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Breakup of Rydberg-blockaded atom clouds via dipole-dipole interactions
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We investigate resonant dipole-dipole interactions between two superatoms of different angular momentum,
consisting of two Rydberg-blockaded atom clouds where each cloud carries initially a coherently shared single
excitation. We demonstrate that the dipole-dipole interaction breaks up the superatoms by removing the excitations
from the clouds. The dynamics is akin to an ensemble average over systems where only one atom per cloud
participates in entangled motion and excitation transfer. Our findings should thus facilitate the experimental
realization of adiabatic exciton transport in Rydberg systems by replacing single sites with atom clouds.
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I. INTRODUCTION

Rydberg atoms have several remarkable properties, such
as long lifetimes, large polarizability, and strong long-range
interactions. These properties have turned Rydberg atoms into
versatile tools for quantum information [1–5], nonlinear quan-
tum optics [6–8] or cavity quantum electrodynamics [9–11].
Recently, also the potential of Rydberg atoms for quantum
transport in atomic aggregates has been demonstrated [12–16].
The underlying physical mechanism is closely related to the
one of excitation transport in molecular systems [13,17,18].

So far, only single atoms have been considered as building
blocks for excitation transport in Rydberg aggregates. An
experimental implementation would be facilitated if the single-
atom sites could be replaced by atom clouds. This has
motivated us to explore the possibilities for extending the
existing Rydberg transport schemes using atom clouds as sites.

When several atoms are brought together in clouds, they
exhibit an effect known as Rydberg blockade [19–28]. At
small interatomic distances r , the van der Waals interactions
UvdW = C6/r6 (where C6 is a state-dependent interaction
constant and r the interatomic distance) become large. These
interactions lead to an energy offset of all many-particle
states with more than one Rydberg excitation with respect
to the energy of the states with just a single excitation. As
a consequence, although irradiating an entire atomic cloud,
a laser can create at most one Rydberg excitation resonantly,
within a radius at which this energy offset is larger than the
laser linewidth. The latter is limited by the Rabi frequency � of
the driven transition, which gives an estimate of the minimum
interatomic distance between two Rydberg excitations, known
as the blockade radius rbl ≈ (C6/h̄�)1/6. The interplay of
the Rydberg blockade with quantum transport has appealing
aspects, which we investigate in the following.

Specifically, we consider a system of two atom clouds,
well separated in space. A similar arrangement was studied
in Ref. [29] in the limit of a frozen Rydberg gas. Here we
choose the spatial extension σ of each cloud to be smaller
than the blockade radius rbl, while the intercloud distance L is
significantly larger than rbl, see Fig. 1. For such parameters, the
electron dynamics is restricted to a single Rydberg excitation
per cloud, and we consider a situation in which each of
the two Rydberg-blockaded clouds is initially prepared in a
coherent collective excitation. Such states can nowadays be
experimentally created [24,30] and are sometimes referred to

as superatoms [22,31]. They are a coherent superposition of
states where all atoms within the cloud but one are in the
ground state and one atom is in a Rydberg state |νl〉. Here,
ν and l denote the principal and angular momentum quantum
numbers of the Rydberg state, respectively. We shall further
imply with the term superatom that all the atoms taking part
in the superposition of electronic states share almost identical
spatial probability distributions.

The paper is organized as follows. The setup and the model
are described in Sec. II. Then, we will discuss the electronic
excitation transfer in the limit of frozen atomic positions in
Sec. III, which already singles out some interesting features
of the two interacting superatoms. In particular, we will show
that on short time scales, the quantum mechanical oscillations
of the Rydberg excitations between the two clouds can be
mimicked by a classical distribution over point particles,
ignoring the wave nature of the atoms. Subsequently, we will
turn to the effects of the electronic excitations on the motion
of the atoms in Sec. IV. We simulate the dynamics of the
superatoms induced by resonant dipole-dipole interactions
[32–34] in the framework of a quantum-classical hybrid
method, which constitutes an extension of previous work
[14–16] where such dynamics was considered with one-atom
sites. As our main result, we demonstrate that the collective
nature of the initial state does not prevail, due to the form of
initial state and interaction. Single atoms are ejected from each
cloud, taking away the entire initially shared excitation. Hence,
ground-state atoms and excited Rydberg-atoms can ultimately
be distinguished by their spatial trajectories. Exploiting this,
we show adiabatic transport in Rydberg aggregates with
sites made of blockaded atom clouds, simplifying previous
scenarios from an experimental point of view. The paper
ends with a summary and conclusion in Sec. V. Relevant
derivations regarding the semiclassical nature of electronic
dephasing, the separability of free and entangled atomic
motion, the numerical implementation of the atomic dynamics
and collisional influences are provided in Appendixes A–D.

II. SETUP

We denote the two atom clouds as A and B with NA and
NB atoms in the respective cloud, while N = NA + NB is the
total number of atoms. Each atom is labeled uniquely, such
that atoms with numbers 1, . . . ,NA belong to cloud A while
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FIG. 1. (Color online) Sketch of two interacting Rydberg-
blockaded clouds (not drawn to scale). The width σ of the Gaussian
distribution of the atoms within each cloud is smaller than the
blockade radius rbl, while the distance L between the clouds is larger.
The coloring (shading) illustrates the electronic basis states |πnm〉
introduced in Eq. (3).

