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Classical master equation for excitonic transport under the influence of an environment
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In a previous paper [Phys. Rev. E 83, 051911 (2011)] we have shown that the results of a quantum-mechanical
calculation of electronic energy transfer (EET) over aggregates of coupled monomers can be described also by
a model of interacting classical electric dipoles in a weak-coupling approximation, which we referred to as the
realistic coupling approximation (RCA). The method was illustrated by EET on a simple linear chain of molecules
and also by energy transfer on an arrangement of monomers corresponding to that of the Fenna-Matthews-Olson
(FMO) complex relevant for photosynthesis. The study was limited to electronic degrees of freedom, since this
is the origin of coherent EET in the quantum case. Nevertheless, more realistic models of EET require the
inclusion of the decohering effects of coupling to an environment, when the molecular aggregate becomes an
open quantum system. Here we consider the quantum description of EET on a linear chain and on the FMO
complex, incorporating environment coupling and constructing the classical version of the same systems in the
density matrix formalism. The close agreement of the exact quantum and exact classical results in the RCA is
demonstrated and justified analytically in the RCA. This lends further support to the conclusion that the coherence
properties of EET in the FMO complex are evident at the classical level and should not be ascribed as solely due
to quantum effects.
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I. INTRODUCTION

In a previous communication [1] (denoted as paper 1) we
studied theoretically the process of electronic energy transfer
(EET) on molecular aggregates. The aim was to demonstrate
that the coherent transfer arising from an entangled aggregate
wave function (an exciton) in the quantum case, in the
approximation that there is no exchange of electrons between
monomers, is reproduced by a classical model of the aggregate
as an assembly of electrical dipoles. The quantum/classical
equivalence is valid in what we called the “realistic coupling
approximation” (RCA). This is a weak-coupling approxi-
mation in that the strength of the dipole-dipole interaction
that effects the transfer is considered small compared to
typical electronic excitation energies, so that the monomers
largely retain their character upon excitation of the aggregate.
Practically, this implies that the exciton bandwidth and the
average spread of monomeric transition energies are both small
compared to the mean electronic transition energy. Fortunately,
these criteria do pertain in many dye aggregates and also in
the photosynthetic unit so that the RCA is valid, and one
expects the classical model to give results in agreement with
the quantum theory.

As a specific example, we considered first the transfer
of energy along a chain of identical monomers where, in
the approximation that only nearest-neighbors interact, an
analytical solution for the transfer probability is possible. This
solution predicts oscillatory monomer excitation probability
in time and a constant velocity EET along the chain from
an initially excited monomer. The constant velocity and the
oscillating nature of the transfer probability are signatures of
fully coherent propagation. Significantly, it was shown, by
numerical solution of the full classical equations for the same
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coupling, that classical interacting dipoles lead to exactly the
same coherent transfer as in the quantum case. As a second
model we considered EET for an arrangement of monomers
corresponding to that of the Fenna-Matthews-Olson (FMO)
photosynthetic complex, where the local transition energies of
bacteriochlorophyll molecules on different sites are unequal.
Here again, using realistic transition energies and coupling
strengths, we were able to show the equivalence of classical
and quantum dynamics in deciding the coherence of EET. The
equivalence in this example is of particular significance, since
here the coherence of EET has been attributed [2] as arising
solely from the entanglement properties of the aggregate
electronic wave function. Hence, were this to be true, one
would not expect such coherence to be present in the results
of a purely classical treatment.

Panitchayangkoon et al. [3] claim direct evidence of quan-
tum transport in photosynthetic-light-harvesting complexes.
However, their definition of “classical” is quite different from
that used in this paper, which is simply that the dynamics of
energy transfer is determined by classical equations of motion.
Panitchayangkoon et al. talk about “quantum transport” if
coherences couple to populations in the exciton basis. If there
are no contributions of coherences to the relaxation processes,
they define the transport as “classical.” In the conclusion we
relate our results to their work and argue that even their
definition of “quantum coherence” can be captured in our
classical model.

