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Non-Markovian Quantum State Diffusion (NMQSD) has turned out to be an efficient method to
calculate excitonic properties of aggregates composed of organic chromophores, taking into ac-
count the coupling of electronic transitions to vibrational modes of the chromophores. NMQSD
is an open quantum system approach that incorporates environmental degrees of freedom (the
vibrations in our case) in a stochastic way. We show in this paper that for linear optical spectra
(absorption, circular dichroism), no stochastics is needed, even for finite temperatures. Thus, the
spectra can be obtained by propagating a single trajectory. To this end, we map a finite temper-
ature environment to the zero temperature case using the so-called thermofield method. The re-
sulting equations can then be solved efficiently by standard integrators. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4905327]

I. INTRODUCTION

Linear optical spectroscopy is an important tool to obtain
information about multichromophoric complexes like J-
aggregates1–6or photosynthetic light harvesting complexes.7–10

In particular, the combination of linearly polarized spectra
and circular dichroism spectra (difference of absorption of
left and right circularly polarized light) allows one to draw
many conclusions about the (often unknown) arrangement
of the chromophores5,11 or to extract unknown electronic
transition energies (often termed site energies) of the
chromophores.9,10

The interpretation of measured aggregate spectra is com-
plicated because of often strong coupling of an electronic
excitation to internal vibrations (i.e., nuclear coordinates of the
chromophores) and other environmental degrees of freedom.
Therefore, one has to be careful not to draw conclusions solely
based on an electronic exciton theory.11

The influence of vibrations on molecular aggregates has
been studied using various methods (see, for example, Refs. 3,
4, 6, and 12–26).

Recently, we have adopted the so-called Non-Markovian
Quantum State Diffusion (NMQSD) approach.27–29 In contrast
to the well-known Markovian Quantum State Diffusion,61,62

the NMQSD approach allows one to treat aggregates where
electronic excitation couples to a structured spectral density
(which can, e.g., describe damped vibrational modes of the
chromophores, see Appendix A).

In the present work, we will use a “bath” of harmonic
oscillators to describe both internal (nuclear) and external de-
grees of freedom on the same footing. The modes of this “bath”
we will generally call vibrational modes (or simply vibrations).

a)Electronic address: eisfeld@mpipks-dresden.mpg.de

The NMQSD method is based on an open system ap-
proach. In the present work, we will take the open system to
consist of the electronic states of the chromophores, as we
have done in Refs. 30–34. Note that one can also make other
choices for the system, e.g., including some vibrational modes
explicitly.32 In the NMQSD approach, a stochastic Schrödinger
equation that lives only in the space of the system degrees of
freedom is derived. Averaging over the stochastic trajectories
allows in principle to obtain exactly the reduced density oper-
ator of the system and expectation values of operators in the
system space.

While for transfer of excitation the inclusion of stochas-
tic terms in the NMQSD wave function equation is funda-
mental,30,33 it turned out that for absorption from the “total
ground state” (i.e., zero temperature), the stochastic noise
terms do not enter explicitly the relevant propagation30,32

and only a single trajectory (without noise) needs to be
propagated.

In the present work, we will show that the same formula-
tion can be found for finite temperatures through a mapping
to temperature zero, which was introduced for the NMQSD
approach in Refs. 35 and 36. We will adopt this treatment in
our calculations of optical properties.

The paper is organized as follows: In Sec. II, the model
Hamiltonian used to describe the aggregate is introduced.
Then, in Sec. III, we present our method for the calculation
of linear spectra. First, the general definitions of absorption
and circular dichroism (CD) are given, then, the thermofield
approach providing the mapping to temperature zero is briefly
reviewed. In Subsections III D and III E, the calculation of
spectra within the NMQSD approach is derived. In Sec. IV,
we apply the method to calculate absorption and CD spectra
of a model dimer.

In several appendices, we provide additional details.
Throughout the paper, we set ~= 1 and kB= 1.

0021-9606/2015/142(3)/034115/12/$30.00 142, 034115-1 © 2015 AIP Publishing LLC
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II. THE AGGREGATE HAMILTONIAN

We consider an aggregate consisting of N monomers,
labeled by m = 1, . . ., N . We assume that the electronic wave
functions of the monomers do not overlap and take them to be
real. The electronic ground state of the aggregate, from which
absorption takes place, is then taken as the product

|gel⟩=
N

m=1

|φgm⟩ (1)

of the electronic ground states |φgm⟩ of all individual mono-
mers. Since we are interested in linear optical properties, we
will restrict the excited state basis to states in which only one
monomer n is electronically excited and all other monomers
are in their electronic ground state. These states are denoted
by

|πn⟩= |φen⟩
N

m,n

|φgm⟩. (2)

We expand the aggregate Hamiltonian with respect to the
states defined in Eqs. (1) and (2) and neglect states with more
than one electronic excitation on the aggregate. We then write
the Hamiltonian of the aggregate as

H =Hg +He. (3)

Here, Hg is the electronic ground state Hamiltonian (for
a brief derivation, see Appendix A)

Hg =Henv|gel⟩⟨gel|, (4)

where

Henv=

N
n=1


λ

ωnλa
†
nλ

anλ (5)

comprises all the (possibly different) vibrational modes λ of
the monomers and will later play the role of an environment.

The Hamiltonian in the one-excitation subspace is given
by (see Appendix A)

He =Hsys+Hint+Henv, (6)

with the purely electronic “system” part

Hsys=

N
n=1

εn |πn⟩⟨πn|+
N

n,m=1

Vnm|πn⟩⟨πm|, (7)

where the matrix element Vnm causes electronic excitation to
be transferred from monomer m to monomer n, and a part Henv
describing the “bath” of vibrational modes given by Eq. (5).

The coupling of electronic excitation to these vibrations is
expressed through

Hint=

N
n=1

Kn


λ

κnλ(a†nλ+anλ) (8)

with the (Hermitian) system operators Kn = −|πn⟩⟨πn |. Note
that also the inclusion of off-diagonal coupling terms

Hoff
int =


n>m

Knm


λ

κnmλ(a†nmλ+anmλ) (9)

with Knm =− 1
2 (|πn⟩⟨πm|+ |πm⟩⟨πn|) is possible. The general-

ization of the following equations to this case is straightfor-
ward. However, for readability, we restrict ourselves to the
diagonal coupling terms Eq. (8) and also assume that the baths
are uncorrelated. Note that in our previous work, we used the
symbol Ln instead of Kn for the system coupling operators.
Here, we only use Ln in Appendix C in order to emphasize that
the derivation therein also holds for coupling operators that are
not necessarily Hermitian.

It is convenient to define the so-called spectral density37

of monomer n by

Jn(ω)= π

λ

|κnλ|2 δ(ω−ωnλ). (10)

Later, J(ω) will be considered as a continuous function
of frequency. For an interpretation of the spectral density, see
Appendix A.

