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Abstract
We consider the interplay between excitonic and atomic motion in a regular, flexible chain of
Rydberg atoms, extending our recent results on entanglement transport in Rydberg chains
(Wüster et al 2010 Phys. Rev. Lett. 105 053004). In such a Rydberg chain, similar to
molecular aggregates, an electronic excitation is delocalized due to long-range dipole–dipole
interactions among the atoms. The transport of an exciton that is initially trapped by a chain
dislocation is strongly coupled to nuclear dynamics, forming a localized pulse of combined
excitation and displacement. This pulse transfers entanglement between dislocated atoms
adiabatically along the chain. Details about the interaction and the preparation of the initial
state are discussed. We also present evidence that the quantum dynamics of this complex
many-body problem can be accurately described by selected quantum–classical methods,
which greatly simplify investigations of excitation transport in flexible chains.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Rydberg atoms have recently received increasing attention in
cold atomic physics, to a large part due to their strong long-
range interactions, with diverse consequences from dipole
blockade [1–3] to long-range molecules [4–6]. Among
the interactions in cold Rydberg gases, resonant dipole–
dipole interactions [7–9] and their non-resonant variants (van
der Waals interactions) [10, 11] are particularly prominent.
These interactions enable Rydberg ensembles to simulate the
quantum dynamics of other long-range interacting systems,
from condensed matter physics [12, 13] to molecular
aggregates [9, 14, 15]. We focus on the latter possibility,
and explore basic consequences of joint dynamics of atomic
motion and excitonic transport.

Within an essential state picture, where only two Rydberg
states per atom are taken into account, the transfer of excitation
can be adequately described by using the exciton theory of
Frenkel [16, 17]. Following the pioneering paper by Franck
and Teller [18], this theory has found wide application in
describing excitation transfer, e.g. in molecular crystals [19],
photosynthesis [20] or organic dye aggregates [21]. In all
these systems the coupling between the exciton and nuclear

degrees of freedom strongly influences the excitation transfer
[18, 22–28]. Similar effects will be reported in this study.

The strong interactions between the monomers of
molecular aggregates lead to coherently delocalized entangled
states [29–31] which are e.g. responsible for the J-band of
organic dye aggregates. Recent experiments indicate robust
excitonic coherence even in biological systems, such as
photosynthetic complexes [32–34].

In all these excitonic systems the resonant nature of
the interaction plays a crucial role. Besides the transfer of
excitation, this interaction also creates a potential, which for
an atom pair depends like 1/R3 on their distance R. For
Rydberg atoms it has been recognized that this potential can
lead to large forces on the individual atoms [15, 35] and thus
cause their motion. In contrast to the atomic motion induced
by the van der Waals interaction, which is due to strongly
off-resonant coupling, the character of the motion (repulsive,
attractive or even mixed) in the resonant case depends strongly
on the excitonic eigenstates [15]. These in turn depend on the
atomic positions, which is why excitation transport and motion
become interlinked. In this respect, our setup [15, 36] strongly
differs from that in [37], where the effect of externally enforced
atomic motion on exciton transport is studied.
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In this paper, we extend our previous studies of excitons
and their dynamics in Rydberg chains [15, 36]. To study
exciton dynamics with Rydberg ensembles, one requires
strong selectivity of the accessible electronic states of each
atom and control over the initial exciton state. We consider
both requirements, and furthermore provide additional details
on the Newton’s cradle-type entanglement transport scenario
reported in [36]. Specifically, we vary atomic masses
and interaction potentials. For the entanglement transport
scenario, we show that two mixed quantum–classical methods
are well suited to describe this complex many-body problem:
Tully’s surface hopping method, and the Ehrenfest method.
For short chains, we validate these quantum–classical
propagation methods by comparison with a full quantum-
mechanical calculation, finding perfect agreement.

The paper is organized as follows. In section 2, we
describe which conditions we imply in order to label a
Rydberg chain as Rydberg aggregate. After a brief comparison
with molecular aggregates (section 2.1), we describe our
geometric setup and Hamiltonian (section 2.2), illustrate how
a simple treatment of transition dipole–dipole interactions can
emerge (section 2.3), argue the validity of our essential state
model (section 2.4), lay the basis for a description of the
Rydberg chain’s excitations in terms of excitons and their
localization (section 2.5) and show how the initial states for
our later applications could be obtained (section 2.6). The
final part of section 2 (section 2.7) details the quantum and
quantum–classical formalisms used to simultaneously model
the dynamics of atomic motion and excitons. After these
preparations, we proceed in section 3 to a detailed presentation
of the entanglement transport scenario first reported in [36] and
survey the parameter space for this scenario in section 4. Some
appendices supply further details.

2. Rydberg aggregates

2.1. Brief comparison with molecular aggregates

Since molecular aggregates have been extensively studied
over the last 70 years, it is appropriate to briefly juxtapose
the Rydberg aggregates with these ‘conventional’ molecular
aggregates.

Molecular aggregates appear in various contexts, ranging
from organic crystals [19, 38] over self-assembled cylindrical
dye aggregates [39] to complex biological light harvesting
systems [20]. These systems range from only two monomers
up to thousands of monomers, which can aggregate into
various geometrical arrangements. The (resonant) transition
dipole–dipole interaction between the monomers leads to
entangled states, often accompanied by a drastic change
in the absorption spectrum compared to that of the single
monomer [21, 29]. Besides some fundamental interest
(e.g. in photosynthesis) the extraordinary properties of these
aggregates have led to various applications, ranging from
sensitizers in photography [40, 41], to the measurement of
membrane potentials [42, 43], and cancer therapy [44]. Also in
the development of efficient, low-cost artificial light harvesting
units (like organic solar cells), dye aggregates might play an
important role [45, 46].

In molecular aggregates the monomers are held at their
positions and orientations, e.g. by a protein environment or
by van der Waals interactions, with distances of the order
of a few Ångström. In the Rydberg aggregates investigated
here, the distances are of the order of a few micrometers
and, most importantly, the Rydberg atoms are free to move.
The main difference, however, between molecular aggregates
and Rydberg aggregates is the internal structure and the
environment. While the Rydberg atoms are at ultra-cold
temperatures and interact only weakly with the environment,
the electronic excitation in the molecular case does strongly
couple to the environment (often at ambient temperature) and
a plethora of internal vibrational modes [47]. This typically
necessitates various approximations and assumptions in the
theoretical description of molecular aggregates, since often
details about the environment or even the precise arrangement
of the monomers are unknown. Furthermore, due to the small
distances, the direct experimental observation of coherent
energy transfer in molecular aggregates is challenging. Hence,
related investigations are typically of spectroscopic nature
[48], and infer the exciton dynamics only indirectly.

In contrast, the beauty of Rydberg aggregates is that
individual excitation and manipulation of the atoms can be
done more easily. Also, since environment and vibrations do
not play a role, it is possible to develop a detailed theoretical
description where common approximations can be checked.