In the examples of paper 1 only electronic degrees of
freedom were considered, since the emphasis was on coherent
EET and the electronic excitation is the seat of such coherence.
Nevertheless, particularly with reference to the FMO complex,
in any real molecular aggregate the internal electronic degrees
of freedom experience interaction with internal and external
vibrational modes and electromagnetic interaction with the
surrounding solvent. In absorption and emission of photons,
such interactions manifest themselves obviously in broadening
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and shifting of spectral bands. In EET there are more subtle
manifestations in the dephasing, decohering, and sometimes
dissipating effects on propagation of absorbed light energy.
Hence, to obtain a more realistic overall picture and to further
test the classical model of EET, we feel it essential to include
the interactions with the surroundings. This enlargement of the
theoretical model, to consider the molecular aggregate as an
open quantum or classical system, is the subject of this paper.

The development of the paper proceeds as follows. In
Sec. II we consider the quantum case of a molecular aggregate
in which the coupling to the environment is represented by
interaction of electronic degrees of freedom with external
stochastic fluctuations. These lead to dephasing and time-
varying electronic transition energies. Here we adopt the
usual density matrix formulation leading to a Lindblad-type
master equation which is equivalent to that derived by Haken,
Reineker, and Strobl [4,5] arising from Markovian environ-
ment fluctuations. This is denoted as the HRS equation. This
model (and its variants) has been used extensively to describe
exciton transport in molecular crystals, molecular aggregates,
and photosynthetic complexes (see, e.g., Refs. [6–11])

In Sec. III we apply the same physical assumptions to derive
a classical density matrix equation of a similar, but not exactly
equivalent, form to the quantum equation. In an Appendix,
the equivalence of the classical formulation in the RCA to
the quantum version is proved. The proof is most transparent
using the stochastic Schrödinger quantum equation (which is
equivalent to the HRS equation).

In Sec. IV the two cases already considered in paper 1 as
“bare” electronic systems are recalculated including the effects
of environment coupling. The main effect of this coupling is to
damp out oscillations in occupation probabilities and to slow
the rate of EET. Perhaps more importantly, by plotting density
matrix elements we show that coherences between different
sites are suppressed also. In the case of the FMO complex, our
model can now be considered a more realistic representation
of the main features of EET and yet, significantly, the exact
purely classical model including environmental effects again
gives results hardly distinguishable from the fully quantum
results, including the coherences between different sites.

II. QUANTUM MECHANICS

The excitonic part of the aggregate is described by
the Hamiltonian Hex = H0 + V, where H0 is the sum of
the Hamiltonians of noninteracting monomers and V is the
total potential energy of the pairwise interactions between
monomers. Since we consider the propagation of a single
electronic excitation along the aggregate, we expand the
Hamiltonian with respect to states | πn 〉 in which monomer
n is electronically excited and all other monomers are in their
ground state. In this basis one has

Hex =
∑

n

εn|πn〉〈πn| +
∑
n,m

Vnm|πn〉〈πm|, (1)

where εn is the single-monomer transition energy and the
full aggregate ground-state energy is set to zero. The matrix
element Vnm describes excitation transfer between site n

and m.

In the following we are interested in the dynamics of the
(reduced) density matrix ρ(t) of the electronic system when the
electronic excitation interacts with an environment. We adopt
a particular simple model where the dynamics of the density
matrix ρ(t) is determined by a Lindblad master equation of
the form

ρ̇nm(t) = H[ρ]nm + L[ρ]nm, (2)

where

H[ρ]nm = − i

h̄
[Hex,ρ(t)]nm (3)

= − i

h̄
(εn − εm)ρnm − i

h̄

∑
�

(Vn�ρ�m − V�mρn�),

(4)

and the last line follows from Eq. (1). The interaction with the
environment is contained in L[ρ]nm, which for simplicity we
take to be

L[ρ]nm = −[
1
2 (γn + γm) − √

γnγmδnm

]
ρnm,

i.e., we consider pure dephasing with dephasing rates γn.
The extension to the general HRS master equation is

straightforward. Also, generalizations of the HRS model, as in
Refs. [12–15], can be treated similarly. In the Conclusion we
discuss this point in more detail.