III. CALCULATION OF LINEAR OPTICAL SPECTRA

A. Transition dipole operator

The transition dipole operator ˆ⃗µn of monomer n is as-
sumed to be independent of nuclear (environmental) coordi-
nates and is written as

ˆ⃗µn = µ⃗n(|φgn⟩⟨φen |+ |φen⟩⟨φgn |). (11)

Here, µ⃗n denotes the transition dipole moment of mono-
mer n (see, e.g., Ref. 37). The dipole operator of the aggregate
is given by the sum

ˆ⃗µ=

n

ˆ⃗µn. (12)

This is the basic quantity that enters the calculation of
optical spectra.

B. Absorption and circular dichroism

The transition strength for linear optical spectra can be
obtained from a half-sided63 Fourier transformation37,38

F(ω)=Re
 ∞

0
dt eiωt c(t). (13)

The explicit form of the correlation function c(t) will be
specified below for the case of absorption and CD. The total
initialstateofsystemandbathprior tolightabsorptionis takenas

ρ0= |gel⟩⟨gel|⊗ ρenv, (14)

where the aggregate is in its electronic ground state Eq. (1) and
the bath is in a thermal state at temperature T , i.e.,

ρenv≡ ρ(β)= e−βHenv

trenv{e−βHenv} (15)

with the inverse temperature β = 1/T . In Eq. (15), trenv denotes
the trace over the bath degrees of freedom. Since for the mole-
cules we have in mind (e.g., chlorophyll or cyanine dyes), the
electronic transition energies are on the order of an eV, one can
safely ignore thermally excited electronic states, as has been
done in Eq. (14).
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In order to calculate the correlation function c(t) in Eq. (13)
we introduce a correlation operator C(t) in the electronic
system defined by

C(t)≡ trenv{(Ug)†(t)Ue(t) ρenv} (16)

with the propagators for system and bath,

Ug(t) ≡ e−iH
g t,

Ue(t) ≡ e−iH
et,

(17)

in the respective electronic states. In linear response theory,
one can then calculate c(t) in Eq. (13) for the absorption
spectrum of an isotropically oriented sample as

cAbs(t)= trsys{AAbsC(t)} (18)

=

nm

(AAbs)nm Cnm(t), (19)

where AAbs is a matrix in the electronic system with matrix
elements

(AAbs)nm = ⟨πn |AAbs|πm⟩= µ⃗n · µ⃗m (20)

and the dot denotes the real scalar product. Similarly, for the
CD spectrum within the Rosenfeld formalism39,40 one has

cCD(t)= trsys{ACDC(t)}, (21)

where the matrix elements of ACD are given by

(ACD)nm = ⟨πn|ACD|πm⟩= R⃗nm · (µ⃗n× µ⃗m). (22)

Here, R⃗nm = R⃗m− R⃗n denotes the distance vector between
monomers n and m. The validity of the Rosenfeld approxima-
tion and a more appropriate formula for large aggregates with
considerable excitonic delocalization are discussed in Ref. 23.
In Appendix B short derivations of cAbs(t) and cCD(t) can be
found.

C. Thermofield method

In order to evaluate the expression C(t) defined in
Eq. (16), we use the thermofield approach:41 the thermal initial
state ρ(β) of the environment is mapped onto the (pure)
ground state |0(β)⟩ (later denoted as “thermal vacuum”) of an
enlarged environment with suitably constructed creation and
annihilation operators, as detailed below. The calculation of
C(t), which will be discussed in Sec. III D, then proceeds anal-
ogously to the temperature zero case.30,32 In this subsection, we
sketch briefly the procedure for the mapping to the enlarged
bath, following the treatment of Refs. 35 and 36:

First, in addition to the physical bath operators (anλ, a
†
nλ
),

one introduces independent “fictitious” negative frequency
bath operators (bnλ, b

†
nλ
) resulting in the expression

H̄env≡Henv+Hb (23)

for the new environmental Hamiltonian, with

Hb =

N
n=1


λ

(−ωnλ)b†nλbnλ (24)

and the same (negative) frequencies ωnλ as for the physical
bath Henv. With the bar, as in Eq. (23), we indicate that the

Hamiltonian contains the additional b-bath. As a consequence,
the number of degrees of freedom of the new bath Hamiltonian

H̄env=

N
n=1


λ

ωnλ

�
a†
nλ

anλ−b†
nλ

bnλ

�
(25)

is twice that of the original one. The desired state |0(β)⟩ in the
doubled-bath Hilbert space is now constructed such that one
recovers the correct thermal equilibrium state ρ(β) defined in
Eq. (15) for the physical a bath after tracing out the fictitious
b degrees of freedom, i.e.,

ρ(β)= trb |0(β)⟩⟨0(β)|. (26)

Note that the additional degrees of freedom do not alter
the dynamics, because they are uncoupled from the physical
ones. Through a (temperature-dependent) Bogoliubov trans-
formation of the bath operators (anλ, a

†
nλ
) and (bnλ, b

†
nλ
), one

defines so-called thermal bath annihilation operators

Anλ =


n̄nλ+1 anλ−
√

n̄nλ b†
nλ
,

Bnλ =


n̄nλ+1 bnλ−
√

n̄nλ a†
nλ

(27)

and their corresponding adjoint creation operators. Here,
n̄nλ =

�
eβωnλ−1

�−1 is the mean thermal occupation number
of the physical mode λ of monomer n. The thermal operators
fulfill the same bosonic commutation relations as the original
a and b operators and thus create their own harmonic oscillator
algebra. As a result, the thermal annihilation operators Anλ

and Bnλ annihilate the thermal vacuum |0(β)⟩≡ |0⟩A|0⟩B. Here,
|0⟩A is a shorthand notation for the product vector of all envi-
ronmental (Anλ, A†

nλ
) oscillators being in their vacuum state

|0nλ⟩A, respectively, i.e., |0⟩A=
nλ |0nλ⟩A (and the analogous

expression for |0⟩B). The extended environmental Hamiltonian
with the untransformed bath operators expressed in terms of
the thermal bath operators now reads

H̄env=

N
n=1


λ

ωnλ

�
A†
nλ

Anλ−B†
nλ

Bnλ

�
. (28)

For the electronic ground state Hamiltonian, one thus
obtains

H̄g = H̄env|gel⟩⟨gel|, (29)

whereas for the electronically excited state, one gets

H̄e =Hsys+ H̄env+Hint (30)

with

Hint=

N
n=1

Kn


λ

κnλ

×
(

n̄nλ+1
�
A†
nλ
+ Anλ

�
+
√

n̄nλ

�
B†
nλ
+Bnλ

�)
. (31)

D. Absorption in the NMQSD approach

To evaluate the expression Eq. (16) for the correlation
operator C(t), we apply the thermofield approach outlined in
Subsection III C and insert ρ(β) from Eq. (26) into Eq. (16) to
obtain