(NA + 1), . . . ,N refers to atoms in cloud B, summarized in
the index sets

A = [1, . . . ,NA], B = [NA + 1, . . . ,N]. (1)

We consider one spatial dimension along the separation of
the clouds, and take three electronic states into account: the
ground state |g〉 and two Rydberg states |νs〉 and |νp〉. Since
the principal quantum number ν of the Rydberg states is kept
fixed it will be omitted in the following. With these restrictions,
the Hamiltonian for our system reads

H (r1, . . . ,rN ) = −
N∑

i=1

h̄2

2M
∇2

ri
+ Hel(r1, . . . ,rN ), (2)

where M is the mass of a single atom, ri the position of the ith
atom, and Hel the electronic Hamiltonian describing dipole-
dipole interactions between the atoms. Generally, any of the N

atoms can be in either of the three states |g〉, |s〉, |p〉. However,
the Rydberg blockade and the binary character of the dipole-
dipole interactions significantly reduce the dimensionality of
our problem. The former excludes states with more than one
Rydberg excitation with the same angular quantum number
within one cloud, while the latter excludes states in which
both the s and the p excitation are localized within one cloud.
We define electronic states

|πnm〉 = |ggg . . . s . . . ggg . . . p . . . ggg〉, (3)

where the nth atom is in the Rydberg state |s〉, the mth atom
in the Rydberg state |p〉, and all others in the ground state, and
impose an additional constraint

(n ∈ A and m ∈ B) OR (m ∈ A and n ∈ B) , (4)

as sketched in Fig. 1. The states of Eq. (3) constrained
according to Eq. (4) thus constitute a basis in the 2NANB-
dimensional electronic subspace. We assume that the dipole-
dipole interaction of strength V0

Vnm(rnm) = V0

r3
nm

(5)

between the two excited atoms n and m depends only on
the interatomic distance rnm = |rn − rm| neglecting possible

TABLE I. Matrix elements of the electronic Hamiltonian Hel in
the basis |πnm〉 for the example of NA = NB = 2.

Hel |π13〉 |π31〉 |π14〉 |π41〉 |π23〉 |π32〉 |π24〉 |π42〉
〈π13| 0 V13 0 0 0 0 0 0
〈π31| V13 0 0 0 0 0 0 0

〈π14| 0 0 0 V14 0 0 0 0
〈π41| 0 0 V14 0 0 0 0 0

〈π23| 0 0 0 0 0 V23 0 0
〈π32| 0 0 0 0 V23 0 0 0

〈π24| 0 0 0 0 0 0 0 V24

〈π42| 0 0 0 0 0 0 V24 0

orientation effects. This is a description sufficient for certain
geometries and selected states [16,29,35]. With that, the
electronic Hamiltonian Hel from Eq. (2) reads

Hel =
∑
nm

Vnm(rnm)|πnm〉〈πmn|, (6)

and its matrix elements in the chosen basis are given by

〈πnm|Hel |πn′m′ 〉 = Vnmδnm′δmn′ . (7)

As a consequence of the Rydberg blockade, the electronic
Hamiltonian in the matrix representation, Eq. (7), has a
block-diagonal structure, as can be seen in Table I. This has
drastic consequences for the electron and atom dynamics: (i)
the excitation exchange between the clouds can be resembled
by an average over single atom pairs and (ii) the force resulting
from the dipole-dipole interactions only acts on one atom per
cloud rather than the whole cloud. We will discuss these effects
in Secs. III and IV, respectively. Before doing so, we introduce
a few necessary technical details in the following subsection.

A. Wave function representation

The full wave function can be written as an expansion in
the electronic basis |πnm〉

|�(R,t)〉 =
∑
nm

φ̃nm(R,t)|πnm〉 (8)

with coefficients φ̃nm(R,t), which depend on time t and
the atomic positions ri , summarized in the vector R =
(r1, . . . ,rN ). Instead of the states |πnm〉, we may alternatively
also use the eigenstates of the electronic Hamiltonian to
span the electronic subspace. These states |ϕk(R)〉 (k =
1, . . . ,2NANB) generally depend on the atomic positions and
satisfy

Hel(R)|ϕk(R)〉 = Uk(R)|ϕk(R)〉. (9)

The eigenvalues Uk(R) are often referred to as the adiabatic
surfaces. The corresponding expansion of the full wave
function can be written as

|�(R,t)〉 =
∑

k

φk(R,t)|ϕk(R)〉. (10)

We refer to these two possible representations of the wave
function as the diabatic [Eq. (8)] and adiabatic [Eq. (10)]
expansion respectively, either of which can be a convenient
choice, depending on the particular system and/or observable
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of interest. In our case, the electronic Hamiltonian has the
simple structure of. Eq. (7) and Table I, and as a consequence,
the mapping of the diabatic onto the adiabatic basis is quite
simple as well. The adiabatic surfaces Uk(R) can be grouped
into NANB pairs, each of which can be written in terms of
the Hamiltonian matrix elements as U±

nm(R) = ±Vnm(rnm),
see Eq. (7). The corresponding adiabatic basis states |ϕk〉
become independent of R and assume the form |ϕ±

nm〉 =
(|πnm〉 ± |πmn〉)/

√
2. The adiabatic expansion of the wave

function hence reads

|�(R,t)〉 =
∑

n∈A,m∈B
(φ+

nm(R,t)|ϕ+
nm〉 + φ−

nm(R,t)|ϕ−
nm〉).