In the following we derive a classical equation which
in RCA is equivalent to Eq. (2). To this end we first note
that the master equation Eq. (2) is equivalent (following the
treatment of HRS [4,5]) to a stochastic Schrödinger equation
∂t | ψ(t) 〉 = −i H(t)| ψ(t) 〉 with local Markovian fluctuations
of the site energies. These fluctuations can be merged together
with the transition energy of the monomers to obtain a
stochastic Hamiltonian,

H(t) =
∑

n

εn(t)| πn 〉〈πn | +
∑
n,m

Vnm| πn 〉〈πm |, (5)

where the fluctuations in the transition energies εn(t) have the
properties of real Gaussian Markov processes fulfilling

〈〈 εn(t) 〉〉 = εn, (6)

〈〈 εn(t)εm(t ′) 〉〉 = h̄2γnδnmδ(t − t ′), (7)

where 〈〈 · · · 〉〉 denotes the averaging over many realizations
of the stochastic processes. The master equation, Eq. (2),
is then obtained by taking the time derivative of ρ(t) =
〈〈 |ψ(t) 〉〈ψ(t) | 〉〉. We note that we have restricted ourselves
to Gaussian Markov processes, since then one can derive
a simple master equation. The arguments presented below
on the validity of the RCA approximation are applicable to
more general stochastic processes which do not have to be
Gaussian (as long as the second moment exists) and can also
be correlated in time (non-Markovian).

The stochastic “unraveling” Eq. (5) will be used in the
next section to make the connection to the classical case. In
particular, we will take the frequency of the classical oscillators
to obey the same statistical properties as the quantum transition
energies. The resulting classical stochastic equation will then
be used to construct a “classical master equation.”
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III. CLASSICAL MECHANICS

As in our previous publications [1,16], in the classical
case we consider that the coupled quantum transition dipoles
are modeled by classical oscillators in the same geometry as
the transition dipoles of the quantum mechanical model. The
frequencies of the classical oscillators are associated with the
quantum energies via ωn = εn/h̄. To arrive at a density matrix
description corresponding to Eq. (2), we make use of the
stochastic representation introduced in the previous section.
Thus we assume that the frequency of the classical oscillators
is a stochastic quantity with

ωn(t) = εn(t)/h̄ (8)

and the same statistical properties as given by Eq. (6) and (7).
The Hamilton equations of motion for linearly interacting

oscillators of time-dependent frequency ωn(t) as defined above
in Eq. (8) are

ẋn = ωn(t)pn, (9)

ṗn = −ωn(t)xn −
∑
m

K̃nmxm, (10)

where xn and pn are the dimensionless position and momentum
of the nth oscillator, respectively. The K̃nm are coupling
coefficients which are related to the quantum mechanical
couplings by Refs. [1,16]

K̃nm = 2
Vnm

h̄
. (11)

To connect to the quantum equations, we introduce the
dimensionless complex amplitude

zn(t) = xn(t) + ipn(t) (12)

and obtain the coupled equations

żn = −iωn(t)zn − i
∑
m

Vnm

h̄
2Re(zm). (13)

These equations can be viewed as a set of coupled “Kubo
oscillators” [17,18]. Note that here 2Re(zm) appears as
coupling in the equation for the amplitudes. As shown in
Ref. [1], in an equation which would be fully equivalent to
quantum mechanics this term would be replaced by zm.

A. Classical density operator

To make contact with the pure dephasing master equa-
tion (2), we will take a closer look at the products

σ̃nm(t) = zn(t)z∗
m(t), (14)

which as we show below (in RCA) resemble the quantum
mechanical density operator matrix elements. In the following
derivation some care has to be taken due to the stochastic nature
of ωn(t). We interpret Eq. (13) to be a stochastic Schrödinger
equation in the Stratonowich form (see, e.g., Refs. [18–20]).
In the following derivation we use the Ito calculus (see, e.g.,
Ref. [19]) and write Eq. (13) in its Ito form

dzn =
(

−iωnzn−i
∑
m

K̃nmRezm−γn

2
zn

)
dt + √

γn zn dWn.