C(t)= tratrb
�(Ug)†(t)Ue(t) |0(β)⟩⟨0(β)|	. (32)
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Here, tra = trenv denotes the trace over the original envi-
ronmental degrees of freedom and trb is, as in Eq. (26),
the trace over the negative frequency oscillators. Inserting
1 = eiHbte−iHbt, where Hb is the Hamiltonian for the addi-
tional bath degrees of freedom defined in Eq. (24), between
the two propagators and rearranging the trace yields

C(t)= tratrb
�
Ūe(t) |0(β)⟩⟨0(β)| (Ūg)†(t)	. (33)

Analogous to Eq. (17), the propagators are defined as
Ūg(t) = e−i H̄

g t and Ūe(t) = e−i H̄
et with H̄g and H̄e given by

Eqs. (29) and (30). Note that the trace is over the full doubled-
bath Hilbert space. Since ⟨0(β)|(Ūg)†(t)= ⟨0(β)|, performing
the trace leads to

C(t)= ⟨0(β)|Ūe(t)|0(β)⟩. (34)

The aim in the following is to derive an evolution equa-
tion for C(t) that can be handled numerically in an efficient
way. To this end, we expand the environmental part of the
Hilbert space in terms of Bargmann coherent states42 |ζnλ⟩A
= exp(ζnλA†nλ)|0nλ⟩A and |ξnλ⟩B = exp(ξnλB†nλ)|0nλ⟩B of the A
and B vibrations. Here, the ζnλ as well as the ξnλ are complex
numbers. Defining |ζ⟩A=

nλ |ζnλ⟩A and d2ζ= d Re(ζ) d Im(ζ)
(and the corresponding expressions for ξ), the completeness
relations for the Bargmann states are given by42,43


d2ζ

π
e−|ζ|

2|ζ⟩A⟨ζ|A = 1A,
d2ξ

π
e−|ξ|

2|ξ⟩B⟨ξ|B = 1B.

(35)

Using this expansion, one can derive an evolution equa-
tion35 for a quantity from which C(t) can be obtained. The
general form of the resulting equations, which also hold for
system coupling operators that are not Hermitian, is discussed
in Appendix C. In the following, in order to simplify the
notation, we will use the fact that for the present case where
Kn = K†n the general equation (C9) can be written as (see
Appendix C)

∂tG(t, z∗)=−iHsysG(t, z∗)+

n

Knz∗t,nG(t, z∗)

−

n

Kn

 t

0
ds αn(t− s) δ

δz∗s,n
G(t, z∗), (36)

which is the NMQSD equation35 in its linear form (and for
Hermitian Kn), with the reduced propagator

G(t, z∗)≡ ⟨z|Ūe(t)|0(β)⟩ (37)

and the initial condition G(0, z∗)=1sys. In Eq. (36), αn(τ) is the
bath correlation function of monomer n given by

αn(τ)=

λ

|κnλ|2
(
coth

�ωnλ

2T
�
cos(ωnλτ)− isin(ωnλτ)

)
(38)

and the z∗t,n are defined as

z∗t,n =−i

µ

gnµeiω̃nµtz∗nµ. (39)

The numbers znµ are defined in Appendix C and combine
ξnµ and ζnµ. The factors gnµ and frequencies ω̃nµ are also
defined in Appendix C.

Note, that the z∗t,n are deterministic time-dependent com-
plex functions. However, in Refs. 29, 30, and 35 they play
the role of stochastic processes driving the evolution of the
system—a viewpoint that is not necessary for this paper.
Nonetheless, later on in this work, we will also call z∗t,n a
stochastic process.

It is important to note that the z∗nµ have the same
basic properties as the ξ∗

nλ
and ζ ∗

nλ
, in particular, d2znµ

π
e−|znµ |2(z∗nµ) j = δ0 j . The reduced propagator G(t, z∗) is

analytic in z∗ because of the properties of the Bargmann states42

and we can Taylor expand it resulting in

G(t, z∗)=G(0)(t)+

n1λ1

G(1)
n1λ1

(t)z∗n1λ1

+

n1n2
λ1λ2

G(2)
n1n2
λ1λ2

(t)z∗n1λ1
z∗n2λ2
+ . . . . (40)

Note that the z∗-independent part G(0)(t) is the same as in
Eq. (C3). Analogous to Eqs. (C1) and (C4), we have

C(t)=


d2z
π

e−|z|
2
G(t, z∗)=G(0)(t). (41)

Using Eq. (36), we will derive an evolution equation for
C(t), in the following. Equation (36) is exact. It describes
the full evolution of the electronic system in the excited
state manifold coupled to the environment. Note, however,
that the appearance of the functional derivative in Eq. (36)
renders a general solution very difficult, even though for the
case of absorption considered here we are only interested in
G(0)(t), which is independent of the complex numbers (sto-
chastic processes) z∗t,n. There are only a few cases where exact
solutions to Eq. (36) are known.35,44–46 In general, it might
not even be possible to derive an exact closed equation for
C(t) =G(0)(t), but we can still make use of the integrals over
the environmental degrees of freedom in Eq. (41) in order to
find a tractable expression for C(t) that does not involve the
z∗t,n anymore.

To achieve this, we first note that using Eq. (41), we find
from the evolution equation (36) for the reduced propagator
G(t, z∗) (for the considered case of self-adjoined coupling), the
evolution equation

∂tC(t)=


d2z
π

e−|z|
2×

(
−iHsys+


n

Knz∗t,n

−

n

Kn

 t

0
ds αn(t− s) δ

δz∗s,n

)
G(t, z∗) (42)

for the correlation operator C(t). Using


d2z
π

e−|z|2(z∗t,n) j = δ0 j,
the integrals in the first two terms can be performed and
Eq. (42) can be rewritten to

∂tC(t)=−iHsysC(t)−

n

Kn


d2z
π

e−|z|
2

×
 t

0
ds αn(t− s) δ

δz∗s,n
G(t, z∗). (43)

The second term in Eq. (42) vanishes, because G(t, z∗) is
analytic in z∗ and thus, its product with z∗t,n is a sum of powers
of the form (z∗t,n) j. The difficult third term still prevents us from
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having a closed equation for C(t). To tackle this problem, we
show an approach in Sec. III E, which leads to a system of
(infinitely many) coupled equations from which C(t) can be
approximated numerically. A second approach that can often
be useful and has been employed in the past is outlined in
Appendix D.

E. Handling of the functional derivative

1. Hierarchy of pure states (HOPS)

In our previous work,30–32 we used an ansatz for the func-
tional derivative δ

δz∗s,n
. This ansatz is briefly discussed in Ap-

pendix D. However, it is not a priori clear that this ansatz is
successful.

Recently, we developed a scheme that does not use the
abovementioned ansatz (see Eq. (D1)) to treat the complicated
last term in Eq. (42). This scheme leads to an exact solution
of the original problem that can be handled numerically in an
efficient way. Details can be found in Ref. 47.