2.2. General setup

We study a chain of N identical atoms with mass M and
denote the position of the nth atom by Rn. These positions are
grouped into a 3N -dimensional vector R = (R1, . . . , RN)T .1

In the following we will refer to these coordinates as nuclear
coordinates. Each atom should be initially well localized,
for example in the ground state of an optical lattice or a
micro-lens array [49]. We can then ensure that the distance
Rnm ≡ |Rn − Rm| between the atoms is large enough to
neglect the overlap between the electronic wavefunctions of
atoms n and m.

Consider a situation where all but one of the N atoms
are in a Rydberg state |νs〉, with principal quantum number ν

and angular momentum l = 0. The remaining atom is in an
angular momentum l = 1 state |νp〉, which we will call the
‘excited’ state. We now define the single-excitation Hilbert
space, whose electronic part is spanned by

|πn〉 ≡ |s · · · p · · · s〉, (1)

a state in which the atom n is in the p state and all others are
in the s state. In figure 1, the state |π1〉 is sketched for the
case N = 5. Note that the roles of s and p are more or less
interchangeable.

For a clear cut picture of exciton transport, the states (1)
should form the essential part of the electronic basis for the
whole aggregate. This requires that transitions to other states,
such as |s · · · p · · · s · · · p · · · s〉 or |s · · · d · · · s〉, are negligible,

1 We present our introductory theory as far as possible in three dimensions
(3D). For all our results we only consider one-dimensional motion (1D),
assuming that transverse motion is frozen out by the confinement of the
atoms.
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Figure 1. Visualization of the electronic state |π1〉.

because they are energetically far detuned with respect to the
relevant couplings. Then, the only relevant interactions occur
within the space spanned by (1) and conserve the number of
excitations. In section 2.4 we show by an example that these
requirements can be fulfilled.

In terms of the basis (1), our total Hamiltonian describing
atomic motion and interactions within the essential states
manifold is given in atomic units by

H(R) = −
N∑

n=1

∇2
Rn

2M
+ H el(R). (2)

Here, the electronic Hamiltonian, which depends on the
nuclear coordinates, is

H el(R) =
∑
nm

Vnm(Rnm)|πn〉〈πm|, (3)

where

Vnm(Rnm) = (−1)η
μ2

R3
nm

(4)

is the dipole–dipole coupling between atoms n and m and Rnm

their separation. We parameterized the strength of the coupling
by its magnitude μ2 and sign η ∈ {0, 1}. Due to this resonant
dipole–dipole interaction the ‘excitation’ can be transferred
from atom n to m. We outline in section 2.3 why we can avoid
a more complicated, angular-dependent [9] expression.

For most specific examples throughout this paper, we con-
sider the atomic species 7Li. Among the work horses of cold
atom physics, this atom is one of the lightest and hence most
suited to display phenomena of dipole–dipole interaction-
induced motion, within the time scales available. Its
atomic mass is roughly M = 11 000 au and transition dipole
moment has the strength μ = 1000 au between s and p states
with a principal quantum number ν ≈ 30, . . . , 40.

In section 4, we survey the response of dynamics dictated
by (2) to changes of Hamiltonian parameters. To this
end we also generalize the type of interaction, considering
Vnm(Rnm) = (−1)ημ2/Rα

nm, where α can for example vary
from α = 1, . . . ,6, with character of the interaction potentials
ranging from Coulombic to van der Waals. Keep in mind
though that unlike conventional Coulomb or van der Waals
interactions, those considered here would still have a resonant
transition character.

2.3. Dipole–dipole interactions

In this section, we outline how the simple form Vnm(Rnm) =
(−1)ημ2/R3

nm can be obtained for dipole–dipole interactions.
For this purpose, we consider a binary atom system with
separation Rnm = Rm − Rn and define R = |Rnm| and
R̂ = Rnm/R. We assume that one of the atoms is in a |νs〉 state
and the other in a |νp〉 state, where ν is the (large) principal
quantum number, subsequently suppressed. As long as one
ignores directional effects, the essential state Hilbert space for
such two atoms is spanned by |sp〉, |ps〉. Considering angular-
dependent transition dipole–dipole interactions amounts to
taking into account also the magnetic quantum number. We
then have six essential states: |{p, 1}s〉, |{p, 0}s〉, |{p,−1}s〉,
|s{p, 1}〉, |s{p, 0}〉, |s{p,−1}〉, using an obvious notation that
writes the magnetic quantum number m of the atom with l = 1
within the curly brackets.

The non-vanishing dipole–dipole transition amplitudes
between those states are [9]

V1m,00;00,1m′ = −
√

8π

3

(dν1,ν0)
2

R3
(−1)m

′

×
(

1 1 2
m −m′ m′ − m

)
Y2,m′−m(R̂), (5)

where Yl,m are spherical harmonics and (· · ·) denotes the
Wigner 3j coefficient. The matrix element Vl1m1,l2m2;l′1m′

1,l
′
2m

′
2

describes a transition between the two-atom states indicated
with primed and non-primed subscripts. dν1,ν0 is the radial
overlap-matrix element between the l = 0 and l = 1 states.
We refer to [9] for further details. In matrix form, using the
above basis ordering, one obtains

V =
[

0 Vps

V
†

ps 0

]
(6)

with sub-matrices

Vps = μ̃2

R3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 cos2 θ − 1

6

e−iφ

√
2

cos θ sin θ
e−2iφ sin2 θ

2

eiφ

√
2

cos θ sin θ
1 − 3 cos2 θ

3
− e−iφ

√
2

cos θ sin θ

e2iφ sin2 θ

2
− eiφ

√
2

cos θ sin θ
3 cos2 θ − 1

6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(7)

In this matrix, the element (Vps)ij contains the amplitude
of transitions from a state |{p,mj }s〉 to |s{p,mi})〉, where
mi,mj ∈ {1, 0,−1}. We used the short-hand μ̃2 = (dna1,nb0)

2.
The angles θ and φ describe R̂ in a spherical polar coordinate
system whose z-axis (ẑ) is the quantization axis with respect to
which the magnetic quantum numbers m is defined. A useful
choice of ẑ will be given by the polarization direction of the
light field used for the initial-state creation, see section 2.6.

We will consider two specific simple cases, assuming a
linear Rydberg chain.

Case i. Choose ẑ along the direction of the chain. Then,
for all distance vectors Rnm we have θ = 0 and

Vps = μ̃2

3R3

⎡
⎣1 0 0

0 −2 0
0 0 1

⎤
⎦ . (8)
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Thus, the magnetic quantum number of the excitation is
conserved. Depending on the selected magnetic quantum
number m, we can realize different signs η and magnitudes
of the interaction.

Case ii. Choose ẑ perpendicular to the direction of the
chain, which we assume to be in the x̂ direction. We then have
(setting θ = π/2 and φ = 0)

Vps = μ̃2

6R3

⎡
⎣−1 0 3

0 2 0
3 0 −1

⎤
⎦ . (9)

It can be seen that the m = 0 state decouples and
yields a dipole–dipole interaction transport without angular
dependence. For all choices of quantization axis and magnetic
quantum state, we finally define the parameter μ2 used in
section 2.2 as the modulus of the factor multiplying R−3. How
a specific magnetic quantum number for the excitation can be
realized is described in section 2.6.