(15)

Here dzn is the increment of zn during the time interval dt and
dWn are Wiener increments fulfilling 〈〈 dWndWm 〉〉 = δnmdt

and 〈〈 dWn 〉〉 = 0. Note that in the first term of Eq. (15) the
oscillator frequency ωn is the average frequency and does not
depend on time. The effects of the stochastic fluctuations are
contained in the factors γn

2 zndt and
√

γnzndWn.
We now derive the equation of motion for σ̃ . To this end

we consider the differential of Eq. (14):

dσ̃nm = dznz
∗
m + zndz∗

m + dzndz∗
m (16)

=
(
−iωnzn−i

∑
m′

K̃nm′Rezm′−γn

2
zn

)
dt z∗

m

√
γnznz

∗
mdWn

+ + zn

(
iωmz∗

m+i
∑
m′

K̃mm′Rezm′−γm

2
z∗
m

)
dt

+√
γmznz

∗
mdWm + √

γnγmznz
∗
mdWndWm. (17)

Here we have taken terms up to the first order in dt into account.
Since dW scales like

√
dt , in the first line we have included

the dzndz∗
m.

We are interested in quantities that are averaged over the
noise, where, as before, the averaging is denoted by 〈〈 · · · 〉〉.
Defining the classical density matrix

σnm = 〈〈 σ̃nm 〉〉, (18)

we find, using Eq. (6),

dσnm =
(

− i(ωn − ωm) −
(

γn

2
+ γm

2

))
σnmdt

− i
∑
m′

2Vnm′

h̄
〈〈 Rezm′ z∗

m 〉〉dt

+ i
∑
m′

2Vmm′

h̄
〈〈 znRezm′ 〉〉dt +√

γnγmσnmδnmdt.

(19)

The term in the last line results from the averaging of the
expression containing dWndWm.

If one compares (19) with (4), one sees that the term
−i(ωn − ωm)σnm corresponds to −(i/h̄)(εn − εm)ρnm. The
terms containing γ ’s can be combined to give L[σ ], where L
is the same functional as in the quantum case. The remaining
terms contain the real part of the complex amplitude and
therefore cannot be written as σnm. We will now first bring
(19) into a form which is closer to the quantum equation
and then show that in RCA they become identical. Using
2 Rezm′ = zm′ + z∗

m′ we can rewrite (19) to obtain

σ̇nm = H[σ ]nm+L[σ ]nm+i
∑

�

(
Vm�

h̄
〈〈z�zn〉〉−Vn�

h̄
〈〈z∗

�z
∗
m〉〉

)
.

(20)

This equation has to be compared to the quantum mechanical
master equation (2). Note that (20) as it stands is not a closed
system of equations for σ due to the appearance of 〈〈 z�zn 〉〉 and
〈〈 z�zm 〉〉∗. In Appendix it is shown how we solve this equation.

We still have the freedom to normalize the classical density
operator. This will be done by the factor

N =
∑

n

σnn (21)
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so that we can identify

ρ(t) ↔ σ (t)/N . (22)

With this we have related the classical master equation to
the quantum master equation. In the following subsection we
briefly discuss the initial state.

1. The initial state

a. Pure states. Consider first a quantum mechanical initial
state of the form

ρ ini = |ψ ini〉〈ψ ini|. (23)

Writing the initial wave function as | ψ ini 〉 = ∑
n cini

n | πn 〉 with∑
n |cini

n |2 = 1, we get for the matrix elements of the initial
density operator

ρ ini
nm = cini

n

(
cini
m

)∗
. (24)

The corresponding classical initial state is constructed by
choosing

zini
n = α cini

n , (25)

where α is an overall constant which will drop out in the end,
when calculating populations, coherences, etc. Thus we have
for the elements of the initial classical density matrix

σ ini
nm = α2 cini

n

(
cini
m

)∗
. (26)

b. Mixed states. To treat mixed states we first note that an
arbitrary density matrix can be written as a weighted sum of
pure states,

ρ ini =
∑

β

wβ | ψβ 〉〈ψβ |, (27)

with ρ| ψβ 〉 = wβ | ψβ 〉. This suggests constructing the corre-
sponding initial classical state as

σ ini =
∑

β

wβσβ, (28)

where (σβ)nm = α2(ρβ)nm.