In this approach, termed hierarchy of pure states (HOPS),47

one introduces a new operator for the whole memory integral
in Eq. (42) and defines

G(en j)(t, z∗)≡
( ∞

−∞
ds αn j(t− s) δ

δz∗s,n

)
G(t, z∗). (44)

The integral boundaries 0 and t from Eq. (36) are
recovered later using the initial condition for G(t, z∗) and
requiring causality. The label (en j) in Eq. (44) is a matrix that
has dimension (number of monomers) × (number of terms in
the bath correlation function). It has a 1 at position (n, j) and
is zero otherwise. In the following, we will map this matrix
onto a vector which we denote by e⃗n j. For these operators
G(e⃗n j)(t, z∗), one can again derive an evolution equation that
leads to a (formally exact) hierarchy of coupled equations of
motion.

For a practical implementation, we expand/approximate
the bath correlation functions αn(t − s) given in Eq. (38) as
sums of exponentials

αn(t− s)=

j

αn j(t− s), (45)

where

αn j(τ)≡ pn jeiωn jτ, τ ≥ 0 (46)

with complex frequencies ωn j =Ωn j+ iγn j and prefactors pn j

that may also be complex. As demonstrated in Ref. 48, such
a decomposition can be made to handle ohmic as well as
superohmic spectral densities at finite temperatures by using
appropriate fitting routines.

For the bath correlation functions defined in Eqs. (45)
and (46), one finds

∂tG(k⃗)(t, z∗)= (
−iHsys+ i


n j

kn jωn j+

n

Knz∗t,n
)
G(k⃗)(t, z∗)

+

n

Kn


j

kn jαn j(0)G(k⃗−e⃗n j)(t, z∗)

−

n

Kn


j

G(k⃗+e⃗n j)(t, z∗). (47)

The vector k⃗ in Eq. (47) labels the different orders
of the hierarchy (we speak of a term of kth order when

n, j kn j = k). In Eq. (47), the kth order terms are connected to
terms that differ by one order (as explained above e⃗n j denotes
the (n j)th unit vector, where n labels the monomers and j the
terms of the bath correlation function). This scheme (applied
to wave functions instead of the reduced propagators) has
been developed in Ref. 47. There, also an appropriate closure
of the hierarchy is discussed.

Since all the G(k⃗)(t, z∗) are analytic functions in z∗t,n,
one obtains (see also the argument leading from Eq. (D5) to
Eq. (D6)) an equation for C(t) which is independent of the
time-dependent complex numbers (stochastic processes) z∗t,n.
With the definition

C(k⃗)(t)=


d2z
π

e−|z|
2G(k⃗)(t, z∗), (48)

one finds

∂tC(k⃗)(t)=�−iHsys+ i

n j

kn jωn j

�
C(k⃗)(t)

+

n

Kn


j

kn jαn j(0)C(k⃗−e⃗n j)(t)

−

n

Kn


j

C(k⃗+e⃗n j)(t), (49)

and the desired correlation operator C(t) is

C(t)=C (⃗0)(t). (50)

Note that from Eq. (49), it is apparent that for Her-
mitian coupling operators Kn, the (finite temperature) bath
correlation functions αn(τ) given by Eq. (38) are the only
“environmental quantities” that are needed for the open
system dynamics. In Eq. (38), only the original positive
frequency oscillators enter, so that in practice, the doubling
of the Hilbert space for the treatment of finite temperatures
does not lead to increased numerical difficulties or a worse
scaling of the method. However, for non-Hermitian coupling
operators Kn, one truly needs two separate bath correlation
functions per monomer as explained in Appendix C.

2. Propagation of vectors instead of a matrix

Note that one can also obtain C(t) by independently
propagating the initial states |πm⟩. The matrix elements Cnm
are then given by ⟨πn |ψm(t)⟩, where |ψm(t)⟩ denotes a vector
obtained by propagating Eq. (49) or Eq. (D6) for a vector
instead of a matrix and with the initial condition |ψm(0)⟩
= |πm⟩. (See also Appendix E, where we use this scheme
explicitly for a molecular dimer.)

IV. EXAMPLE CALCULATIONS

In this section, we present calculated absorption and
CD spectra to illustrate a typical situation for which the
present approach can be used. We do not aim at a detailed
interpretation of the spectra and also do not intend to give an
investigation of the speed of convergence of HOPS with the
order of the hierarchy, here. General convergence properties

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

193.175.8.21 On: Sat, 07 Feb 2015 22:41:03



034115-6 Ritschel et al. J. Chem. Phys. 142, 034115 (2015)

of HOPS have been discussed in the supplementary material
of Ref. 47.

All spectra shown in this work are calculated using the
HOPS approach with order k = 10 and can be considered to
be converged.64

We consider the simplest case of an aggregate, i.e., a
dimer composed of two monomers. The interaction V12=V21
between the two monomers in Eq. (7), we denote by V . We
take the electronic transition energies and spectral densities
to be equal for both monomers (εn = ε and αn(τ)= α(τ)) and
consider their local environments to be uncorrelated. Since
in this work, our concern is not the detailed investigation
of the dependence of the spectra on the orientation of the
monomers, we restrict the geometry of the dimer by taking
the transition dipoles of the monomers perpendicular to the
distance vector R⃗ ≡ R⃗12 between them. Then, the angle θ
between the monomers is sufficient to describe the geometry,
which is sketched in Fig. 1. If θ is not equal to 0 or π, then the
system has chirality and shows a CD signal.

The coupling to the (vibrational) environment we de-
scribe by a continuous spectral density. For the example
calculations shown below, the spectral density is chosen to
be of the simple anti-symmetrized Lorentzian form

J(ω)= p
( 1
(ω−Ω)2+γ2 −

1
(−ω−Ω)2+γ2

)
, (51)

for which the corresponding bath correlation function is
known analytically49 as a sum of exponentials of the form
Eq. (45). In order to calculate the bath correlation function
for different temperatures, we use the method described
in Ref. 48, which is based on a Padé approximation50

of the hyperbolic cotangent appearing in Eq. (38). Note
that in Ref. 48, a much larger class of spectral densi-
ties was suggested that allow for an analytic determi-
nation of the bath correlation function as such a sum
of exponentials. Especially, the spectral densities consid-
ered there allow one to describe superohmic behavior near
ω = 0. However, in this work, we restrict ourselves to the
case Eq. (51). This spectral density Eq. (51) shows a linear
increase for small ω and falls off with the third power
for large ω. It can be approximately interpreted as describ-
ing the coupling of an electronic transition to a damped
molecular vibration with frequency Ω, where the damping is
described by the constant γ. Problems of this interpretation
are discussed in Ref. 51. The prefactor p is connected to

FIG. 1. Sketch of the considered geometry. (a) The chosen coordinate sys-
tem. The centers of the two molecules are located on the z-axis separated by
the distance R. The two transition dipoles are also located at these points and
perpendicular to the z-axis. Their directions contain all information about
the molecular orientations necessary for the calculation of optical spectra.
(b) Specification of the geometry used for the spectra shown.