(11)

If we insert the above expansion into the time-dependent
Schrödinger equation, we find that the equations of motion
for the coefficients φ±

nm decouple for different atom pairs nm

and surfaces ±

ih̄
∂

∂t
φ±

nm(R,t) = −
N∑

i=1

h̄2

2M
∇2

ri
φ±

nm(R,t)

+U±
nm(rnm)φ±

nm(R,t). (12)

Thus, it is sufficient to consider each atom pair separately in
order to obtain the full dynamics. Moreover, for each atom
pair nm the adiabatic surfaces U±

nm(rnm) depend only on the
relative interatomic distance. Hence, the time propagation can
be reduced to a one-dimensional problem by transforming the
dynamics for each pair to relative and center of mass coor-
dinates, where the center of mass motion trivially decouples
from the dynamics.

Having introduced the representations of the wave func-
tions, we now define the initial state of two superatoms with
different angular momenta, as mentioned in the introduction.
The state at t = 0 is assumed to be a direct product of the form

|� ini〉 = ∣∣ψ ini
el

〉 ⊗ ∣∣χ ini
sp

〉
, (13)

where |ψ ini
el 〉 is the initial electronic state and |χ ini

sp 〉 the initial
wave function of the atoms. The former corresponds to all
atoms in cloud A coherently sharing the Rydberg s excitation
and all atoms in cloud B coherently sharing the Rydberg p

excitation

∣∣ψ ini
el

〉 = 1√
NANB

∑
n∈A, m∈B

|πnm〉. (14)

Such a state can for example be created by irradiating each
of the clouds of ground-state atoms by an individual π pulse
resonant on the transition to the respective Rydberg states.
Additional care needs to be taken to deterministically ensure
a single excitation per cloud; the collective Rabi frequency,
and hence the duration of the pulse, would in such a scenario
depend on the atom numbers NA and NB . If the latter are
uncertain, further improvements to the excitation sequence
may be necessary, e.g., by implementing a chirped adiabatic
passage as suggested in Ref. [36].

The initial atomic wave function is taken as a product of
one-dimensional Gaussians in position space, centered around

the respective centers rA, rB of the two clouds,

χ ini
sp (R) =

NA∏
n=1

χσ
1 (rn − rA)

N∏
n=NA+1

χσ
1 (rn − rB), (15)

where

χσ
D(x) = (πσ 2)−D/4 exp (−|x|2/2σ 2) (16)

denotes a Gaussian inD dimensions. The width σ is taken such
that σ < rbl and σ 
 L, where L = |rA − rB | is the distance
between the clouds. This choice of the initial spatial wave
function models an experimental preparation of the atoms in
the lowest oscillator states of two harmonic traps. From the
initial state, we can also directly infer the initial adiabatic
expansion coefficients φ±

nm(rnm,t = 0). As mentioned before,
for each atom pair nm we only consider the relative coordinate
rnm in the equation of motion Eq. (12) for the adiabatic
expansion coefficients, and the choice Eq. (15) yields

φ±
nm(rnm,t = 0) = 1√

2
χ

√
2σ

1 (rnm − L). (17)

Finally, we note that the position-dependent dipole-dipole
potential entangles the electronic interactions and atomic
motion [14–16,37], so that for t > 0 the direct product form
of the initial wave function in Eq. (13) will not persist.

III. DYNAMICS IN THE ELECTRONIC SUBSPACE

Before tackling the intricate interplay of electronic exci-
tation and atomic motion, we first study the dynamics of the
populations of Rydberg s and p excitations in each cloud
caused by the dipole-dipole interactions. The probability to
find an s excitation on atom n and a p excitation on atom m is
easily obtained from the diabatic representation [cf. Eq. (8)]

Pnm(t) =
∫

dNR|φ̃nm(R,t)|2. (18)

From that, we can define the s population and p population in
each of the clouds. For example, the s population in cloud A
is given by

P s
A(t) =

∑
n∈Am∈B

Pnm(t). (19)

It is sufficient to consider P s
A(t), since the s population

in cloud B and the p population in each cloud, defined
in the same manner, directly follow from the conservation
of the total probability. For our initial state [Eq. (14)] we
have P s

A(t = 0) = 1. Due to the interactions [Eq. (5)], the s

population will migrate from cloud A to cloud B, while the
p population will migrate from cloud B to cloud A, resulting
in Rabi oscillations of the quantity P s

A(t). These oscillations
dephase due to the width of the initial spatial wave functions
|χ ini

sp 〉 and can be quite accurately described by the following
analytic expression:

