

Since the CES result is independent of N, it is logical to present
comparisons of DD spectra with CES for fixed values of C and D and
see at which N the CES approximation becomes adequate.

Although we have performed calculations for monomer spectra
with X, defined in Eq. (30), ranging from X ¼ 0 to X ¼ 2, in this
work we will focus on the case X ¼ 0:64, i.e. D ¼ 0:8�hx. This value
of X is representative of those found for the dominant vibrational
progression of many organic dyes.

3.1. Strong negative coupling

This case is the classic case of the formation of a J-band. Repre-
sentative spectra are shown in Fig. 5 (for SP � �6). The values of ng

indicated on the figures are those used in the calculation of the DD
spectra. The results presented are for C ¼ �5 but we have checked
that there is no change in the shape of the spectra for C < �5. The
monomer spectrum for this case is given in Fig. 2c. As N increases,
essentially only one strong peak on the low-energy side of the

0

2

4

0

2

4

0 1 2 3 0 1 2 3

Fig. 4. Illustration of the convergence criterion for the aggregate absorption. (a) ng ¼ 1 (solid) and ng ¼ 2 (dashed). The overlap is 68%. (b) ng ¼ 2 (solid) and ng ¼ 3 (dashed).
The overlap is 81%. (c) ng ¼ 3 (solid) and ng ¼ 4 (dashed). The overlap is 90%. (d) ng ¼ 4 (solid) and ng ¼ 5 (dashed). The overlap is 95%. The parameters used are
N ¼ 4;C ¼ 1:2;D ¼ 0:8;ne ¼ 9.
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Fig. 5. Strong negative coupling. Full curves CES spectra, dashed curves DD spectra,
for C ¼ �5;D ¼ 0:8. The values of N and ng are indicated on the figures.
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monomer band appears, whose mean energy is shifted by C from
the monomer mean energy. In Fig. 5d ðN ¼ 8Þ one sees that the
CES approximation is in good agreement with the DD result. As a
result of the sum rules, the small peak near E ¼ �3:5 in the DD
spectrum causes its J-band to be slightly less intense and shifted
to slightly larger negative energy than the CES J-band peak. On
the dispersion curve of Fig. 3 one sees the origin of the J-band as
due to the single pole at negative energy split off from the mono-
mer band. This pole carries all the oscillator strength. For the other
poles the g�1

R curve is almost vertical, giving vanishing absorption
according to Eq. (33).

3.2. Intermediate negative coupling

Here we choose C ¼ �1:5 so that SP � �2, all other parameters
being as in Fig. 5. From Fig. 6 one notes that now the CES approx-
imation has small subsidiary peaks. As can be seen from Fig. 3
these are due to additional poles in the monomer region acquiring
some oscillator strength. Nevertheless the CES spectrum is domi-
nated by the isolated-pole J-band peak. Although the peaks in
the region of monomer absorption are different in the DD calcula-
tion, these contributions diminish with increasing N such that for

N ¼ 8 there is again very good agreement between CES and DD
results.

3.3. Weak negative and weak positive coupling

Here C ¼ �0:2; SP ¼ �0:25 (Fig. 7) and C ¼ þ0:3; SP � 0:38
(Fig. 8), all other parameters being taken as in Fig. 5.

In the case of weak coupling the DD spectrum does not change
with N for the case D ¼ 0:8 and so only the dimer case N ¼ 2 is
shown in Figs. 7 and 8. Here there is excellent agreement, both
in position and magnitude between DD and CES results. This is per-
haps remarkable when one remembers that the DD results repre-
sent a convolution over up to about 10,000 individual
eigenvalues, whereas the CES spectrum arises from only the four
main contributing poles for C ¼ �0:2 and for C ¼ þ0:3,
respectively.

To summarise, we have shown that, for aggregates of length
N J 6, the CES results, i.e. including only the ground vibrational
state in the electronic ground state, agree well with DD calcula-
tions where several vibrational states are included, for all negative
coupling strength and for weak positive coupling. For weak nega-
tive or positive coupling the CES method gives good results even
for the dimer N ¼ 2.