FIG. 2. (a) Spectral densities J (ω) for the reorganization energy Er = 1.0Ω
and two different width parameters γ (all energies are in units of Ω). (b) Pos-
sible interpretation in terms of shifted harmonic Born-Oppenheimer surfaces
for one vibrational coordinate q = 1√

2Ω
(a† + a). See Appendix A for details.

the so-called reorganization energy Er =
1
π

 ∞
0 dω J (ω)

ω
by

p= Erγ(Ω2+γ2)/Ω. Fig. 2 shows a plot of the spectral density
for two different width parameters γ. All quantities are
expressed in units of the central frequencyΩ.

In the following, we present spectra of dimers as well
as the corresponding spectra of the uncoupled monomers.
Note that the parameters in this work have been deliberately
chosen such that the previously used zeroth-order functional
expansion (ZOFE) approximation (see Appendix D) does not
give reliable results in most of the cases (i.e., we choose
a relatively strong reorganization energy Er and a small
environmental damping γ).

A. Temperature-dependent spectra

For linear optical properties of molecular aggregates,
many general results for the interpretation of absorption and
CD can be found in the book by Rodger and Nordén.52 For
the special case of a dimer with internal vibrations of the
monomers, we refer in particular to Ref. 11.

To demonstrate the influence of temperature, we present
some exemplary spectra that we obtain for the spectral
density Eq. (51) at various temperatures. We take two Padé
expansion terms for the hyperbolic cotangent into account
for all temperatures. Only for T = 0.1 Ω and γ = 0.3 Ω, we
take three expansion terms. We show absorption and CD
spectra for two uncoupled (monomer case) and two coupled
(dimer case) monomers at different temperatures for two
spectral densities with width parameter γ = 0.1 Ω (Fig. 3)
and γ = 0.3 Ω (Fig. 4). In the left column of each figure, the
linear absorption for V = 0, i.e., for uncoupled monomers, is
shown. In the middle and right columns, we plotted linear
absorption and CD spectra for a dimer with V = 0.5 Ω
and θ = 70◦. For non-interacting monomers, which do not
possess a CD of their own, the CD vanishes, as expected.
It is well known (and for the present formalism stated in
Appendix E) that for the chosen geometry, the absorption
and CD spectrum can be understood by considering the
correlation functions of the symmetric and antisymmetric
parts of the dimer wave function. In the absorption spectrum,
the angle θ enters as a weighting of the two contributions and
in the CD spectra, θ only scales the absolute values. Note that
if the interaction between the monomers is of point-dipole-
dipole type, then θ also enters in the interaction strength
via V ∼ (1−3 cos2 θ)/R3. We have chosen the sign of V to
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FIG. 3. Temperature dependence of absorption for monomer (left column)
and dimer (middle column) as well as CD (right column). Parameters are
Er = 1 Ω, γ = 0.1 Ω, and V = 0.5 Ω (for the dimer). The temperatures are
from top to bottom: T /Ω = 0.1, 0.2, 0.3, 0.4, 0.5. The red and green curves
show the two weighted contributions from the symmetric and antisymmetric
parts of the dimer wave function (see Appendix E) and the black curves show
the resulting absorption and CD spectra. The zero on the abscissa is chosen as
the center of mass of the monomer spectrum in each row. Absorption spectra
are given in units of µ2 and CD spectra in units of R µ2.

be consistent with this type of interaction. In the plots, we
show the symmetric and anti-symmetric contributions to the
spectra (weighted by their θ-dependent prefactor), which we
obtain from Eq. (E9) for absorption and Eq. (E10) for CD, as
colored lines (red and green, respectively) and the resulting
absorption and CD spectra as black curves. The absorption
spectra are normalized to have an area of 2π. Note that
the integral over the CD spectra vanishes, as it should. In
absorption, the red curve can be understood as the absorption
of light polarized along the x-axis and the green curve as the
spectrum for light polarized along the y-axis.

First, we take a brief look at the situation V = 0, i.e.,
uncoupled monomers, depicted in the left columns of Figs. 3
and 4. In Fig. 3, we see for the monomer case a “vibrational
progression” corresponding to the (broadened) mode Ω of the
spectral density (peaks at ω =−1, 0, 1, 2 Ω). With increasing
temperature (from top to bottom), the spectrum becomes
broader. Additionally, absorption at lower energies than the
one of the dominating 0-0 transition of the mode Ω (peak
at ω = −1) increases (hot bands). The black, red, and green
curves obviously have the same shape.

Let us now consider the dimer case. We choose a positive
dipole-dipole coupling V = 0.5 Ω and an angle θ = 70◦ be-
tween the monomer transition dipoles. Absorption and CD
spectra for this case are shown in the middle (absorption)
and right (CD) columns of Figs. 3 and 4. One sees that the
dimer spectra contain a lot more structure compared with
the monomer spectra. This complicates the interpretation of
measured spectra, since one might for example be tempted

FIG. 4. Same as Fig. 3, but for γ = 0.3 Ω.

to interpret the second peak from the left in the dimer
absorption spectra as belonging to a vibrational progression
with the lowest peak. Methods to extract the usually unknown
geometry of the dimer with many vibrational modes from
absorption and CD are discussed in Refs. 3 and 11. As
in the monomer case, increasing the temperature leads to a
broadening of the spectra.

For the larger value of the width parameter γ, we see
in Fig. 4 that the features in the spectra are broadened and
smeared out already for the lower temperatures so that less
structure of the spectra is visible, as one expects.

V. CONCLUSIONS

In this work, we have shown how to calculate linear op-
tical spectra (in particular, absorption and CD) of molecular
aggregates using the NMQSD formalism. One key aspect
was to demonstrate that, while the NMQSD formalism in
general requires to calculate many stochastic trajectories, for
the calculation of linear optical properties, one deterministic
propagation is sufficient. To this end, we have mapped
the finite temperature case to effective temperature-zero
equations for which the stochastics drops out.

We summarize the relevant equations that we used to
calculate the transition strength F(ω) for linear absorption
and CD spectra. The transition strengths are calculated from
Eq. (13) with the correlation function Eq. (18) for absorption
and Eq. (21) for CD. These formulas are for isotropically
oriented samples. However, one can also easily treat the case
of oriented samples and light of various polarizations (see
Eq. (B7) in Appendix B). Similar to the treatment in Ref. 23,
one can also go beyond the long wavelength approximation.
In all cases, one has to calculate the same correlation operator
C(t) given in its general form in Eq. (43). To solve this
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equation, in the present work, we used the HOPS formalism,
which leads to the hierarchy of correlation operators Eq. (49)
whose solution is equivalent to the solution of Eq. (43). Here,
one sees explicitly that a single trajectory with z∗t,n ≡ 0 is
sufficient to obtain the required spectra.