P s
A(t) ≈ 1

2

{
1 + cos(ωt) exp

[
−

(
3σ√
2L

ωt

)2]}
, (20)

with ω = (2V0/L
3)/h̄. As shown in Fig. 2, this expression

indeed shows very good agreement with the exact quantum
mechanical result.
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FIG. 2. (Color online) The solid black line shows the s population
in cloud A for NA = NB = 1 as a function of time, calculated fully
quantum mechanically using Eq. (12). The red dashed line (crosses)
show the s population in cloud A calculated as an average over static
point particles for NA = NB = 1 (NA = NB = 10), respectively. The
latter is explicitly given in Eq. (26) and ultimately leads to Eq. (20), see
text. The following parameters were used: σ = √

2/3 μm, L = 6 μm,
V0 = 106 a.u., corresponding to Li atoms with the principal quantum
number ν ≈ 30 . . . 40, and M = 11000 a.u. (mass of 6Li).

To illustrate the origin of this behavior, let us start with a
very simple picture and treat the atoms as point particles fixed
in space. In that case, the entire dynamics is encapsulated by
the wave function in the electronic subspace,

|�el(t)〉 =
∑
nm

fnm(t)|πnm〉, (21)

with the coefficients fnm evolving according to

ih̄
∂

∂t
fnm(t) = Vnm(rnm)fmn(t). (22)

Consequently, the s population in cloud A in the fixed point
particle limit P s

A(t) is given by

P s
A(t) =

∑
n∈Am∈B

|fnm(t)|2. (23)

To obtain an explicit expression for this quantity, we first
consider the simplest case NA = 1 and NB = 1, where we
denote the distance of the two atoms by d. The probability
p(t) to find the s excitation at time t on the atom in cloud A is
easily obtained from Eq. (22)

p(t) = |〈π12|�el(t)〉|2 = |f12(t)|2 = cos2

(
V0t

d3h̄

)
. (24)

The expression in Eq. (23) is nothing but the average of p(t)
over all the atom pairs nm. In other words, we consider a large
number of realizations k of single atom pairs with interatomic
distances dk and define

pk(t) = cos2

(
V0t

d3
k h̄

)
. (25)

This yields

P s
A(t) = 1

G

G∑
k=1

pk(t) (26)

for the s population in cloud A in the fixed point particle limit,
where G is the total number of atom pairs. The expression
does not change for the general case NA > 1, NB > 1: From
the block structure of the electronic Hamiltonian, one can
infer that the averaged result is exactly the same as in the
case NA = 1 and NB = 1, we simply have added to the
average over positions an average over blocks, which has
exactly the same structure. In the limit G → ∞, the sum
in Eq. (26) becomes an integral, in which the distances
dk follow the spatial distribution of the fixed atoms. If the
classical spatial distribution of the distances, F (d), is chosen

as F (d) = |χ
√

2σ
1 (d − L)|2, we arrive at the integral

P s
A(t) =

(
2

πσ 2

)1/2∫
dL′ cos2

(
V0t

h̄L′3

)
exp

[
− (L′ − L)2

2σ 2

]
.

(27)

This integral cannot be solved analytically exactly, but by
substituting η = L − L′ and Taylor expanding (L + η)−3 ≈
L−3(1 − 3η/L) one finds Eq. (20).

It may seem surprising that a simple model which ignores
both the atomic wave functions and the interplay between
electronic excitation and atomic motion gives a correct result.
This is due to the fact that the time scales on which the
exchange of excitation population occurs are very short com-
pared to the time when atomic motion becomes relevant, and
the kinetic energy on these time scales is very small compared
to the dipole-dipole interaction. In Appendix A we explain
this agreement more formally using a semiclassical propagator
and demonstrate in particular why an average over a static
ensemble is able to resemble the quantum mechanical result.

To summarize this section, we conclude that due to the
particular form of Hel, the time evolution of electronic
populations per cloud for arbitrary NA, NB is identical to
the average over an ensemble of systems with NA = NB = 1.
We explicitly demonstrated this using a point particle model,
and further argue in Appendix B that this behavior will
persist fully quantum mechanically. Note, however, that while
the point particle approximation gives a correct description
for the specific case studied here, it will in general give
results different from a full quantum mechanical treatment.
As an example, consider a setup in which the two clouds are
additionally confined in two strong harmonic traps with energy
spacing �E 
 V0/L

3. In this case the kinetic energy term is
by construction much larger than the dipole-dipole interaction.
Then, in a quantum treatment, P s

A(t) would undergo long
coherent oscillations without dephasing, while an average
over point particles would show fast dephasing as without
the traps.