2.4. Validity of the essential state model

Dipole–dipole transitions in principle do not only take place
within the |sp〉, |ps〉 manifold, but also to other states not
included in our essential state picture [9]. Nonetheless,
parameters where these other states can be ignored can easily
be found, as we demonstrate now.

We exploit that transition probabilities from the two
original states to all other di-atomic states are negligibly small
due to their energy mismatch or selection rules. In other words,
all two-atom states to which a direct dipole–dipole transition
is possible are much farther detuned than the strength of the
transition matrix element. We will illustrate this argument in
the following for 7Li.

Consider the two-atom states |35, s〉 ⊗ |35, p〉, |35, p〉 ⊗
|35, s〉. The two-atom states energetically nearest and
connected via a single dipole–dipole transition are |36, s〉 ⊗
|34, p〉, |34, p〉 ⊗ |36, s〉, detuned from our essential states by
� = 8.78 GHz and connected with a coupling strength of
about V = 65 MHz.2 A simple analytical four-state model for
detuned Rabi oscillations then predicts population transfer out
of the essential-state system of the order of (V/�)2 = 5×10−5

for time scales considered in this paper.
As more rigorous justification of the essential state mode,

also accounting for successive, cascaded transitions, we
propagated the state |35, s〉 ⊗ |35, p〉 + |35, p〉 ⊗ |35, s〉 (an
exciton eigenstate, see section 2.5) with a Hamiltonian that
contains all ν, l, m states from ν = 34 to 36, setting all
dipole-allowed transition matrix elements V to V = μ2/d3 for
μ = 1000 au and d = 2 μm. This value for μ overestimates
almost all transition dipoles and the value for d is the smallest
separation occurring in the atomic dynamics of section 3.
Within this ‘worst-case’ scenario, total transitions out of our
target essential states manifold are of the order of 1 × 10−4

within 20 μs, which is longer than the simulated time span in
section 3.

2 We obtain the lithium state energies using quantum-defect theory as
described in [50] and transition strength as outlined in [9] with numerical
Numerov calculation of radial overlaps.

Finally, kinetic and potential energies of the dynamics
presented in our paper amount to only about 5% of the
energetic separation between |35p〉 and |35d〉.

These estimates, while exemplary, show that there is no
general problem with finding physically realistic scenarios
with Rydberg atoms that can be described well with our model.

2.5. Excitons, exciton localization and a full aggregate initial
state

To gain some insight into the structure of the dynamics induced
by the Hamiltonian (2), consider eigenstates of the electronic
Hamiltonian

H el(R)|ϕk(R)〉 = Uk(R)|ϕk(R)〉. (10)

For each R there are N eigenstates labelled by the index k.
Each of these eigenstates can be expanded in terms of the
previously introduced basis |πn〉 as

|ϕk(R)〉 =
∑
m

ckm(R)|πm〉. (11)

These eigenstates are termed Frenkel ‘excitons’ [16, 17] and
form an adiabatic (Born–Oppenheimer) basis in the language
of molecular physics. The corresponding eigenenergies
Uk(R), which also depend parametrically on the nuclear
coordinates R, define the adiabatic potential surfaces. As
evident from (11), an exciton is a coherent superposition of
different localized excitation states.

Now, consider a regular chain of Rydberg atoms with
spacing x0, which is perturbed by a dislocation of two
atoms in close mutual proximity (distance a), see figure 3.
The interaction between these atoms is much larger than
interactions involving the remaining atoms. As a consequence
two of the exciton states localize on the dislocation atoms.
For a � x0, the state whose Born–Oppenheimer surface has
a repulsive character [15] can be approximately written as
|ϕrep〉 ≈ (|π1〉 + (−1)η|π2〉)/

√
2. Such repulsive dimer states

are observed e.g. in [8]. In figure 2, the excitonic population
on the various atoms as a function of a/x0 is shown for the case
N = 6 and different interaction exponents α. Our survey of
dynamics presented later requires sufficiently good coherent
exciton localization on the dislocation atoms, which lead to
our choices of a/x0 indicated by the vertical black lines in the
figure.

We now are in position to discuss the whole initial state
of our Rydberg aggregate, describing the electronic state and
the position of the atoms. The initial spatial wavefunction of
each atom is assumed Gaussian with standard deviation σ0.
This resembles an experimental situation where the ground-
state atoms are trapped in harmonic potentials prior to their
excitation to the Rydberg level, as discussed in the next section.
For a sketch of this arrangement, see figure 3.

We take the complete initial wavefunction (i.e. containing
nuclear and excitonic degrees of freedom) as

|�(t = 0)〉 = |ϕrep(R)〉
N∏

n=1

φG(Rn), (12)
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Figure 2. Initial population of the (out of phase) repulsive excitonic
state for different α as a function of the dislocation ratio a/x0. The
vertical black line indicates our choices for a/x0 employed in
section 4. Other lines indicate the population in the different
excitonic states for a chain containing six Rydberg atoms.

xa 0x0 x0

Figure 3. Sketch of the initial total density distribution of Rydberg
atoms for the case of N = 5 atoms.

φG(Rn) = N exp
(− |Rn − R0n|2/2σ 2

0

)
, (13)

where R0n is the centre of mass of the nth Gaussian and N is
a normalization factor. As above, the index ‘rep’ denotes the
unique exciton state with globally repulsive behaviour [15].
In (12), the exciton state varies with the nuclear coordinates R
within the initial Gaussian distribution, but as long as σ0 � a

this effect will be small. We found that one obtains almost
identical dynamics to that presented in the following, if ϕrep(R)

is replaced by ϕrep(R0) in (12).

2.6. State preparation

In this section, we will briefly describe how states discussed
in the previous section could be prepared experimentally.

At the very beginning, ground state atoms are confined
e.g. in optical traps created by microlens arrays that provide
the desired spatial arrangement, in our case a linear chain with
distances a and x0. Ideally, there would be exactly one atom
per trap site. These ground state atoms are then transferred
into a certain Rydberg state (say 35s) via laser excitation3.

3 If there is more than one atom in the ground state trap, one can ensure, due
to dipole blockade, that there is actually only one Rydberg excitation per site.

We now have a state, which we denote by |s · · · s〉, where
all atoms are in the same Rydberg state |35s〉. Due to the
ultra-cold temperatures the Rydberg atoms can be regarded as
frozen during excitation (the distances between the sites have
to be chosen such that acceleration and blockade effects due
to the van der Waals interaction [51] are negligible). Then,
by applying a short microwave pulse, which will be specified
below, the eigenstate of the chain |ψini〉 ≈ (|π1〉 + |π2〉)/

√
2

can be excited. To reach |ψini〉 ≈ (|π1〉−|π2〉)/
√

2 we require
a further phase flip described below.

