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Absorption Spectra of Quantum Aggregates Interacting via Long-Range Forces
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We present a simple formula by which the shape of the absorption spectrum of an aggregate of quantum
‘‘monomers’’ (cold atoms, molecules, quantum dots, nanoparticles, etc.) interacting via dipole-dipole
forces can be calculated from the averaged spectrum of the quantum monomer itself. Spectral broadening,
due to a wide variety of causes, is included explicitly so that the formula is applicable not only to the
idealization of a discrete spectrum but also to the practical situation of a continuously broadened
spectrum. In simple cases, analytic results are obtained showing the strong dependence of the aggregate
spectrum on the precise nature of the broadening of the quantum monomer spectrum. The formula is
compared with results of exact diagonalization of model aggregate Hamiltonians and with experiment.
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Quantum aggregates (QA) in the form of loosely
coupled assemblies of organic molecules interacting via
dipole-dipole forces have been known for a very long time
(see, e.g., [1]). They are typified, for example, by many dye
molecules whose spectra undergo radical shifts and
changes of shape on aggregation. Advance in technology
in recent years has expanded considerably the range of
tools available with which to manipulate small quantum
objects, e.g., the techniques of trapping and cooling atoms
and molecules [2], the force microscope, and the produc-
tion of nanosized clusters on surfaces [3,4] or in helium
droplets [5]. This has allowed new types of quantum
aggregates to be studied in detail. Here the term quantum
‘‘monomer’’ (QM) will be used to refer to any object,
atom, molecule, quantum dot, etc., which aggregates with-
out essential loss of its identity. This limits the forces
between QMs to be small compared to typical intra-QM
forces. In turn, this will mostly limit discussion to QMs
separated by distances somewhat larger than their size so
that there is no wave function overlap and no essential
transfer of electrons.

In addition to the traditional QA, i.e., assemblies of large
organic molecules in chemistry [1,6], solid state physics
[7] and biology [8,9], examples of such new types of
aggregate are electronically excited atoms in optical latti-
ces [10], ‘‘molecules’’ and ‘‘crystals’’ composed of quan-
tum dots [11–13], assemblies of nanosize metallic particles
[3,4], or molecules bound to DNA as a template [14]. On
electronic excitation, the (transition) dipole-dipole interac-
tion between such QMs leads to migration of dipole exci-
tation through the aggregate. In ordered structures of
identical QMs, this transfer of excitation arises from the
formation of entangled cooperative states, known as ex-
citons, in which electron excitation migrates freely through
the whole aggregate.

As with all quantum objects, the simplest method of
obtaining information on the QA energy spectrum and its
structure is optical absorption. Indeed, the changes in the
absorption spectra between QA and noninteracting QMs
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furnish key evidence as to the geometrical structure of the
aggregate. The simplest theory of QA absorption is the
exciton theory involving electronic degrees of freedom
only. Unfortunately, the absorption spectrum of the non-
interacting QM is rarely well-approximated by a single
sharp electronic excitation line. Rather, the spectra are
broadened. The broadening is due to a variety of effects.
Often, the QMs have other internal degrees of freedom
which couple to the electronic excitation, e.g., intramolec-
ular vibrations in the case of large molecules. The excited
electronic, or vibronic, state has often, apart from the
natural radiation lifetime, a finite lifetime due to coupling
to phonons of the substrate or solvent surroundings.
Inhomogeneous broadening occurs where the QMs are
not absolutely identical, either due to varying chemical
shifts from the surroundings at different locations or sim-
ply due to nonuniformity in the manufacture of the QM
(e.g., quantum dots). Similarly, a nonunique ground state
may lead to temperature-broadening effects. All such
broadening will be referred to as dynamic averaging, since
it affects the effective QM Hamiltonian. In the dipole-
dipole interaction between QMs and in the absorption
spectrum, there occurs the transition dipole moment �n.
A key assumption is that �n is independent of dynamical
averaging. However, fluctuations in its position about some
mean value in the QA imply that quantities involving �n
are subject to a separate geometrical averaging in calculat-
ing the QM and QA absorption spectra.

These broadening effects have mostly been taken into
account by assuming that the QM spectrum is discrete and
folding the resulting QA ‘‘stick’’ spectrum with some
assumed line shape function or by assuming that broad-
ening is due to statistical fluctuations. The aim here is to
present a rather general but, above all, simple formula by
which the QA spectrum can be calculated directly from the
average spectrum of the noninteracting QM. This formula
is applicable not only when the QM spectrum is assumed to
be discrete but, more importantly, can be applied also to
continuous spectra. This leads to a semiempirical proce-
3-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.96.113003


PRL 96, 113003 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
24 MARCH 2006
dure in which the QM spectrum taken from experiment can
be used as input.