IV. ATOMIC MOTION

We now consider time scales on which the dipole-dipole-
induced atomic motion becomes relevant. For the calculations
in the present section, we use a quantum-classical hybrid
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FIG. 3. (Color online) Atomic motion induced by dipole-dipole interactions. The upper panel shows the atomic density as a function of
time. The lower four panels show snapshots of the density at times t = 0,2,4,5 μs. The color indicates the probability to find any Rydberg
excitation (|s〉 or |p〉) at a given position. In this figure, we do not distinguish between |s〉 and |p〉 excitations, since the dephasing oscillations
of electronic population, as shown in Fig. 2, occur on the short time scale t ∼ 0.2 μs and are therefore not shown here. We observe that the
main bulk of the atoms remains at rest, with vanishing probability to find an excitation. A pair of single atoms is ejected, and the Rydberg
excitation is entirely localized on those two atoms. The calculations are shown for NA = NB = 3, for the same parameters as in Fig. 2 but with
M = 12600 a.u., corresponding to the mass of 7Li.

approach, which has been successfully applied to similar
systems [14–16], namely Tully’s fewest switching algorithm
[38–40]. The method relies on a classical treatment of the
atomic trajectories and a quantum mechanical treatment of the
electronic degrees of freedom. A detailed description can be
found in the aforementioned references, and we only briefly
summarize the main aspects relevant for the present problem
in Appendix C. Due to the decoupling of the dynamics into
atom pairs, discussed in the previous section, the case of two
clouds could actually be treated fully quantum mechanically.
However, we wish to present a mixed quantum-classical
method (Tully’s fewest switches algorithm) that could also
deal with more than two sites and possibly additional external
potentials. Later in this section, we also present simulations
involving three clouds. For consistency, Tully’s method is
thus applied throughout the section, and finally validated by a

comparison with a full quantum mechanical calculation for a
numerically accessible case.

The results of the simulations are shown in Fig. 3. We
observe that, although the initial Rydberg excitation is coher-
ently shared by all atoms within one cloud, it is nevertheless
just a single atom that is ejected from each cloud. The atoms
are still in a coherent superposition where each of them has
left its cloud with some probability, but the ejected atoms
always carry the excitation and an ensemble of ground-state
atoms stays behind. In this sense the superatoms break apart
when subject to dipole-dipole-induced motion, since excited
and ground-state atoms are now spatially separated.

Another interesting aspect is that the resulting motion is
a superposition of repulsion and attraction. It is known [14]
that for single Rydberg atoms interacting via dipole-dipole
forces, the direction of the force can be controlled via the
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FIG. 4. (Color online) Sketch of the excitation transport scheme
with atom clouds as sites (lower panel), compared to the one with
single atom sites (upper panel) as demonstrated in Refs. [15,16].
Color codes are as in Fig. 1. All but one atom from each cloud remain
at rest and do not participate in the dynamics, hence excitation and
entanglement transport occur equivalently in both schemes. For the
sake of clarity, the lower panel shows the dynamics for a well-defined
choice of initially excited atoms in each cloud, while the complete
dynamics consists of a superposition where each atom in each cloud
has the chance to be the only one from that cloud participating in the
dynamics.

initial electronic state; The same holds for our system, i.e., the
choice of |ψ ini

el 〉 in Eq. (14) determines the atomic motion. For
V0 > 0, the initial electronic states

∣∣ψ±
el

〉 = 1√
2NANB

∑
n∈A, m∈B

(|πnm〉 ± |πmn〉) (28)

correspond to purely attractive ( + ) and repulsive (−) motion
of the atom pair. The initial state chosen in Eq. (14), describing
two superatoms, is a superposition of these two states, and
consequently leads to a superposition of two opposite motion
directions.

The presented results have interesting implications for
quantum transport protocols based on single-atomic aggre-
gates, such as adiabatic entanglement transport [15,16]. Our
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FIG. 5. (Color online) Simulated atomic density as a function of
time. Two clouds, containing two atoms each, are separated by 3 μm
and a third cloud with two atoms is situated 5 μm from the second
one. The entire chain is prepared in a repulsive configuration. The
dynamics resembles the single-atom transport scheme of Refs. [15,
16]. The parameters of the simulation are V0 = 106 a.u., σ = 0.3 μm.

findings show that even in an ensemble of atoms which share
the Rydberg excitation, only one of them will be set in motion
by dipole-dipole forces. While this may seem surprising at
first, this kind of dynamics actually rigorously follows from
the structure of the electronic Hamiltonian, cf. Table I. This
facilitates the experimental realization of transport schemes
in [15,16], since there is apparently no need to isolate single
atoms. As formally discussed in Appendix B, our results can be
extended to more than two clouds, due to the block structure of
the full Hamiltonian, Eq. (2), and the corresponding time evo-
lution operator U (t) = exp [−iH t]. A gedankenexperiment
presenting the transport scheme of Refs. [15,16] both, with
single atoms and with atoms clouds, is sketched in Fig. 4. We
also support the latter by simulating the simplest nontrivial
scenario of three clouds, containing two atoms each, shown
in Fig. 5. If atom clouds are used one should consider
that the transport efficiency may be affected by collisions of
moving Rydberg atoms with ground-state atoms at rest for
a large number of atoms per cloud. However, as estimated
in Appendix D, in an ultracold gas such processes can be
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FIG. 6. (Color online) Comparison of the atom density during
superatom breakup, obtained from a full quantum mechanical calcu-
lation using Eq. (12) (solid black line) and Tully’s quantum-classical
hybrid algorithm (red dashed line). (a) Total atom density as a function
of time. (b)–(d) Snapshots at three different times, as indicated by
white vertical lines in (a): t1 = 1 μs (b), t2 = 3 μs (c), t3 = 4.9 μs (d).
The same parameters as in Fig. 2 were used. For the sake of clarity,
the comparison is shown for an initially purely repulsive electronic
state, cf. Eq. (28).
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neglected on the microsecond time scale. Let us finally mention
that the validity of the adopted quantum-classical hybrid
approach was verified by comparing the time evolution of the
spatial probability density with a full quantum calculation for
the accessible case NA = NB = 2, as demonstrated in Fig. 6.