For definiteness we choose the propagation direction of
the microwave pulse perpendicular to the chain. Within the
dipole approximation the interaction of the atom n with the
microwave pulse is given by

Wn(t) = −μnE(t) (14)

with the dipole operator μn and electric field E(t).
Since our target initial electronic state is essentially

located on two atoms, in the following we discuss the
microwave excitation exemplarily for a dimer. The extension
to larger systems can be easily done. In this section, we
enlarge our essential state space beyond |π1〉 and |π2〉 to also
include the ‘ground state’ |ss〉 and the doubly excited state
|{p,m1}{p,m2}〉. In this basis the Hamiltonian of the system
can be written as

H =

⎡
⎢⎢⎣

2Es W1(t) W2(t) 0
W†

1(t) (Es + Ep)13 Vps W 2(t)

W†
2(t) Vps (Es + Ep)13 W 1(t)

0 W
†
2(t) W

†
1(t) 2Ep19

⎤
⎥⎥⎦ (15)

with Vps given by (7) and Es and Ep denoting the energies
of the respective Rydberg states. Further, 1n denotes a
n × n unit matrix, Wj (t) a 3 × 1 vector and Wj(t) a
3 × 9 matrix. The components m of Wj (t) are given by
(W̃j (t))m = 〈ss|Wj(t)|{p,m}s〉, and similarly Wj(t) has
elements given by 〈s{p,m2}|W1(t)|{p,m1}{p,m2}〉.

We now take the microwave to be linearly polarized
and choose our quantization axis ẑ in the direction of the
polarization, i.e. E(t) = E(t)ẑ. Similarly as in section 2.3 we
obtain for the matrix elements

〈ss|μ1ẑ|{p, m}s〉 = dν0,ν1√
3

δm0. (16)

From the results of section 2.3, we then note that microwave
polarization along the chain (see (8)) or perpendicular to the
chain (see (9)) leads to a de-coupling of the angular momentum
state m = 0 from the other m states. Thus, we can consider
the reduced Hamiltonian

H =

⎡
⎢⎢⎣

2Es �1(t) �2(t) 0
�1(t) (Es + Ep) Vps �̃2(t)

�2(t) Vps (Es + Ep) �̃1(t)

0 �̃2(t) �̃1(t) 2Ep

⎤
⎥⎥⎦ (17)

with �n(t) = 1√
3
E(t)dν0,ν1 and �̃n is of the order of �n. It

is instructive to diagonalize within the one-exciton space to
obtain the ‘eigenstates’ |±〉 = 1√

2
(|π1〉 ± |π2〉) with energies

5
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E± = (Es + Ep) ± Vps. Taking Es as zero of energy we obtain
for the Hamiltonian in this basis

H =

⎡
⎢⎢⎣

0 �+(t) �−(t) 0
�+(t) Ep + Vps 0 �̃+(t)

�−(t) 0 Ep − Vps �̃−(t)

0 �̃+(t) �̃−(t) 2Ep

⎤
⎥⎥⎦ (18)

with �± = 1√
2
(�1 ±�2). Since we are dealing with identical

atoms �− = 0, the microwave couples only to the symmetric
state |+〉 = 1√

2
(|π1〉+ |π2〉). Thus, in order to be resonant with

the transition |ss〉 → |+〉 we will detune the microwave by Vps

w.r.t. the atomic transition frequency. This also means that
the microwave is detuned by 2Vps w.r.t the transition from the
state |+〉 to the doubly excited state |pp〉, so that the population
of the doubly excited state will be strongly suppressed.

Ideally, the microwave pulse should transfer all the
population from the |ss〉 state to the |+〉 state and be so short
that the atoms do not move appreciably during the duration
of the pulse. We have done full numerical simulations of this
excitation scheme for three lithium atoms, and we found that
pulses of few nanoseconds duration can be used to achieve this
goal.

It also is of interest to access the aggregate eigenstate |−〉.
We will actually focus on dynamics arising from a |−〉-type
initial state and interactions with η = 1 throughout this paper,
since in that case the smaller energetic separation between the
totally repulsive adiabatic state and its energetic neighbour
leads to more interesting non-adiabatic effects. This scenario
was also considered in our previous work [15, 36].

Since |−〉 does not directly couple to the linear polarized
microwave, as argued above, this requires a second state
preparation step in which e.g. the phase of the |π2〉 component
of the quantum state is inverted. This can be achieved using a
Rabi-2π laser pulse, which is resonant on the transition from
|νp〉 to e.g. the absolute ground state |2s〉 and spatially focussed
to only interact with atom 2 [52].

2.7. Dynamical methods

Up to this point we have introduced the Rydberg aggregate as
an ensemble of alkali atoms with parameters chosen to enable
a description of collective excitations in terms of Frenkel
excitons, and explained how the atoms can be brought into the
required internal electronic states. To form a flexible Rydberg
aggregate, we further wish to include motion of the atoms.
We now list different possibilities of describing this motion
numerically.

2.7.1. Exact solution: Schrödinger’s equation. The
full quantum-mechanical many-body problem posed by the
Hamiltonian (2) is conceptually straightforward, but becomes
quickly intractable as the number of atoms N is increased.
However, for small N, it is not difficult to directly solve the
Schrödinger equation

i
∂

∂t
|�〉 = H |�〉. (19)

Expanding the full wavefunction in electronic (diabatic) states
according to |�(R)〉 =∑N

n=1 φn(R)|πn〉, we arrive at

i
∂

∂t
φn(R) =

N∑
m=1

[
−∇2

Rm

2M
φn(R) + Vnm(Rnm)φm(R)

]
. (20)

We solve (20) for three Li atoms in order to validate the
quantum–classical methods presented further below, which in
turn will then be faithfully used for longer chains. In practice,
the irrelevant centre-of-mass degree of freedom is removed
from (20) resulting in an effectively two-dimensional (2D)
problem. This is solved on a discrete spatial grid.

The above diabatic representation of the wavefunction
φn(R) allows a straightforward propagation. To interpret the
results and compare them with the quantum–classical methods,
it can also be beneficial to move to the adiabatic representation

|�(R)〉 =
N∑

k=1

φ̃k(R)|ϕk(R)〉. (21)

The two representations are related by

φ̃k(R) =
∑

n

Okn(R)φn(R), (22)

with Okn(R) = 〈ϕk(R) | πn 〉. For instance, the initial state
(12) corresponds to φ̃rep(R) = ∏N

n=1 φG(Rn) and φ̃k(R) = 0
for k = rep in this representation.

When analysing our results, we will not show the full
N-dimensional nuclear/atomic wavefunction but focus on the
more intuitive total atomic density, which is given by

n(R) =
N∑

j=1

N∑
m=1

∫
dN−1R{j}|φm(R)|2. (23)

Here,
∫

dN−1R{j} denotes integration over all but the j th
nuclear coordinate. The density n(R) gives the probability
of finding an atom at position R.

We will assume that wavefunctions of different atoms
never occupy the same space. For the calculations shown, this
assumption turned out to be valid.