B. The realistic coupling approximation

To investigate under which conditions the RCA will be valid
we use similar arguments to those in our previous work [1,16].
To this end we consider not the density matrix equations but
the equivalent stochastic equations. Expanding the quantum
wave function as

| �(t) 〉 =
∑

n

cn(t)| πn 〉 (29)

in the quantum case, one has from Eq. (5)

ċn = −i(εn + hn(t))cn − i
∑
m

Vnmcm, (30)

which has to be compared to the classical equation (13), which
can be written as

żn = −i(ωn + wn(t))zn − i
∑
m

2Vnm

h̄
Re(zm), (31)
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FIG. 1. (Color online) Time-dependent populations of a linear
chain when the excitation is localized initially on one monomer
“0.” The transport is symmetric with respect to this monomer. Left:
γ /V = 1. [For comparison, also the analytic γ = 0 result is shown
as a gray curve (dash-dot-dot)]. Right: γ = 20 V . Solid black curve:
exact quantum calculation. The colored curves are results from the
classical calculations for different ε. Orange, dash-dot: ε = 40 V .
Blue, intermediate dashes: ε = 10 V . Red, dotted: ε = 6 V . Green,
long dashes: ε = 1 V . Time is in units of V/h̄.

where the stochastic processes can be chosen to be wn(t) =
hn(t)/h̄ and as before, ωn = εn/h̄.

In Ref. [1], where h(t) ≡ 0, it was noted that under the
conditions that

|Vnm|/h̄ 	 ωn, (32)

∣∣ωn − ωm

∣∣ 	 ωn, (33)

the classical equations accurately describe the results obtained
from the Schrödinger equation. Then also the corresponding
classical master equation should give results which agree with
those obtained from the quantum master equation.
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FIG. 2. (Color online) Left column: Quantum coherences |ρ0,1|,
|ρ0,2|, and |ρ0,3| of a linear chain when initially the excitation is
localized on one monomer “0.” The dephasing rate is γ = V . Middle
column: Differences between classical and quantum results for the
case ε/γ = 40. Right column: Differences between classical and
quantum results for the case ε/γ = 6. Note the different scalings in
columns (b) and (c), indicated by the factors in the plots. Time is in
units of V/h̄.
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In the present case, where h(t) 
= 0, we expect that the
difference between the quantum and the classical evolution
is small if the same conditions for the time-dependent
frequencies are fulfilled, namely, that

|Vnm|/h̄ 	 ωn + wn(t), (34)

ωn � ∣∣ωn + wn(t) − [ωm + wm(t)]
∣∣, (35)

for most times t . Since wn(t) can take negative values, we see
from Eq. (34) that the fluctuations have to be small compared
to to the average frequency ωn. The second equation (35) states
that the frequency difference between different sites has to be
small compared to the mean frequency.

For the situation considered in the present work, we use
γn as a rough measure of the magnitude of the frequency
variations. Then both Eqs. (34) and (35) lead to the estimate

γn 	 ωn. (36)

If this condition and (32) and (33) hold, then we expect the
RCA to be a good approximation. Note that these assumptions
have to be fulfilled also for the quantum mechanical model
employed to be meaningful. That is, the energy changes
experienced by a given molecule due to coupling to other
molecules and the environment must be small compared to the
unperturbed molecule transition energy.

In Sec. IV we investigate the range of validity of this
approximation in more detail. In particular, we show that for

typical parameters used in the photosynthetic FMO complex,
the classical equations give a good description of the quantum
mechanical exciton dynamics.

IV. COMPARISON OF QUANTUM AND CLASSICAL
RESULTS

Here we compare the results obtained using the classical
“master equation” (20) with those obtained from the quantum
one Eq. (2). The classical equation (21) is solved using the
method described in Appendix.

First we consider the case of a linear chain and afterward
discuss the FMO complex. For both cases we investigate the
populations as well as the coherences between different sites.

A. The linear chain

As a first example, we consider the standard case of a linear
chain where all transition energies εn and dephasing rates γn

are identical. For simplicity we take only nearest-neighbor
interaction into account. This interaction, denoted by V , is
taken as the unit of energy.