In a similar manner, one can show that also for the
ZOFE approximation (for details see Appendix D), only
a single trajectory is required. While HOPS allows for a
numerically exact treatment, ZOFE is computationally much
less demanding and yields in many situations of interest very
good agreement with the exact result.

As application of the presented formulas, we have in
mind aggregates typically composed of organic molecules
(monomers). In each monomer, the electronic excitation
naturally couples to nuclear vibrations of the molecule.
Typically, due to interaction with external vibrations, those
intramolecular vibrations are damped, which manifests itself
in broadened peaks in the spectral density. This then leads
in general to broadened vibrational progressions in the
absorption spectra of the single molecules. In molecular
aggregates, however, the electronic interaction between the
molecules leads to non-trivial spectra, where the identifica-
tion of vibrational progressions can be complicated.

The method presented in this work is well-suited to
calculate optical properties of molecular aggregates at finite
temperatures with explicit inclusion of vibrational modes.

We have shown exemplarily for the case of a dimer how
our method can be used.

APPENDIX A: THE AGGREGATE HAMILTONIAN

In this appendix, we give a very brief derivation of the
model we used. For a more complete overview, we refer, e.g.,
to the book by May and Kühn.37

1. The monomer

For each monomer n, we take into account its electronic
ground state |φgn⟩ and one excited electronic state |φen⟩. The
transition energy between these two states is denoted by
εn. Each monomer has a collection of vibrational modes
comprising internal ones as well as modes of the local
environment of the chromophore. We will refer to these
degrees of freedom as “the bath.” We choose the vibrational
modes to be harmonic and consider a linear coupling of the
electronic excitation of monomer n to these bath degrees
of freedom (making contact to previous work12,18,53–58). The
Hamiltonian of monomer n is then given by

Hn =Hg
n |φgn⟩⟨φgn |+He

n |φen⟩⟨φen|, (A1)

with the Hamiltonian of the vibrations in the electronic
ground state

Hg
n =


λ

ωnλa
†
nλ

anλ (A2)

(the energies of the vibrational ground states of all modes in
the electronic ground state are chosen to be zero). The excited

state Hamiltonian of monomer n is written as

He
n = εn+


λ

ωnλa
†
nλ

anλ−

λ

κnλ(a†nλ+anλ). (A3)

Here, a†
nλ

(anλ) denotes the creation (annihilation) oper-
ator of the local mode λ of monomer n with frequency ωnλ.
The corresponding coupling strength between the electronic
excitation of monomer n and this mode is denoted by κnλ.
The resulting Hamiltonian Hn can be interpreted in terms
of two multidimensional shifted harmonic potential energy
surfaces (see Fig. 2). This interpretation is discussed, e.g., in
Refs. 37 and 51.

If the spectral density consists of only a few modes λ
(or equivalently, it is a sum of a few delta-peaks), these
modes can be considered as coming from a model of the
monomer that consists of (multidimensional) harmonic Born-
Oppenheimer surfaces where ground and excited states have
the same shape but are shifted with respect to each other. The
frequencies appearing in the spectral density are then simply
the frequencies of the harmonic potentials (in the different
directions) and the coupling strength |κnλ|2 is related to the
shift of the potentials.37

Peaks in the spectral density that are not delta-like but
broadened can arise due to internal vibrational modes (as
described above) that are damped by an environment. This
model is discussed, e.g., in Ref. 51.

Beside internal vibrations of the monomers, also envi-
ronmental fluctuations can lead to peaks in the spectral
density. This is discussed, e.g., in Refs. 20, 38, and 59.

2. The aggregate

The total Hamiltonian of the aggregate is a sum of
Hamiltonians Eq. (A1) of the individual monomers and
the dipole-dipole interaction operator between them. Taking
matrix elements in the basis Eqs. (1) and (2), we find for the
electronic ground state Hamiltonian

Henv=

N
n=1

Hg
n =

N
n=1


λ

ωnλa
†
nλ

anλ (A4)

and for the Hamiltonian in the electronically excited state,

He=

N
n=1

(
He

n+

N
ℓ,n

Hg
ℓ

) |πn⟩⟨πn |
+

N
n,m=1

Vnm|πn⟩⟨πm| (A5)

with the matrix elements Vnm of the interaction operator
which are taken to be independent of environmental (nuclear)
coordinates.

Note that Hg
n and He

n depend on nuclear coordinates
through Eqs. (A2) and (A3). With the Hamiltonians of the
monomers Eqs. (A2) and (A3), we can write Eq. (A5) as
Eq. (6) of the main text.
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APPENDIX B: CORRELATION FUNCTION

In this section, the expressions Eqs. (18) and (21) for
the correlation function entering Eq. (13) for the absorption
strength are derived. For linear absorption, the orientation
averaged dipole-autocorrelation function that needs to be
evaluated38 reads

cAbs(t)= tr{ µ̂(t) · µ̂(0) ρ0}, (B1)

with µ̂(t) being the corresponding Heisenberg operator for the
dipole operator of the aggregate defined in Eq. (12) and ρ0
the total initial density operator of system and environment
defined in Eq. (14). The dot denotes the scalar product of the
vector operators in Eq. (B1), where the time-dependence of
the Heisenberg operator µ̂(t) is given by

µ̂(t)=U†(t) µ̂U(t) (B2)

with U(t)= e−iH t and H being the full aggregate Hamiltonian
defined in Eq. (3). The matrix elements of the (time-
independent) dipole operator µ̂ between the basis states
Eqs. (1) and (2) are

⟨gel| µ̂|πn⟩= µ⃗n and ⟨πn | µ̂|πm⟩= 0. (B3)

Inserting Eq. (14) for ρ0 into Eq. (B1) and evaluating the
partial trace over the electronic system degrees of freedom
yields

cAbs(t)= trenv{⟨gel| µ̂(t) · µ̂(0)|gel⟩ ρenv}. (B4)

After expanding µ̂ and U(t) in terms of the basis states
|gel⟩ and |πn⟩ using Eqs. (B3) and (17), Eq. (B4) simplifies to

cAbs(t)=

n,m

µ⃗n · µ⃗m Cnm(t) (B5)

with Cnm given by Eq. (16). This is Eq. (18) from the main
text.

For calculating CD, one needs to include the polarization
and relative phases of the electric field

E⃗(t,R⃗)
|E⃗(t,R⃗)| = ε⃗ e−i k⃗ ·R⃗eiωt (B6)

with ε⃗ the complex valued polarization vector (|ε⃗| = 1) and
k⃗ the wave vector. Following the above derivation the final
expression now reads

cAbs
ε⃗, k⃗

(t)=

n,m

(µ⃗n · ε⃗∗ei k⃗ ·R⃗m)(µ⃗m · ε⃗ e−i k⃗ ·R⃗n)Cnm(t). (B7)

The CD signal is obtained by taking the difference of left
and right polarized light.