V. SUMMARY AND CONCLUSION

We have studied the effects of dipole-dipole interactions on
two Rydberg-blockaded atom clouds. Each cloud is initially
prepared in a superatomic state, where the atoms within one
cloud coherently share a Rydberg s and p excitation, respec-
tively. On short time scales, we observe dephasing oscillations
in the angular momentum of the Rydberg excitations in both
clouds. We found that the dephasing many-body system can be
resembled by an average over single dipole-dipole-interacting
atom pairs, as long as the spatial distribution of these pairs
mimics the initial quantum mechanical density. On long time
scales, the dipole-dipole interactions induce atomic motion.
For the setup considered in this paper, the forces physically
remove the initial coherent single excitation from both clouds.
A single atom pair leaves the clouds with the excitation
entirely localized on this pair. This finding may facilitate
an experimental realization of quantum transport protocols
in Rydberg aggregates, such as proposed in Refs. [13,15]
since one-atom sites can be replaced by microtraps containing
several atoms.
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APPENDIX A: SEMICLASSICAL PROPAGATION ON
SHORT TIME SCALES

In this section, we re-derive the expression from Eq. (20)
using the semiclassical Herman-Kluk propagator [41–44].
We have already seen in Sec. III that the expression cor-
rectly describes the dephasing Rabi oscillations of electronic
populations, since it agrees with a full quantum mechanical
calculation (see Fig. 2). We have also seen that it can be
obtained within a rather crude approximation, namely by
modeling the atoms as fixed point particles. The following
derivation serves as an explanation why this approximation
works in our case.

The Herman-Kluk propagator KHK evolves a quantum
mechanical wave function in time semiclassically by means
of classical phase-space trajectories. Given an initial wave
function φ(R′,t = 0) at time t = 0 and position R′, the
propagator provides the wave function at time t and
position R′′

φ(R′′,t) =
∫

dR′KHK(R′′,t ; R′,t = 0)φ(R′,t = 0). (A1)

We are going to apply the propagator to the adiabatic wave
functions φ±

nm(R,t) [cf. Eqs. (12) and (17)]. We will omit the
subscript nm in this section, and further restrict the treatment to
a single coordinate rnm ≡ r . As already argued in Sec. II, this
is sufficient due to the decoupling of the equations of motion
for each atom pair and the transformation of the problem onto
relative and center of mass coordinates.

The explicit form of the propagator is given by

KHK(R′′,t ; R′,t = 0)±

=
∫

dpdq

(2πh̄)
〈R′′|zt 〉C(qt ,pt ,q,p)

× exp

(
i

h̄
S±[qt ,pt ] − i

2h̄
(qtpt − qp)

)
〈z|R′〉. (A2)

Here, |z〉 are coherent states centered on position q and
momentum p,

〈R|z〉 = χ
σ0
1 (R − q) exp

[
i

h̄
p

(
R − q

2

)]
, (A3)

with χσ
D from Eq. (16). The width σ0 of these states is just

a parameter that is relevant in a numerical implementation
and hence shall not concern us here. The classical trajectories
(qt , pt ) evolved with the Hamiltonian Hc = p2

t /2M + U±(qt )
from the initial conditions (q ′, p′) accumulate the action
S±[qt ,pt ] = ∫

[p2
t /2M − U±(qt )]dt . The prefactor C is given

by

C = 1

2

(
∂pt

∂p
+ ∂qt

∂q
− ih̄

σ 2
0

∂qt

∂p
− σ 2

0

ih̄

∂pt

∂q

) 1
2

, (A4)

which is a complex number. Note that in the multidimensional
case, the prefactor is a complex valued determinant composed
of stability matrix blocks [44].

We consider short times and hence expand the classical
trajectories (qt , pt ) up to first order in time,

qt = q + p

m
t, (A5)

pt = p − ∂U±(q)

∂q
t. (A6)

This is, in fact, the central approximation which enters the
present derivation. It simplifies Eq. (A4) to

C = C(q) = 1

2

(
2 − ih̄

σ 2
0

t

M
+ σ 2

0

ih̄

∂2U±(q)

∂q2
t

)1/2

. (A7)

After inserting the trajectories into the expression for the
Herman-Kluk propagator, expanding U±(qt ′) around t ′ = 0
to first order in time and collecting all terms, we obtain

KHK(R′′,t ; R′,t = 0)±

=
∫

dpdq

(2πh̄)
C(q)χσ0

1 (R′ − q)χσ0
1 (R′′ − q)

× exp

[
i

h̄
p(R′′ − R′)

]
exp

[
− it

h̄

∂U±(q)

∂q
(R′′ − q)

]

× exp

[
− it

h̄
U±(q)

]
. (A8)
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Carrying out the momentum integration yields a δ-function in
R′ and R′′,

KHK(R′′,t ; R′,t = 0)±

=
∫

dq C(q)
[
χ

σ0
1 (R′ − q)

]2

× exp

[
− it

h̄

(
U±(q) + ∂U±(q)

∂q
(R′ − q)

)]
δ(R′ − R′′).