In the results shown in Fig. 1 we have used as the initial
condition a state where the excitation is initially localized on a
single monomer which we denote by 01. In each column a fixed

1For the calculation we used a chain of 29 sites and started at
site 14.
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FIG. 3. (Color online) (a) Populations of the BChls as function of time when excitation is initially localized on BChl 1 obtained from the
full quantum mechanical calculations. (b) Differences between the quantum result and the classical calculation for the actual transition energies.
(c) The transition energies are reduced by 12 000 cm−1. Note the different scales of the y axis and the scaling factors which are indicated in the
figures.

046118-5



ALEXANDER EISFELD AND JOHN S. BRIGGS PHYSICAL REVIEW E 85, 046118 (2012)

γ is chosen and the transition energy ε is varied. For reference
purposes, in the left column, the quantum solution for γ = 0 is
also shown. Here the coherence is maximal and the probability
of EET is given by the square of a Bessel function [21], which
is oscillatory in time, reaching zero at the zeros of the Bessel
function. As γ is increased one sees that the oscillations are
damped for γ = V (left column of Fig. 1). When γ = 20 V

(right column) the oscillations are washed out completely and
the populations change monotonically in the quantum case.
The exact quantum results are shown as solid black lines.

To investigate the validity of the RCA we show classical
solutions for various values of the transition energy ε = h̄ω.
Specifically, we have chosen ε = 40, 30, 10, 6, and 1 in units
of V . For the values ε = 40,30,10, Eq. (32) is fulfilled while it
definitely does not hold for ε = 1. Note that for our choice of
identical transition energies, Eq. (33) is trivially fulfilled. For
the case γ = 1 we have ε/γ = ε/V and the inequality (36) is
fulfilled whenever (32) is fulfilled. However, for γ = 20 the
inequality (36) is not fulfilled for ε = 10,6,1. For this case
one expects to see the influence of the fluctuating transition
energies on the RCA.

These expectations are met by the numerical results shown
in Fig. 1. We see that for the case γ = 1 for ε � 10 the quantum
and classical results are nearly indistinguishable. Even for
a ratio ε/γ = 6 (dotted red curve) there is still quite good
agreement. For even smaller ε/γ the deviations become more
pronounced, as exemplified by ε/γ = 1 (green curve with
long dashes). For the large value γ = 20 the classical results
are indistinguishable from the quantum ones for the cases

ε � 30 [where both inequalities (36) and (32) hold]. For all
other values (where ε < γ ) there are clear deviations from the
quantum result.

Not only the populations, but also the intersite coherences
obtained from the classical “density matrix” are in good
agreement with the quantum mechanical coherences. This
is demonstrated in Fig. 2 for the case γ = V , where in the
left column for a linear chain the time-dependent absolute
values of the coherences between site 0 and site 1 (upper
row), site 2 (middle row) and site 3 (lower row), obtained
from full quantum calculations, are shown. Oscillations in
the coherences are evident. Since deviations between classical
and quantum results are not always easy to distinguish,
in the middle column the differences between the absolute
values of the quantum result and the classical calculation for
the case ε/γ = 40 are shown. One sees fast fluctuations in
the differences, but they are always at least two orders of
magnitude smaller than the magnitude of the exact coherences.
Upon decreasing the ratio ε/γ the fluctuations in the difference
become larger and slower but never exceed more than a few
percent. An example is shown in the right column for ε/γ = 6.

B. Model of the photosynthetic FMO complex

The simple HRS model has been extensively used in
recent years to gain insight into the dynamics of excitation
energy transfer in photosynthetic systems, although for a
more realistic description a more detailed treatment of the
environment would be necessary [22–25].
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Here we show, for the case of pure dephasing (with γn =
γ ), that for values of the transition energies and interactions
between the BChl molecules that are typical for such systems
the classical equation gives results in very good agreement
with those of the quantum one.