2.7.2. Quantum–classical propagation. When the number
of atoms N exceeds values where the direct quantum
solution of the time-dependent Schrödinger equation (20)
is tractable, we resort to mixed quantum–classical methods,
namely the Ehrenfest method (EF) [53, 54] and Tully’s
fewest switching algorithm [54, 55]. In both approaches,
the nuclear coordinates R are treated classically and an
ensemble of trajectories R(t) is propagated in a way specified
below. In order to represent the initial nuclear wave packet,
we randomize the initial positions and velocities for the
trajectories according to the Wigner distribution of the initial
state (12). Since the spatial density of each atom is assumed
to be Gaussian, this simply amounts to un-correlated Gaussian
spread of both position (with standard deviation σ0/

√
2) and

velocities (with standard deviation 1/(
√

2σ0M)). To obtain
the total atomic density n(R), the positions of the atoms are
binned throughout all trajectories.
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The excitonic propagation is done by expanding
|�(R, t)〉 = ∑N

k=1 c̃k(t)|ϕk(R)〉, where the complex
amplitudes c̃k are determined by

i
∂

∂t
c̃k = Uk(R)c̃k − i

N∑
q=1

Ṙ · dkq c̃q , (24)

where Uk(R) are the adiabatic potential energy surfaces
defined in (10) and

dkq = 〈ϕk(R)|∇R|ϕq(R)〉 (25)

are the so-called non-adiabatic coupling vectors.
The two methods differ in the classical propagation

method for the nuclear coordinates. In the Ehrenfest method,
the nuclear dynamics is determined by Newton’s equations

MR̈ = −∇RŪ (R, t) (26)

with the average potential

Ū (R, t) = 〈�(R, t)|H el(R)|�(R, t)〉 =
∑

k

|c̃k(t)|2Uk(R).

In contrast, in Tully’s method each trajectory moves classically
on a single adiabatic surface Uk(R), except for the possibility
of instantaneous jumps among the adiabatic states. Between
jumps the classical equation of motion is

MR̈ = −∇RUk(R). (27)

Details on Tully’s method and our numerical implementation
are given in appendix B. Now, when performing the average
over trajectories the spreading due to the surface hopping is
combined with the spreading due to different trajectories for
different initial classical nuclear positions.

3. Entanglement transport

In the previous section, we have explained the design of
a flexible Rydberg aggregate and our various methods for
dynamical propagation. Hence, we are ready to consider the
dynamical problem introduced in [36] in more detail. We
study the effect of resonant dipole–dipole interactions on a
regular linear chain of Rydberg atoms. Initially, we impose
a ‘deformation’ in the distances between the atoms that gives
rise to an associated localized exciton state, which is strongly
repulsive. We demonstrate a strong correlation between the
resulting exciton dynamics and the motion of the atoms.
A combined pulse of atomic displacements (‘deformation’)
and localized electronic excitation propagates adiabatically
through the chain in a manner reminiscent of Newton’s cradle.
We show that this can also be viewed as adiabatic entanglement
transport, since the initial electronic state |ϕrep(R, t = 0)〉 is a
Bell state [56]. To see this, we rewrite the initial state as

|ϕrep(R, t = 0)〉 ≈ 1√
2
(|π1〉 − |π2〉) (28)

= 1√
2
[|ps〉 − |sp〉] ⊗ |s · · · s〉, (29)

(a) (f )

(b) (g)

(c) (h)

(d) (i)

(e) (j)

Figure 4. Comparison of QM, Tully and EF for nuclear dynamics in
the case N = 3 for two different parameter sets, yielding adiabatic
(a)–(e) and non-adiabatic dynamics (f)–(j). The time evolution of
the total atomic density n(R, t) (a), (f) is shown together with a
comparison of Tully’s surface hopping calculations (black solid
line) with the full quantum evolution (red dashed line) and EF (blue
dotted line) in other panels. (b) Relative population on the
energetically nearest adiabatic surface, nmid = ∫ dR|φ̃mid(R)|2
(nmid = |c̃mid|2 in the Tully /EF algorithms), as a measure of the
propensity of non-adiabatic transitions. The index ‘mid’ is defined
in the text. The inset shows the differences Tully–QM (black solid
line) and EF–QM (red dashed line). (g) Similar to (b) but showing
the total population (Tully (blue solid line), QM (green dashed line),
EF (blue dotted line)) and population of all three surfaces ‘rep’,
‘mid’, ‘att’ in descending order. (c), (h) Spatial slice n(x, t1), with t1

as indicated by the first vertical white lines in (a), (f). (d), (i) Spatial
slice n(x, t2), with t2 as indicated by the second vertical white lines
in (a), (f). (e), (j) Difference Tully–QM and EF–QM for the density
profiles at t2 with lines as in the inset of (b).

where the state in square brackets concerns the dislocated
atoms, and |s · · · s〉 the rest of the chain. Prior to demonstrating
the combined transport of displacement, excitation and
entanglement, we validate the quantum–classical methods
required for larger chains.

3.1. Comparison and validation of methods

To confirm the applicability of quantum–classical numerical
treatments to the dislocated chain of section 2.2, we consider
the smallest nontrivial chain, namely N = 3. In this case, it is
not difficult to solve the full Schrödinger equation numerically
exactly. We are then in a position to compare all three
propagation schemes outlined in section 2.7, full quantum
mechanics (QM), Tully’s fewest switching (Tully) and the
Ehrenfest method (EF). We consider two distinct scenarios:
(i) predominantly adiabatic dynamics for the validation of the
quantum–classical methods for the subsequent section 3.2.
(ii) Strongly non-adiabatic dynamics, in order to highlight the
differences in propagation algorithms.
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Scenario (i) is shown in figure 4(a)–(e). We used
M = 11 000 au and μ = 1000 au as in [36]. The
quantum-mechanical probability of finding an atom at a certain
position predicted by QM and the corresponding semiclassical
methods show perfect agreement. As the dynamics is almost
completely adiabatic, each avoided collision between two
atoms is accompanied by excitation transfer. We will highlight
this in detail in the next section, where we consider longer
chains. Note that Tully and EF even perfectly reproduce
the small fraction of population that has switched to the
neighbouring surface 4, as can be seen in figure 4(b).

For scenario (ii), shown in figure 4(f)–(j), we changed
our parameters to M = 1800 (hydrogen) and μ = 200 au.
This fictitious scenario was solely chosen to increase the
system’s non-adiabaticity and is probably not realistic. Due
to increased diffusion and collisions, we extended all three
models by a phenomenological treatment of ionization,
presented and justified in appendix C. It can be seen that in
contrast to scenario (i), there are now significant transitions
from the initial surface ‘rep’ to ‘mid’. On this surface, the
trimer no longer feels an overall repulsive potential [15].
Consequently, atoms that have undergone a change of adiabatic
state can approach each other closely where they ionize.
This is reflected in the drop of overall population for the
QM and Tully models. In contrast, atoms in the EF model
always propagate according to a state averaged potential,
which due to 75% population on the repulsive surface is
still dominantly repulsive. Consequently we do not observe
significant ionization in the EF model. Despite this main
difference, it can be seen that the overall state population as
well as spatial density distribution of the exact QM model is
still fairly well reproduced by both Tully and EF.

The physical situation shown in figure 4(a)–(e) is quite
similar to that presented in the following section, except for
the number of atoms. The quality of agreement between
the three disparate methods found in the case N = 3 gives
confidence that the quantum–classical methods will produce
reliable results also for the longer chain considered next, for
which a solution of the Schrödinger equation would no longer
be feasible.