(A9)

The δ function in the propagator tells us that we can indeed
map the quantum mechanical result onto an average over static
realizations. Finally, to find the explicit form of this mapping,
we have to perform the integration in position space. In the
semiclassical context of KHK this is done consistently with the
stationary phase approximation [44]∫ ∞

−∞
dx exp[if (x)/η]g(x) =

η→0

√
2πiη

f ′′(x0)
exp[if (x0)/η]g(x0),

(A10)

where x0 is the stationary point satisfying f ′(x0) = 0. Using
this formula and the h̄ → 0 limit of the prefactor C(q), we
arrive at the following simple expression for the Herman-Kluk
propagator:

KHK(R′′,t ; R′,t = 0)± = exp

[
− it

h̄
U±(R′)

]
δ(R′ − R′′).

(A11)

By applying this propagator to the initial adiabatic expansion
coefficients from Eq. (17) according to Eq. (A1) we obtain
the semiclassical time evolution in the adiabatic picture. From
that, we can immediately extract the semiclassical limit for,
say, the s population in cloud A as

P sc
s,A(t) =

∫
drnm|φ̃nm(rnm,t)+ + φ̃nm(rnm,t)−|2. (A12)

After insertion of the Herman-Kluk-propagated wave func-
tions, the expression reads

P sc
s,A(t) =

(
2

πσ 2

)1/2∫
dL′ cos2

(
V0t

h̄L′3

)
exp

[
− (L′ − L)2

2σ 2

]
,

(A13)

which is identical to Eq. (27).

APPENDIX B: ATOMIC MOTION FROM
BLOCK-DIAGONAL ELECTRONIC HAMILTONIANS

In Sec. III, we have seen that the electronic Hamiltonian
for a collection of Rydberg-blockaded atom clouds, Eq. (7),
can be cast into a block structure, where in each block only
a single atom per cloud participates in nontrivial electronic
dynamics. In this Appendix we formally show that this leads
to rapid entanglement of motion and electronic state, since in
each block also only one atom per cloud performs nontrivial
motional dynamics. This holds for any number of clouds and
atoms per cloud. We show that nonadiabatic transitions do not
affect this picture, as they respect the block structure. Let us
consider the example of three clouds with two atoms each. The
generalization to other numbers is straightforward.

Let the atoms be grouped into cloudsA = {1,2},B = {3,4},
C = {5,6}. In that case the total Hamiltonian, including atomic
motion and the electronic degrees of freedom, can be written
as

H =
6∑

i=1

Tn + diag[H1,H2,H3, . . .]. (B1)

We have abbreviated the kinetic energy term for each atom as
Tn = −h̄2∇2

rn
/(2M). The symbol diag[H1,H2,H3, . . .] denotes

a block-diagonal matrix, with 3 × 3 blocks Hj (rk,rl,rm).
Crucially, each block only depends on the coordinates of
three atoms, with k ∈ A, l ∈ B, m ∈ C, i.e., one from each
cloud. The latin index j numbers the blocks. Consequently, the
time-evolution operator Û (0,t) = exp [−iH t/h̄] also assumes
a block structure Û = diag[Û1,Û2,Û3, . . .], with

Ûj = exp

[
− i

( ∑
n�={k,l,m}

Tn

)
t/h̄

]

× exp {−i[Tk + Tl + Tm + Hj (rk,rl,rm)]t/h̄}. (B2)

We have used the operator hat on Û here exclusively to
avoid confusion with the potential energy surfaces U occurring
elsewhere.

In Eq. (B2), the second exponential acts only on atoms
k, l, m, while the first one describes free motion of the
remaining atoms. Now, consider a time evolution beginning
in an eigenstate of the electronic Hamiltonian Hel, which will
have support only in a single block j0 of H . The form of Ûj

immediately tells us that three particles undergo dipole-dipole
dynamics and the other ones perform free motion. Starting in
a noneigenstate will lead to quick entanglement of motion
and electronic state, as in each block three particles with
different j participate in nontrivial dynamics. The block
structure of Ûj also immediately confirms the absence of
nonadiabatic transitions between exciton states in different
blocks. For an alternative argument, note that ∇Hel will have
the same block-diagonal structure as Hel. From that we can
see that nonadiabatic coupling terms [defined in Appendix C
in Eq. (C3)] vanish whenever the involved adiabatic eigenstates
have support in different blocks.