In the often used Rosenfeld formalism,39 which essen-
tially corresponds to the approximation ei k⃗ ·R⃗ ≈ 1+ i k⃗ · R⃗, the
expression for CD is

cCD(t)=

nm

R⃗nm · (µ⃗n× µ⃗m)Cnm(t), (B8)

with R⃗nm = R⃗m − R⃗n and Cnm(t) as defined above. Here,
again an orientational averaging was done to get the final
expression (B8), which is Eq. (21) from the main text.

Note that applying the long wavelength approximation
and performing an orientational averaging of (B7) yields
again Eq. (B5).

APPENDIX C: EQUATIONS OF MOTION
FOR THE PROPAGATOR

We insert the completeness relations Eq. (35) in Eq. (34)
for the correlation operator and obtain

C(t) =


d2ζ

π
e−|ζ|

2


d2ξ

π
e−|ξ|

2
G(t, ζ∗, ξ∗), (C1)

where we defined the reduced propagator

G(t, ζ∗, ξ∗)≡ ⟨ζ|A⟨ξ|BŪe(t)|0(β)⟩. (C2)

To obtain Eq. (C2), we have made use of
⟨0(β)|�|ζ⟩A|ξ⟩B

�
= 1.G(t, ζ∗, ξ∗) is analytic in ζ∗ and ξ∗

because of the properties of the Bargmann states.42 Therefore,
one can Taylor expand it with respect to these parameters
resulting in

G(t, ζ∗, ξ∗)=G(0)(t)+

n,λ

�
G

(1ξ)
nλ

(t)ξ∗nλ+G
(1ζ)
nλ

(t)ζ ∗nλ
�
+ . . . . (C3)

Inserting this into Eq. (C1) and noting that d2ξnλ
π

e−|ξnλ|2(ξ∗
nλ
) j = δ j0 (the same also holds for integrals

containing ζ ∗
nλ

), one sees that only the zeroth-order term
G(0)(t) survives and one obtains

C(t)=G(0)(t). (C4)

It has been shown in Ref. 35 that there exists an integro-
differential equation for G(t, ζ∗, ξ∗) which can be used as a
starting point to obtain G(0)(t).

We will now first present an evolution equation for the
general propagator G(t, ζ∗, ξ∗) defined in Eq. (C2). Since
that equation holds even for system coupling operators that
are not necessarily Hermitian, we use the symbol Ln in
Appendix C 1 in order to distinguish them from the Hermitian
operators Kn. After presenting the general equations, we treat
the special case of Hermitian system-bath coupling operators
Kn =K†n and derive Eq. (36).

1. General propagator

We start by differentiating Eq. (C2) with respect to time
and obtain the evolution equation

∂tG(t, ζ∗, ξ∗)= ⟨ζ|A⟨ξ|B�−iH̄eŪe(t)�|0(β)⟩ (C5)

with H̄e given in Eq. (30). (Note: Unlike the full excited state
propagator Ūe(t), the reduced propagator G(t, ζ, ξ) obtained
by projecting on the environmental degrees of freedom is no
longer unitary.)

After a transformation to the interaction picture and
using the properties of the Bargmann representation, one
obtains the equation of motion
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∂tG(t, ζ∗, ξ∗)=−iHsysG(t, ζ∗, ξ∗)
−i


n

Ln


λ

(g+nλ)∗eiω
+
nλ

tζ ∗nλG(t, ζ∗, ξ∗)

−i

n

L†n

λ

(g−nλ)∗eiω
−
nλ

tξ∗nλG(t, ζ∗, ξ∗)

−i

n

L†n

λ

(g+nλ)e−iω
+
nλ

t ∂

∂ζ ∗
nλ

G(t, ζ∗, ξ∗)

−i

n

Ln


λ

(g−nλ)e−iω
−
nλ

t ∂

∂ξ∗
nλ

G(t, ζ∗, ξ∗) (C6)

with the not necessarily Hermitian system coupling operators
Ln instead of the Kn in Eq. (8). In Eq. (C6), we have defined

g+nλ=


n̄nλ+1 κnλ, ω+nλ=ωnλ, (C7)

g−nλ=
√

n̄nλ κnλ, ω−nλ=−ωnλ. (C8)

As shown in Refs. 35 and 36, one can pave the way to
an efficient stochastic treatment by rewriting this equation
according to

∂tG(t, ζ∗, ξ∗)=−iHsysG(t, ζ∗, ξ∗)
+

n

Lnζ
∗
t,nG(t, ζ∗, ξ∗)+


n

L†nξ
∗
t,nG(t, ζ∗, ξ∗)

−

n

L†n

 t

0
ds α1,n(t− s) δ

δζ ∗s,n
G(t, ζ∗, ξ∗)

−

n

Ln

 t

0
ds α2,n(t− s) δ

δξ∗s,n
G(t, ζ∗, ξ∗)

(C9)

with initial condition G(0, ζ∗, ξ∗) = 1. In Eq. (C9), ζ ∗t,n and
ξ∗t,n are time-dependent complex numbers given by

ζ ∗t,n = −i

λ


n̄nλ+1 κnλζ ∗nλe

iωnλt,

ξ∗t,n = −i

λ

√
n̄nλ κnλξ

∗
nλe
−iωnλt,

(C10)

and α1,n, α2,n are defined as

α1,n(t− s) =

λ

(n̄nλ+1)|κnλ|2e−iωnλ(t−s),

α2,n(t− s) =

λ

(n̄nλ)|κnλ|2eiωnλ(t−s).
(C11)

2. Hermitian coupling

For Hermitian coupling operators Ln = L†n ≡ Kn, the
above equations simplify considerably, since one can now
combine the ξ and ζ terms in the summation. Introducing
the convention that the mode label λ runs over positive
integers (i.e., 1, 2, 3, . . . ), we define new quantities labeled
by µ= . . ., −3, −2, −1, +1, +2, +3,. . . according to

znµ =



ζn, µ

ξn,−µ
; gnµ =




g+n, µ
g−n,−µ

; ω̃nµ =



ω+n, µ
ω−n,−µ

,

(C12)

where the upper row holds for µ > 0 and the lower row for
µ < 0.

Equation (C6) can then be written as

∂tG(t, z∗)=−iHsysG(t, z∗)
−i


n

Kn


µ

g∗nµeiω̃nµtz∗nµG(t, z∗)

−i

n

Kn


µ

gnµe−iω̃nµt
∂

∂z∗nµ
G(t, z∗). (C13)

To obtain Eq. (36), we follow the procedure of Ref. 35
and introduce

z∗t,n =−i

µ

gnµeiω̃nµtz∗nµ. (C14)

Note that z∗t,n = ξ∗t,n + ζ ∗t,n. Using
∂/∂z∗nµ =


ds (∂z∗s,n/∂z∗nµ)(δ/δz∗s,n), one obtains Eq. (36)

with the definition

αn(τ) =

µ

|gnµ |2e−iω̃nµτ. (C15)

Noting that αn(τ) = α1,n(τ) + α2,n(τ) and using
coth(ωnλ/2T)= 2n̄nλ+1, one finds Eq. (38).