3.2. Coupled atomic and electronic dynamics

The atomic motion and excitation transfer for a chain of N = 7
atoms, when starting in the exciton state with highest energy
(which corresponds to the fully repulsive state) is shown in
figures 5 and 6. As expected, initially the two close atoms
strongly repel each other. When atom 2 approaches atom 3
these atoms start to repel each other. Atom 2 slows down and
atom 3 accelerates. In this way the momentum of atom 2 is
transferred through the chain to atom 7, which is reached at
t ≈ 5.5 μs. Then, atom 7 moves away from the remaining
N − 2 atoms, as atom 1 did already at the beginning of the
evolution. The remaining atoms form a regular chain with
distance x0 between the atoms and positions shifted by x0 − a

4 For the case N = 3 there are three adiabatic surfaces, one overall repulsive
(‘rep’), one attractive (‘att’) and one energetically between those, which we
label ‘mid’.

t = 0.01μs

t = 0.56μs
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Figure 5. Dynamics of atomic motion and excitation transfer.
Shown are snap-shots in time as labelled, of the total atomic density,
as a function of spatial coordinate. The colour shading reflects the
probability of the underlying atom to be excited, and hence
demonstrates exciton transport.

w.r.t. the initial position of the respective atom. This chain is
in a repulsive state and the atoms drift very slowly apart in a
manner typical for a regular chain as discussed in [15].

Note the spreading of the initially quite localized
wavepackets right from the start, for example atom 1. This
is due to the initial spatial width of the Rydberg atom
distribution σ0, which gets converted into a strong velocity
spread �v due to the steep slope of the dipole–dipole
potential. One expects �v = (2σ0μ

2/Ma4)1/2. Then,
estimating �x = �vt describes the spreading of atom 1
well. Atom 2 initially obtains the same large velocity spread;
in the following elastic collision this is however exchanged
completely against the (narrow) velocity distribution of 3.
After the dislocation has traversed the chain, only the outer
atoms have a considerable spread in velocity which results in
a large position smear as time progresses (see figure 5). During
this transfer of momentum there is negligible overlap of the
spatial distributions of different atoms, even at the avoided
collisions.5

Up to now we have restricted our discussion to the
‘slow’, ‘macroscopic’ movement of the Rydberg atoms.
The interaction strength between a pair of Rydberg atoms
at a distance a = 3.5 μm (corresponding to the average

5 In interpreting figure 5, keep in mind that a narrow gap between the total
density peaks associated with two neighbouring atoms does not imply that the
atoms approach closely: correlations between atomic positions are strong and
result in the absence of actual close encounters.
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Figure 6. Dynamics of atomic motion and excitation transfer
averaged over 105 realizations. (a) Total atomic density as defined in
(23), obtained by binning the classical trajectories R(t), see
appendix B. (b) Diabatic populations |cm(t)|2 in the localized state
basis |�(t)〉 =∑n cn(t)|πn〉. The row m shows the excitation
probability of the atom m. (c) Population on the adiabatic
(eigen-)surface rep (red) and the energetically next one (blue).
(d) Binary entanglement (see appendix A) En,n+1 for neighbouring
atoms. The pair of indices n, n + 1 is assigned to each line near its
maximum.

closest distance between atoms up to the time t = 5.5 μs)
is approximately 141 MHz, which corresponds to a ‘transfer’
time of 0.02 μs. This is much faster than the time scale of
motion of the atoms. The colour shading in figures 5 and
6(b) visualize how the electronic excitation evolves in time.
One sees that the excitation gets transferred such that it is
always localized on the two instantaneously nearest atoms, in
accordance with the structure of exciton eigenstates outlined
in [15]. After 5.5 μs the momentum that was transferred
through the chain kicks out the last atom, and a well-defined
close proximity pair no longer exists. The exciton state
then assumes the shape for an equidistant chain, de-localized
over the entire chain (consisting of the remaining N − 2
atoms), which subsequently slowly spreads out. However,
this state change is not completely adiabatic as can be seen
in figure 6(c) where the adiabatic population on the initial
(repulsive) adiabatic surface together with the population on
the neighbouring adiabatic surface is shown. One clearly sees
a change of population around t = 5.5 μs, which is the time

when atom 7 starts to separate from the chain. The duration
over which population transfer between the surfaces occurs
corresponds to the time during which the excitation localized
on atoms 6 and 7 spreads over the remaining chain (see
figures 5 and 6(b)). This change of the adiabatic populations
can be understood in a simple way: as noted above, up to
t ≈ 5 μs the excitonic transfer time was much faster than the
nuclear dynamics. During the time in which atom 7 leaves the
chain, however, the excitation has to delocalize over the whole
remaining chain to stay in the fully repulsive adiabatic state.
The distances involved in this redistribution of excitation are
much larger than a or x0; hence, the electronic time scale is
slower, now of the order of the nuclear motion of atom 7. After
the delocalized state is reached, the relevant nuclear dynamics
becomes very slow—the system behaves adiabatic again. We
found that the magnitude of these non-adiabatic transitions
increases with chain length N if all other parameters are kept
constant, reflecting a decrease in the energetic separation of
the involved adiabatic states for larger N.

So far we have viewed the dynamics of excitation transport
essentially as a wave-spreading phenomenon on a chain whose
constituents are free to move. It is possible to give the
observed phenomenon a quite different twist, by considering
the dynamical transport of entanglement that is linked to the
excitation migration. In particular, we focus on entanglement
within the subsystem comprised of the electronic state of atoms
n and m only, denoted by En,m. This subsystem can contain
much less information than the full many-body quantum state;
hence, entanglement therein is expected to be more robust and
simultaneously more accessible. We summarize in appendix
A how we calculate the relevant bipartite entanglement of
formation [57]. As can be seen in figure 6(d), the initially
perfect entanglement between 1 and 2 is transported through
the chain with only minor losses up to the point where
the final atom leaves the chain6. Then the exciton state
de-localizes over the entire chain, with a resulting drop of
bipartite entanglement. A comparison of panels (b) and (d) of
figure 6 makes it apparent that entanglement is here a direct
consequence of coherent, delocalized excitation: whenever
the diabatic population on both members of a neighbouring
atom pair is large, so is the mutual entanglement.

4. Parameter dependence of the entanglement
transport

In the following we will investigate how the coupled excitonic
and nuclear dynamics depends on the mass M of the atom,
the magnitude μ of the used transition dipole and on the
absolute initial positions of the atoms. These dependences can
in principle be studied in experiment. In addition, we will also
investigate changes of the functional form of the long-range
interaction, which is more of general theoretical interest. As
in the previous section, for the following calculations we will
use and compare the two mixed quantum–classical methods.

6 We have verified that both methods outlined previously give the same
entanglement evolution for the case N = 3.
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Figure 7. Entanglement Enm(t) between neighbouring atoms n and
m for different values of the transition dipole moment μ calculated
with Tully and Ehrenfest. For each μ the time is scaled with
t0 = t0(μ) = T/μ with T = 6.44 μs. The curves for different μ are
indistinguishable.