The case of strong positive coupling is not shown, since if there
were a strong shift to higher energies the absorption would overlap
higher electronic bands and our model would break down.

There remains the most interesting case of intermediate posi-
tive coupling where the aggregate absorption occurs in the region
of monomer absorption, typical of broad H-band formation. This
case will be considered in some detail.
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Fig. 6. Intermediate negative coupling. Full curves CES spectra, dashed curves DD
spectra, for C ¼ �1:5;D ¼ 0:8. The values of N and ng are indicated on the figures.
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Fig. 7. Weak negative coupling. Full curve CES spectrum, dashed curve DD
spectrum, for C ¼ �0:2;D ¼ 0:8, with N ¼ 2 and ng ¼ 8.
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Fig. 8. Weak positive coupling. Full curve CES spectrum, dashed curve DD
spectrum, for C ¼ þ0:3 and D ¼ 0:8 with N ¼ 2 and ng ¼ 8.
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3.4. Intermediate positive coupling

Note first that from Fig. 3, one sees that for intermediate posi-
tive coupling, the aggregate poles in the CES approximation lie in
the region of monomer absorption and their strength and location
then is very sensitive to the coupling strength C. In the following
we consider the case C ¼ 1:2 (i.e. a SP parameter of 1.5). In Fig. 3
the CES result for this case is illustrated (intersection of upper
dashed horizontal line). In Fig. 9 a comparison of CES and DD spec-
tra is shown.

One notes no good agreement of CES and DD results in this case,
except to say that the dominant absorption is in the same spectral
region for both methods. Indeed in this case the DD results them-
selves vary significantly with the N value and no convergence with
N is seen, in contrast to the case of intermediate negative coupling
shown in Fig. 6.

One must remember that the curves of Fig. 9 are calculated, in
all cases, first as stick spectra and then convoluted with a Gaussian
whose width is chosen arbitrarily as r ¼ 0:1. This width is consid-
erably less than that typical of room–temperature solvent spectra.
Hence in Fig. 10 the same data as in Fig. 9 is shown convoluted

with a Gaussian of r ¼ 0:3 width. Then one sees that, for N P 4,
there is a much better, although still not exact agreement between
CES and DD results. Hence, even when averaged over a broad en-
ergy region, the CES method would appear not to perform well
for the H-band case of intermediate positive coupling. However,
in Ref. [1] we showed that the CES method gives excellent agree-
ment, even in some fine details, with measured H-band spectra.
Important is that in Ref. [1] the measured monomer spectrum,
rather than a calculated Poissonian stick spectrum, was used as in-
put to the CES method. As we show now, it appears that this is cru-
cial in order to obtain agreement with measured aggregate spectra
and procedures based on fits to stick spectra in general appear less
reliable. To illustrate this, specifically we adopt the following strat-
egy of comparing three different methods of calculation of the
aggregate spectrum.

(a) The measured monomer spectrum of Pinacyanol from Ref.
[26], which was used in the CES calculations of Ref. [1] and is
shown in Fig. 11a (dotted line), is fitted to a stick Poissonian distri-
bution with each peak broadened by the same Gaussian. This fitted
spectrum is also shown in Fig. 11a (solid line). Taking X and x from
the fitted monomer stick spectrum, the stick spectrum of the
aggregate is calculated using the DD method. Then each peak is
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Fig. 10. Same as Fig. 9 but convoluted with a broad Gaussian with r ¼ 0:3.
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Fig. 9. Intermediate positive coupling. Full curves CES spectra, dashed curves DD
spectra, for C ¼ þ1:2;D ¼ 0:8, convoluted with a narrow Gaussian of standard
deviation r ¼ 0:1.
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convoluted with the same Gaussian as used in the monomer spec-
trum. The coupling strength C has been optimised to obtain a best
fit and the overall calculated spectrum shifted by exactly the shift
S ¼ 480 cm�1 used in Ref. [1] for the dye concentration considered.
The DD result for N ¼ 5 and ng ¼ 5 is shown in Fig. 11b and is in
reasonable agreement with experiment, except for a large discrep-
ancy in the peak around 16;500 cm�1.