APPENDIX C: TULLY’S ALGORITHM

We start from the total Hamiltonian as given in Eqs. (2)
or (B1). Tully’s algorithm is implemented as follows. One
first finds the adiabatic eigenstates in the electronic subspace
|ϕk(R)〉 and the corresponding energies Uk(R), and expands
the wave function in this basis, cf. Eqs. (9) and (10). However,
contrary to a full quantum mechanical approach, the expansion
coefficients do not depend on the atomic positions, and here
we denote them by ck(t) to emphasize the difference,

|�(R,t)〉 =
2NANB∑

k=1

ck(t)|ϕk(R)〉. (C1)

The adiabatic expansion is inserted into the time-dependent
Schrödinger equation, which leads to a set of equations for the
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time-dependent expansion coefficients,

ih̄ċk = Ukck − ih̄

2NANB∑
j=1

Ṙ · dkj cj . (C2)

In Eq. (C2), we introduced nonadiabatic coupling
vectors

dkj = 〈ϕk|∇Rϕj 〉 = 〈ϕk|∇RHel(R)|ϕj 〉
Uj (R) − Uk(R)

. (C3)

Note that for the particular case of two atom clouds, the
adiabatic eigenstates do not depend on the atomic positions [cf.
Eq. (11)], thus in this case there are no nonadiabatic transitions.
Atomic motion is treated classically, i.e., the time evolution
of the spatial degrees of freedom is obtained from Newton’s
equations of motion,

MR̈ = −∇RUk(R), (C4)

and averaged over many trajectories. The averaging is per-
formed such that the initial conditions for Newton’s equations,
namely the position R(t = 0), the velocity Ṙ(t = 0) and the
adiabatic surface k(t = 0), resemble the Wigner distribution
of the initial state. Then each trajectory is propagated on a
single adiabatic surface k and the presence of nonadiabatic
couplings dkj is accounted for by introducing the possibility for
instantaneous stochastic switches to another adiabatic surface
j , as described in detail in Ref. [39]. Trajectories on an
attractive adiabatic surface sometimes result in two atoms
coming very close to each other. Such trajectories are removed
from the simulation as in Ref. [16], since in an experiment
ionization of the Rydberg atoms would occur at very small
interatomic distances.

APPENDIX D: RYDBERG ATOMS MOVING THROUGH
BACKGROUND GAS

In Sec. IV, we argue that excitation and momentum trans-
port in Rydberg aggregates, as described, e.g., in Refs. [15,16],
should, in principle, be equally possible if single atom sites are
replaced by atom clouds. To corroborate this claim, in what
follows we estimate the impact of the processes that could
potentially spoil a dynamics such as sketched in Fig. 4. Let
us consider alkali atoms in an ultracold gas. They can be
routinely excited to Rydberg states, and in general collisions

with surrounding atoms do not necessarily lead to a loss of
the excited state [45–47]. However, in the setup considered
in Sec. IV, some Rydberg atoms are additionally accelerated
within the gas due to the dipole-dipole interactions, with
typical velocities of the order of vm = 4 m/s for the example
of 7Li. This is about two orders of magnitude larger than the
thermal atomic velocity in an ultracold 7Li gas at T = 1 μK

of vT = 4.8 cm/s. Yet, as we estimate below, this does not lead
to new regimes of atomic collisions. We consider the impact
of the following processes: (i) inelastic collisions of Rydberg
and ground-state atoms, (ii) elastic collisions of Rydberg and
ground-state atoms, and (iii) collisional ionization of Rydberg
atoms.

(i) We can estimate the rate �q of Rydberg-state quenching
collisions with background atoms, using �q = vρσq(ν), where
v is the velocity of the Rydberg atom with principal quantum
number ν, ρ is the density of background atoms and σq(ν) is
the cross section for the process. From Ref. [48] we have, e.g.,
for Rubidium atoms, σq(40) = 2 × 10−11 cm2. At v = 4 m/s

and with density ρ = 1 × 1018 m−3 the inverse quenching rate
is τ = 1/�q = 125 μs, which is still larger than the Rydberg
state lifetime τ = 46μs. Note that for a scheme as in Fig. 4
the effective background density would be an average over the
intracloud and intercloud regions and thus much smaller than
the cloud peak density.

(ii) For elastic collisions, Ref. [49] gives a cross section of
the order of σel ≈ 104 a.u. ≈ 0.25 × 10−12 cm2, which is about
a factor of 80 smaller than the one given above for inelastic
collisions. Elastic collisions are therefore even less important
for the considered range of parameters.

(iii) In order to estimate the order of magnitude for the
collisional ionisation rate, we adopt an approximative formula
derived by Lebedev [50]. For ν 
 l, it reads, in atomic units,

�ion = 8σelT νeff

πμ
exp

(
− 1

2ν2
effT

)
, (D1)

where σel is the cross section for elastic scattering of a
Rydberg electron on a ground-state atom, μ the reduced
mass of the colliding system, T the temperature, and νeff =
ν − δl , δl being the quantum defect. In the ultracold regime,
the low temperature of ∼1μK ≈ 0.3 × 10−11 a.u. leads to a
vanishingly small exponent, making the collisional ionization
absolutely negligible.
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