Since we focus on dynamics which is more or less
adiabatic, the motion of the atoms is approximately governed
by

M
∂2

∂t2
R = −∇RUrep(R) = −∇R

μ2

R3
= 3

μ2

R4
, (30)

which is equivalent to ∂2

∂t2 R = 3 μ2

MR4 . If we now scale

Rλ = λR, (31)

Mβ = βM, (32)

μγ = γμ, (33)

we see that (30) remains invariant, if time is also scaled by

τ = tγ −1β1/2λ3/2. (34)

This means, for example, that for the doubled transition dipole
moment μ one expects the dynamics to be twice as fast, but
otherwise unchanged. This is confirmed in figure 7 where
entanglement transport for various transition dipole strengths
is shown, each scaled by (34).

Consider next the distance dependence. Numerical
calculations are shown in figure 8. Here, we have kept the
ratio a/x0 constant and scaled the distances between the atoms
according to (31); however, we did not scale the width σ0 of
the initial nuclear wavefunction. One sees that the overall
dynamics obeys the scaling (34); however, there are slight
differences in the magnitude of the entanglement. These are
due to the different relative width of the initial Gaussian. If
we also scale σ0, we obtain perfect agreement as in figure 7.

The dependence on the mass is demonstrated in figure 9.
Again one sees that the scaling relation (34) is basically
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Figure 8. As figure 7 but now for scaled distances λ × 2 μm and
constant a/x0. Here, the width σ0 of the initial nuclear wavefunction
is kept constant. The time is given in units of t0 = t0(λ) = T λ5/2

with T = 6.44 μs.

fulfilled; however, there are quite large changes in the absolute
value of entanglement when masses or calculation methods are
varied, especially after the delocalization of the excitation (see
section 3.2). These differences appear pronounced for very
small masses7.

To understand the deviations, the number of jumps
invoked in Tully’s method is shown as a function of mass
in figure 10. As expected for smaller masses the dynamics
becomes more non-adiabatic and the number of jumps strongly
increases8.

From the above analysis one sees that due to an increasing
number of jumps there are differences in the dynamics for
different masses. However, in practice these differences are
quite small as is demonstrated in figure 9. The overall shape
of the curves stays the same; only the timescale for the
total dynamics changes. Nevertheless one clearly sees that
with smaller mass, where the dynamics becomes more non-
adiabatic, there is also a larger loss of entanglement.

It is instructive also to compare Tully’s surface hopping
approach with the much simpler (and faster) Ehrenfest method.
For larger masses, in figure 9, the results obtained from
Tully’s surface hopping method and the Ehrenfest-average-
potential method do not differ, since only a few transitions
between the adiabatic states occur. For lighter masses, where
more transitions occur, the methods start to deviate, since the

7 The green curve corresponds roughly to hydrogen.
8 A similar plot but with the number of jumps reduced by roughly a factor of
ten is obtained when starting from the symmetric initial electronic state, due
to a larger energy separation between neighbouring surfaces.
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Figure 9. As figure 7 but now for different masses M = βMLi.
Tully’s surface hopping algorithm (solid lines), Ehrenfest method
(dashed lines). The time is given in units of the mass-dependent
time t0 = t0(β) = T

√
β with T = 6.44 μs. For m = 1 and m = 1.49

all lines are indistiguishable.

dynamics on the averaged potential in the Ehrenfest method
differs from that stemming from Tully’s algorithm.

4.1. Dependence on the interaction potential

The physical transition dipole–dipole interaction between the
states |πn〉 scales with 1/R3, where R is the distance between
two Rydberg atoms. In the following we will investigate
(hypothetical) resonant energy transfer interactions with power
law dependence on the distance

Vnm = −μ2/Rα
nm. (35)

As already shown in figure 2, to obtain the initial state
|ψini〉 ≈ (|π1〉 − |π2〉)/

√
2, the ratio a/x0 has to be

decreased for decreasing α. We choose a/x0 such that
the ratio of the interaction energy between atoms 1 and
2 to that between atoms 2 and 3 is kept constant as α

varies. Parameters selected in this manner are shown in
figure 2 as solid black bars.

To have comparable dynamics for different exponents α,
we further fix the values of a and x0. We choose the α-
dependent initial distance aα by requiring V12(aα) ≡ V12(a3),
which leads to aα = (a3)

3/α . Furthermore, we have to
adapt the width of the initial nuclear wave packet to the new
distance. Our variance σα of the Gaussian position distribution
is determined by requiring that the corresponding spread of
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Figure 11. As figure 7 but now for different exponents α. The time
is scaled according to (36).

initial potential energies is roughly independent of α. This

leads to the condition σα ≈ 3
α

a
3
α
−1

3 σ3.
In figure 11, the entanglement between neighbouring

atoms is shown for different α and M = MLi. The time is
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in units of t0(α), which is different for each α

t0(α) = α

3

√
(a3d3)

1− 3
α T (36)

with T = 6.44 μs. One sees that in these scaled time units,
for α � 3, the transport of entanglement is more or less
independent of α. For smaller α, however, the entanglement
transport is strongly reduced.

5. Conclusions and outlook

We have demonstrated a strong connection between the
motion of a chain (aggregate) of Rydberg atoms and the
coherent propagation of a single electronic excitation within
the chain. Adiabatic transport ensures that the excitation
remains spatially localized near a dislocation passing through
the chain. Our results were obtained with Tully’s surface
hopping method [54, 55] and the Ehrenfest method [53, 54],
both of which we vindicate by comparison with exact quantum
calculations for a smaller model system with similar dynamics.
A key feature of our setup is that the initial state is a repulsive
electronic eigenstate of the chain.

If the system was not prepared in an electronic eigenstate
but in a state where the excitation is localized on a single
atom, one would find a fast excitation transfer similar to
that described e.g. in [24, 58]. If free motion is added to
such a scenario, however, those parts of the population that
necessarily initially reside on an attractive surface can lead to
fast collisions of light atoms. In that case the dynamics could
be treated with the Tully algorithm; however, the Ehrenfest
method would fail (e.g. for the dimer there would be no
movement at all).

We wish to contrast the results of this study with those
obtained in [10] for van der Waals interactions. For the
case of the repulsive van der Waals interaction one finds
similar trajectories for the movement of the atoms, showing
for example Newton’s cradle-like transfer of a dislocation
through an atomic chain. The crucial difference to the dipole–
dipole coupling presented here is the excitation energy transfer
involved in the latter. Even more important is that the dynamics
in the dipole–dipole case depends on the electronic state. An
even stronger contrast to van der Waals is found for initial states
other than the fully repulsive one treated here. Even mixed,
partially attractive, partially repulsive dynamics is possible
as shown by Ates et al [15]. Such dynamics would arise
from scenarios presented here only if a sufficient fraction of
the atoms has undergone non-adiabatic transitions to other
potential surfaces (as in our figure 4(d)).

In this paper, we have exclusively studied free Rydberg
atoms. When the atoms are trapped, the dipole–dipole forces
will induce oscillations of atoms in the traps, which in turn lead
to oscillating couplings and again to a correlation between
the motion of the exciton and the motion of the Rydberg
atoms. This gives rise to the well-known Davydov soliton
[59, 60]. Constructing large ‘crystals’ of N Rydberg atoms is
problematic since each atom has a finite lifetime τ , leading
to an even shorter lifetime of the crystal of τ/N . Therefore,
it would be advantageous to map the strong dipole–dipole

interaction in the Rydberg state to the ground state using off-
resonant laser dressing techniques [61]. Using this technique
and a ring geometry, it is even possible to use (dressed)
Rydberg aggregates for the study of near conical-intersection
dynamics [62]. For the parameters used in our simulations of
section 3, we expect the lifetime to be sufficient.