APPENDIX D: FUNCTIONAL EXPANSION
OF AUXILIARY OPERATORS
AND ZOFE APPROXIMATION

An often used approximation to treat the functional
derivative of the general NMQSD equation is the so-called
ZOFE approximation. For completeness, we briefly show in
this appendix how also in this approach, the stochastics drops
out of the equations and we present the final equations in the
ZOFE treatment.

We follow30,32,35,44 and use the ansatz

δ

δz∗s,n
G(t, z∗)≡On(t, s, z∗)G(t, z∗), (D1)

where we replace the action of the functional derivative
on the reduced propagator G(t, z∗) in Eq. (43) by a linear
operator On(t, s, z∗) in the electronic system that acts on
G(t, z∗). Here, the lower index n at the operator On(t, s, z∗)
indicates that this operator is connected to the coupling
operator Kn of monomer n. Note that in our previous
work,30–34 we used an upper index instead.

For convenience, we define the auxiliary operators

Ōn(t, z∗)≡
 t

0
ds αn(t− s)On(t, s, z∗). (D2)

Then, Eq. (43) can be written as

∂tC(t) = −iHsysC(t)−

n

Kn


d2z
π

e−|z |
2

× Ōn(t, z∗)G(t, z∗).
(D3)

The operators Ōn(t, z∗) in Eq. (D3) describe the coupling
of monomer n to its local environment and implicitly contain
temperature through the environmental correlation function
αn(t − s) under the memory integral in Eq. (D2). The evolu-
tion of On(t, s, z∗) can be obtained32,35 from the consistency
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condition

d
dt
�
On(t, s, z∗)ψ(t, z∗)�= δ

δz∗s,n
∂t |ψ(t, z∗)⟩. (D4)

We assume that Ōn(t, z∗) is analytic in z∗t,n and expand it
in a Taylor series with respect to the time-dependent complex
numbers (stochastic processes) z∗t,n, which yields

Ōn(t, z∗)=Ō(0)
n (t)+


n1

 t

0
Ō(1),n1

n (t, v1) z∗v1,n1
dv1

+

n1,n2

 t

0

 t

0
Ō(2),n1,n2

n (t, v1, v2) z∗v1,n1
z∗v2,n2

dv1dv2

+ · ·· (D5)

with operator-valued expansion coefficients
Ō(k),n1, ...,nk

n (t, v1, . . ., vk). For these expansion coefficients,
one can derive coupled differential equations describing their
time evolution.60 When evaluating the integral in Eq. (D3)
with the expansion Eq. (D5), all terms with a z∗t,n-dependence
yield zero. This is because both Ōn(t, z∗) as well as
G(t, z∗) are analytic in z∗t,n and therefore, in the product
Ōn(t, z∗)G(t, z∗), only the combination of the two zeroth-order
terms is left after the integration in Eq. (D3). The resulting
equation for the correlation operator C(t) reads

∂tC(t) =
(
−iHsys−


n

KnŌ(0)
n (t))C(t), (D6)

with, indeed, only the z∗-independent zeroth-order O-Operator
Ō(0)

n (t). Note that although only Ō(0)
n (t) contributes to the

evolution equation for C(t), still Ō(0)
n (t) has to be determined

by solving the coupled hierarchy of equations resulting from
Eqs. (D4) and (D5).

To obtain a numerically efficient method, previously
we have applied an approximation,30,60 which we denote as
“ZOFE” approximation. For the case of absorption consid-
ered here, this approximation amounts to neglecting the
coupling of the zeroth order to the higher orders in the
hierarchy. The operators O(0)

n (t, s) are then determined by the
auxiliary evolution equation

∂tO
(0)
n (t, s)=−i


Hsys,O

(0)
n (t, s)

+

m

|πm⟩⟨πm|Ō(0)
m (t),O(0)

n (t, s) (D7)

with the initial condition O(0)
n (s, s)=Kn =−|πn⟩⟨πn |.

Note that the ZOFE approximation is exact in several
important limiting cases, e.g., for weak electronic coupling
between the monomers, for weak coupling to the environ-
ment, as well as in the Markov limit. Furthermore, in many
parameter regimes relevant for molecular aggregates, the
ZOFE approximation gives very precise results.

APPENDIX E: SIMPLIFIED FORMULAS FOR
THE DIMER

We consider a dimer where the transition dipoles of
the monomers are perpendicular to the distance vector R12
between them and are rotated by an angle θ with respect to
each other (see Fig. 1). Then, the expressions for (AAbs)nm

and (ACD)nm, Eqs. (20) and (22), can be easily evaluated. We
obtain

(AAbs)11= (AAbs)22= µ
2, (E1)

(AAbs)12= (AAbs)21= µ
2cosθ, (E2)

and

(ACD)11= (ACD)22= 0, (E3)

(ACD)12= (ACD)21=−|R12|µ2sinθ. (E4)

This leads to

cAbs(t)= µ2��C11(t)+C22(t)�+cosθ
�
C12(t)+C21(t)��, (E5)

cCD(t)=−Rµ2sinθ
�
C12(t)+C21(t)� (E6)

with R= |R⃗12|.
Keeping in mind (see Subsection III E 2) that the

propagation of Cnm(t) is equivalent to propagating the initial
state |πm⟩ until time t and then projecting on the state |πn⟩,
one can express the above Eqs. (E5) and (E6) in a way which
is sometimes more convenient. For the propagation of the
wave function, one uses the same equations as for Cnm(t)
but with the matrix Cnm(t) replaced by a vector |ψm(t)⟩,
where the lower index m indicates that the initial condition
is |ψm(0)⟩= |πm⟩. With this one can write

cAbs(t)= µ2�cos2(θ/2)�⟨π1|+ ⟨π2|��|ψ1(t)⟩+ |ψ2(t)⟩�

+ sin2(θ/2)�⟨π1|− ⟨π2|��|ψ1(t)⟩− |ψ2(t)⟩��, (E7)

cCD(t) =−Rµ2sinθ
�⟨π1|ψ2(t)⟩+ ⟨π2|ψ1(t)⟩�. (E8)

Note that (|ψ1(t)⟩ ± |ψ2(t)⟩)/
√

2 ≡ |ψ±(t)⟩ is a state
which can be obtained by propagating the initial state
|φ±(t)⟩≡ (|π1⟩± |π2⟩)/

√
2.

The above formulas can then be rewritten to

cAbs(t)= 2µ2�cos2(θ/2)⟨φ+|ψ+(t)⟩
+ sin2(θ/2)⟨φ−|ψ−(t)⟩�, (E9)

cCD(t)=−4Rµ2sinθ
�⟨φ+|ψ+(t)⟩− ⟨φ−|ψ−(t)⟩�. (E10)

Thus, the absorption spectrum can be calculated from a
weighted sum of the “symmetric” and “antisymmetric”
contributions. The CD spectrum is just the difference of these
two contributions with equal weight.
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