(b) The fitted continuous monomer spectrum of Fig. 11a is used
as input in the CES calculation of the aggregate spectrum, again
with C optimised and with S ¼ 480 cm�1. Now, Fig. 11c, there is
reasonable agreement in the peak position and respective heights
but the peaks appear too narrow. This probably arises from the
too-low absorption of the monomer fit in the region around
19;000 cm�1 (see Fig. 11a), leading to a too-low absorption in
the same region of the aggregate spectrum (as explained already,
the local aggregate absorption depends on the monomer absorp-
tion in the same locality).

(c) From Ref. [1], the measured monomer spectrum is used as in-
put to the CES calculation of the aggregate spectrum. The result is
shown in Fig. 11d, where one notes excellent agreement with the
measured aggregate spectrum.

4. Conclusion

In its original form [17,18] the CES approximation is equivalent
to the assumption that each monomer possesses only a ground
vibrational state in the electronic ground state. Hence, in the aggre-
gate only this state is involved when electronic excitation is trans-
ferred between monomers. Here the validity of this approximation
has been tested by comparing CES spectra with those obtained
from direct diagonalisation (DD) of the aggregate vibronic Hamil-
tonian with a sufficient number of vibrational states in the elec-
tronic ground state to ensure convergence. For negative values of
the inter-monomer coupling energy, leading to a shift of the aggre-
gate absorption to lower energies, good agreement of the CES spec-
tra with DD spectra has been obtained for all negative coupling
strengths, so long as the aggregate size N exceeds 4 or 5 monomers.
This success is probably due to the fact that for negative coupling,
even intermediate values, a single dominant J-band peak splits off
from the monomer region and carries most of the oscillator
strength. As shown in Fig. 3 this mechanism of J-band formation
is well-described by the CES approximation.

In the weak coupling regime, both negative and positive, the
CES result agrees excellently with DD results since there is no
strong mixing of monomer vibronic transitions. In fact for weak
coupling CES and DD results agree even for the dimer N ¼ 2. The
success of CES in weak coupling can be understood as follows.
For weak coupling one can truncate the Born series of the exact
Eq. (2) to include the interaction V only in lowest order, i.e.

hGi ¼ hgi þ hgVgi þ � � � ð34Þ

Then one can show that, without any further approximation, the
second term of the r.h.s. can be written

hgVgi ¼ hgiVhgi: ð35Þ

Thus to lowest order in V the exact Eq. (34) is identical to the CES
result Eq. (5).

Only for intermediate coupling, where the aggregate H-band
absorption is shifted into the region of strong monomer absorp-
tion, do CES and DD results not agree, except qualitatively under
low resolution. This raises the question as to why the CES method
applied previously [1] produces very good agreement with mea-
sured H-band spectra. The answer has been shown to be that the
procedure of calculating aggregate spectra using stick spectra with
only one vibrational mode per monomer taken into account and
then fitting to a measured continuous spectrum by convoluting
with Gaussians, is not a good strategy. A good reproduction of
aggregate H-band spectra is only obtained in the CES method when
the experimental monomer spectrum is used. Presumably this is be-
cause the DD model includes only one vibrational mode per mono-
mer and does not contain any influence of dissipation from the
environment; the eigenvalues are discrete. When continuous
experimental monomer spectra are used, such effects are included
implicitly and the only assumption of the CES method in its gener-
alised form [19] is that such dissipative effects act in the same way
on both monomer and aggregate spectra.
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Fig. 11. Dotted: measured Pinacyanol monomer (a) and aggregate spectrum (b)–(d)
from Ref. [26]. (a) Solid line: fit to a Poissonian convoluted with a Gaussian of width
r ¼ 450 cm�1. (b) Dashed: DD calculation with the peaks convoluted with the
Gaussian of (a). In the calculation N ¼ 5;ng ¼ 5 was used. (c) Solid line: CES
spectrum obtained directly from the fitted monomer spectrum of (a). (d) Solid line:
CES spectrum obtained directly from the measured monomer spectrum of (a).
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