Experimentally, observables as shown in figure 6 could be
monitored using techniques for the simultaneous position and
state measurement of Rydberg atoms [63]. In our particular
system the presence of entanglement can then be directly
inferred from the state populations.

Appendix A. Entanglement of formation

The ‘entanglement of formation’ [57, 64] is an entanglement
measure for bipartite quantum states, also applicable to mixed
states. For a pure state it equals 1 for perfect entanglement
and it is 0 for a separable state.

We calculate this entanglement measure in the following
way: first consider the reduced density matrix describing the
electronic state when the atomic positions are traced out:

σ̂ =
∑
n,m

σnm|πn〉〈πm|, (A.1)

with

σnm =
⎧⎨
⎩
∫

dNR φ∗
n(R)φm(R) QM

c∗
ncm Tully/Ehrenfest.

(A.2)

The first expression holds for the full quantum calculations,
and the second for the quantum–classical methods. In the latter
case · · · denotes the trajectory average and cn =∑k OT

nkc̃k are
the coefficients in the diabatic basis with Onk defined in (22).

From (A.2) we construct the binary-reduced electronic
density matrix of atoms a and b:

β̂ab = Tr{a,b}[σ̂ ]. (A.3)

The symbol Tr{a,b}[· · ·] denotes the trace over the electronic
states for all atoms other than a, b. Recall that in the present
approach each atom is described by a two-level system as
discussed in subsections 2.2–2.6. With our labels for those
two states, |s〉 and |p〉, the trace appearing in (A.3) is over the
Hilbert space spanned by the basis {|n1〉 · · · |nN 〉, nj ∈ s, p}.

The remaining reduced subspace of atoms a and b is
spanned by |pp〉, |ps〉, |sp〉, |ss〉. Since the states |πn〉 appearing
in (A.1) only contain a single excitation p, all matrix elements
of β̂ab involving |pp〉 vanish. In the reduced basis one finally
has

β̂ab =

⎛
⎜⎜⎝

0 0 0 0
0 σaa σab 0
0 σ ∗

ab σbb 0
0 0 0

∑
c ={a,b} σcc

⎞
⎟⎟⎠ . (A.4)

From this we construct

Sab =
√√

β̂abβ̂
∗
ab

√
β̂ab, (A.5)

Cab = max(0, 2λab − TrSab), (A.6)
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with the further definitions

H(x) = −[x log2 x + (1 − x) log2(1 − x)], (A.7)

E(x) = H(1/2 +
√

1 − x2/2), (A.8)

where λab denotes the largest eigenvalue of Sab; we can finally
obtain the binary entanglement of the electronic states of atoms
a and b:

Eab = E(Cab). (A.9)

For further details we refer to [57, 64].

Appendix B. Tully’s surface hopping

The quantum-mechanical dynamics governed by (24) and the
classical equation of motion (27) are solved self-consistently.
The atoms move on a single adiabatic potential surface k,
which however may be changed via sudden jumps to another
surface q. The probability for a jump from state k to state q is
given by

gkq = max

(
0,

bqk�t

akk

)
, (B.1)

where �t denotes the propagation time step and

bqk = −2 Re(a∗
qkṘ · dqk), (B.2)

aqk = cqc
∗
k . (B.3)

To determine if during a time step a jump takes place we
compare gkq with a uniform random number ξ ∈ [0, 1]. If
ξ � gk1, the jump is to the surface q = 1, if gk1 < ξ �
gk1 +gk2, to q = 2 and so forth. When a switch takes place the
velocity Ṙ is adjusted in order to conserve the total amount of
energy. This will be done in the direction of the non-adiabatic
coupling vector dkq as follows:

Ṙ(t) = Ṙ(t − �t) − γkqdkq

M
. (B.4)

Here

γkq =
βkq ±

√
β2

kq + 4αkq(Uk − Uq)

2αkq

, βkq ≶ 0, (B.5)

with

αkq = 1

2M

N∑
i=1

|d(i)
kq |2 (B.6)

βkq =
N∑

i=1

Ṙi · d
(i)
kq . (B.7)

If the energy of the final surface q is larger than that of the
initial surface k and the velocity reduction required is greater
than the component of velocity to be adjusted, then the jump
is rejected and instead of (B.5) we use

γkq = βkq

αkq

, (B.8)

which corresponds to a reflection of the velocity component
along dkq . Further details about Tully’s algorithm can be found
e.g. in [54, 55].

As described in [65] the forces ∇RUk(R) =
∇R〈ϕk(R)|H el(R)|ϕk(R)〉 and the non-adiabatic coupling
vectors dij are calculated using the Hellman–Feynman
theorem. One then finds

∇RUk(R) = 〈ϕm(R)|(∇RH el(R))|ϕm(R)〉 (B.9)

and

dkq = 〈ϕi(R)|(∇RH el(R))|ϕj (R)〉
Uj(R) − Ui(R)

. (B.10)

The total density n(R, t), as defined in (23), is obtained through
a binning of the single trajectories, which means for each
time step our spatial domain is discretized into bins and if a
trajectory R(t) = (R1(t) . . . RN(t))T lies within such a bin,
n(R, t) for that bin will be increased by 1. By normalizing
n(R, t) one obtains the probability of finding an atom at a
given time in a certain interval of space.

Appendix C. Phenomenological model of ionization

Our essential state model as justified in section 2.4 is only valid
while atoms do not approach each other closely. Once they
do, dipole–dipole shifts of all electronic states become too
large to work in a small Hilbert space of electronic states.
The most prominent consequence is collisional ionization
of Rydberg atoms [10]. In order to avoid excursions
of our numerical propagation schemes into realms where
the underlying model is invalid, we incorporate a simple,
phenomenological treatment of ionization for very close
atoms.

For the quantum-mechanical calculations, we employ an
imaginary absorbing potential of the form

i
∂

∂t
φn(R) = . . . − iW(R)φn(R) (C.1)

into (20). The shape of W(R) is chosen to minimize reflection,
while fully removing components of the wavefunction that
correspond to atoms closer than an enforced minimal
distance. For the data of figure 4(f)–(j), where the
ionization is most important, this distance is 2 μm. For
the two quantum–classical trajectory methods (EF, Tully), we
incorporate the effect described by (C.1) through a stochastic
‘ionization probability’ 2W(x)�t in each discrete time step of
duration �t .

Note that we do not aim to model realistic ionization rates;
however, we do employ the same model of ionization in all
three methods (QM, EF, Tully). Further we point out that this
approach practically leads to ionization of all N atoms, even if
only two atoms collided. A physically correct treatment would
require a density matrix formalism, going far beyond our goal,
to simply exclude numerical data from unrealistic regions of
the model.
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[2] Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D,
Walker T G and Saffmann M 2009 Observation of Rydberg
blockade between two atoms Nat. Phys. 5 110
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