In the following we use the energies and couplings for c.
tepidum as given in Ref. [26]. (The site energies are taken from
the trimeric structure of Table 4 and the intersite couplings are
taken from the fourth column of Table 1 of that paper.) We note
that for our comparison the exact values are not important, and
therefore we did not consider more recent values [23,25,27].
One would get similar results as presented below for slightly
different parameters and also when treating the full trimeric
FMO system with 24 BChl molecules.

In Fig. 3 the time dependence of the excitation probabilities
of the BChl molecules is shown. The left column shows the
results from the full quantum calculation. The middle and
the right columns show the differences between the quantum
result and the solution of the classical equation. In the middle
column the transition energies are taken as given in Ref. [26].
They are in the order of 12 000 cm−1, which is much larger
than the coupling between the BChls (which is in the order of
100 cm−1) and also much larger than the energy differences
between the transition energies (which are also a few hundred
wave numbers). As expected, the deviations from the exact
quantum result are quite small (on the order of 0.1%). Even
if one reduces the transition energies by 12 000 cm−1 (which
results in completely unrealistic transition energies of the order
of a few hundred wave numbers), the deviations are still only
on the order of 10%.

The agreement between the classical coherences and the
quantum coherences is of a similar order. This is exemplified
by the results shown in Fig. 4.

V. CONCLUSIONS

In the present paper we have extended our previous investi-
gation on the correspondence between quantum mechanical
and classical EET to include coupling to an environment.
In particular, we have demonstrated that it is possible to
derive a master equation for the classical amplitudes, which
in the RCA reproduces the corresponding quantum master
equation. This has been shown explicitly for the case of an
environment that leads to pure dephasing. As shown by HRS,
the corresponding quantum master equation can be obtained
from an average over a stochastic Schrödinger equation with
real Markovian noise that alters the transition energies of the
monomers. We used this stochastic representation to relate
the quantum Schrödinger equation to a classical equation for
coupled harmonic oscillators with frequencies that have the
same stochastic properties as the quantum transition energies.
We then found that the classical results reproduce the quantum
results when the fluctuations in the transition energies are small
compared to the transition energy. This has been demonstrated
explicitly by considering both a linear chain and a simple
model of the FMO complex.

Although we have made this demonstration for real
Gaussian Markovian noise, it is clear that the same argu-
ment will also hold for more general stochastic processes
for the transition energies, which may be non-Gaussian

or non-Markovian. (Of course, deterministic functions and
fluctuations of the couplings between different sites also can
be treated in this manner.) In this respect it is worth mentioning
that such fluctuating site transition energies arise in molecu-
lar dynamics/quantum chemistry simulations performed on
photosynthetic complexes [23,25,28]. Thus the transport and
coherence properties obtained from such studies could be
reproduced by a purely classical model.

Let us briefly come back to the definition of “quantum
transport” of Panitchayangkoon et al. [3]. Although we
have only discussed fluctuations of the site energies, such
fluctuations nevertheless can lead to coupling of coherences
and populations in the eigenbasis of the averaged Hamiltonian.
Thus our classical model can also capture this type of
“quantum transport.” General Redfield tensors can be obtained
from a stochastic description in a similar manner as discussed
in Ref. [18].

The results presented demonstrate that classical oscillators
can be used to simulate the transport and coherence properties
of molecular aggregates and in particular, those of photosyn-
thetic systems. In a recent article [16] we have discussed how
classical electrical LC circuit oscillators (where L denotes an
inductance and C a capacity) can be used to mimic coupled
quantum two-level systems. From the foregoing it is clear that
by modulating the frequencies of the classical oscillators in
an appropriate way the classical LC oscillators can be used
to simulate the quantum aggregate. Such classical simulations
could be used to compare with recently proposed simulations
using superconducting qubits [29].
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APPENDIX: SOLUTION OF THE CLASSICAL EQUATION

In this section we describe how we solve the classical
equation (20). To this end we introduce the auxiliary matrices

Rnm = 〈〈 x̃n x̃m 〉〉, (A1)

Snm = 〈〈 p̃n p̃m 〉〉, (A2)

Tnm = 〈〈 x̃n p̃m 〉〉. (A3)

With this the classical density operator can be written as

σnm = Rnm + Snm + i(Tmn − Tnm). (A4)

From the evolution equations of x̃n and p̃n we can then
derive a set of coupled equations:

Ṙnm = ωnTmn + ωmTnm + L[R]nm, (A5)

Ṡnm = −(ωnTnm + ωmTmn) + L[S]nm

−
∑

�

(
2Vn�

h̄
T�m + 2Vm�

h̄
T�n

)
, (A6)
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Ṫnm = ωnSnm − ωmRnm + L[T ]nm − ∑
�

2Vm�

h̄
Rn�. (A7)

1. The initial state

In the following we set for convenience the normalization
factor α, introduced in Eq. (25), to α = 1. For each β in Eq. (28)
we make the identification z

β
n = c

β
n . Then we construct the

components Rβ , Sβ , and T β from Eqs. (A1)-(A3). This gives

σ ini
nm =

∑
β

wβσβ
nm (A8)

= Rini
nm + S ini

nm + i
(
T ini

mn − T ini
nm

)
, (A9)

with Rini
nm = ∑

β wβR
β
nm, S ini

nm = ∑
β wβS

β
nm, and T ini

nm =∑
β wβT

β
nm. Thus the initial vector (Rini,S ini,T ini), needed for

the propagation with Eq. (20), can be written as a sum of the
vectors (Rβ,Sβ,T β). The linearity of Eq. (A5) then guarantees
that σ (t) can be obtained at later times.

2. Comparison with the quantum equation

Similarly as for the classical equation, one can also rewrite
the quantum equation, giving further insight into the RCA
approximation. In the quantum case we define

Rqm
nm = RecnRecm, (A10)

Sqm
nm = ImcnImcm, (A11)

T qm
nm = RecnImcm. (A12)

With this the density operator can be written as

ρnm = Rqm
nm + Sqm

nm + i(T qm
nm + T qm

mn ). (A13)

We can then derive the set of coupled equations:

Ṙqm
nm = ωnT

qm
mn + ωmT qm

nm + L[Rqm]nm

+
∑

�

(
Vn�

h̄
T

qm
m� + Vm�

h̄
T

qm
n�

)
, (A14)

Ṡqm
nm = −(

ωnT
qm
nm + ωmT qm

mn

) + L[Sqm]nm

−
∑

�

(
Vn�

h̄
T

qm
�m + Vm�

h̄
T

qm
�n

)
, (A15)

Ṫ qm
nm = ωnS

qm
nm − ωmRqm

nm + L[T qm]nm

+
∑

�

(
−Vm�

h̄
R

qm
n� + Vn�

h̄
S

qm
�m

)
. (A16)

One sees that compared to the classical case, the
terms containing the interaction between the monomers
are more symmetrically distributed among the individual
equations.
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[14] V. Szöcs and I. Barvı́k, J. Theor. Biol. 122, 179

(1986).
[15] M. Wubs and J. Knoester, J. Lumin. 76-77, 359 (1998).

[16] J. Briggs and A. Eisfeld (accepted for publication), e-print
arXiv:1104.4158v2 [quant-ph].

[17] R. Kubo, J. Phys. Soc. Jpn. 9, 935 (1954).
[18] R. F. Fox, Phys. Rep. 48, 179 (1978).
[19] N. G. van Kampen, J. Stat. Phys. 24, 175 (1981).
[20] H. Hasegawa and H. Ezawa, Prog. Theor. Phys. Suppl. 69, 41

(1980).
[21] R. E. Merrifield, J. Chem. Phys. 28, 647 (1958).
[22] M. Wendling, T. Pullerits, M. A. Przyjalgowski, S. I. E. Vulto,

T. J. Aartsma, R. van Grondelle, and H. van Amerongen, J. Phys.
Chem. B 104, 5825 (2000).

[23] S. Shim, P. Rebentrost, S. Valleau, and A. Aspuru-Guzik,
Biophys. J. 102, 649 (2012).

[24] G. Ritschel, J. Roden, W. T. Strunz, A. Aspuru-Guzik, and
A. Eisfeld, J. Phys. Chem. Lett. 2, 2912 (2011).

[25] C. Olbrich, T. L. C. Jansen, J. Liebers, M. Aghtar, J. Strümpfer,
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