The photon absorption cross section �Ax̂ , of the aggre-
gate, for light of frequency ! and polarization vector x̂, is
expressed in terms of the frequency-dependent polarizabil-
ity tensor �A as

�Ax̂ / �Imx̂ � �A � x̂; (1)

with

� A �
X
nm

fh�nGnm�E0 � @!�~�mig: (2)

Here angle brackets h� � �i denote the dynamical average
and braces f� � �g the geometric average. The transposed
transition dipole (row) vector of QM n is denoted by ~�n,
and E0 is the energy of the aggregate initial state. The
propagator matrix Gnm�E� is that of the Green operator
G�E� � �E�H� i���1 of the aggregate with total
Hamiltonian H. This propagator is expressed in a basis
of electronic eigenstates j�ni in which QM n is excited
with all others in their electronic ground state. Hence, if
vibrational degrees of freedom are included inH, thenGnm
is still an operator with respect to these coordinates.

The total Hamiltonian is subdivided as H � H0 � V,
where H0 is the sum of the Hamiltonians of individual,
noninteracting monomers and V is the interaction operator
between monomers. Then we can write formally

G � g� gVG; (3)

where g � �E�H0 � i���1. The averages in Eq. (2) then
include the following situations, where in any specific case
one or more of the averages may be involved:

(i) QMs and QA possess additional internal vibrational
degrees of freedom. Then h� � �i implies an average over an
initial vibrational aggregate state. This also includes an
average over states occupied at finite temperature. If the
approximation is made that the �n are independent of
vibration and the aggregate has a known structure, then
the average is performed over G only, i.e.,

� A �
X
nm

f�nhGnmi~�mg: (4)

(ii) If the QM spectrum is subjected to external influ-
ences, leading to effective disorder (inhomogeneous broad-
ening), then an average must be performed over these
variations. Usually, this is simulated by assuming vary-
ing eigenvalues of H0 and/or by assuming them to be
imaginary.

(iii) For aggregates in which the positions and orienta-
tions of the QMs fluctuate, the geometrical average must
also be taken.

In Eq. (1), the dipole approximation has been made in
the interaction of light with the aggregate. This restricts the
size of the aggregate (or at least the size of the delocaliza-
tion of excitation). However, it implies that only the ori-
entation, and not the absolute location, of the dipole �n is
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important for light absorption. Then, from Eqs. (2) and (3),
we must consider the equation

X
nm

f�nhGnmi~�mg �
X
n

f�nhgni~�ng

�
X
nmn0
f�nhgnVnn0Gn0mi~�mg; (5)

where we have used the fact that g is diagonal in the basis
j�ni.

The main approximation is to replace the operator gn in
the second term on the right-hand side of Eq. (5) by its
dynamical average hgni � hgi, independent of n. This is a
generalization and extension of the coherent exciton scat-
tering (CES) approximation used for the special case of
ordered aggregates of dye molecules at zero temperature
[15,16]. Although not entirely appropriate in the general
case considered here, the designation CES will be retained
for the sake of continuity. With the CES approximation, the
right-hand side of Eq. (5) simplifies to read

hgiM� hgi
X
nmn0
f�nVnn0 hGn0mi~�mg; (6)

where the tensor M �
P
nf�n ~�ng has been introduced. If

Rn;n0 denotes the tensor that transforms the transition di-
pole of the n0th QM to that of the nth QM, i.e., �n �
Rn;n0�n0 then the part

P
n�nVnn0 of expression (6) becomes

X
n

�nVnn0 �
X
n

Vnn0Rn;n0�n0 � Cn0�n0 : (7)

Within the CES approximation, the tensor Cn0 coupling
QM n0 to all others will be replaced by its geometrical
average fCn0 g � C. Then the right-hand side of Eq. (5)
becomes

hgiM� hgiC
X
n0m

f�n0 hGn0mi~�mg; (8)

or, using the definition Eq. (2) and solving for �A, gives

� A � hgi�1� Chgi��1M: (9)

Let ~xi, i � 1; 2; 3 denote the eigenvectors of the tensor C
with eigenvalue Ci, i.e., C~xi � Cix̂i. Then for light polar-
ized in the direction x̂i one obtains, according to Eq. (1),
the aggregate spectrum

�Imx̂ � �A � x̂ � �ImhG�E�i
X
n

fjx̂i � �nj
2g: (10)

From Eqs. (9) and (10), putting gI�E� � Imhg�E�i and
gR�E� � Rehg�E�i, the QA spectral shape function is given
by

Im hG�E�i �
gI

�1� CigR�
2 � C2

i g
2
I

: (11)

The function gI�E�, given by the monomer spectral shape,
is obtained from experiment or calculation. Then the ag-
gregate spectrum can be calculated in two simple steps:
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(i) The function gR�E� is calculated from the dispersion
relation

gR�E� � �
1

�
P
Z 1
�1

gI�E
0�

E� E0
dE0; (12)

where P denotes the principal value.
(ii) The aggregate absorption spectrum is calculated

according to Eq. (11), where Ci is estimated or used as a
fit parameter.

Clearly, the aggregate spectrum has peaks where
gR�E� � C�1 in Eq. (11). (We drop the index on the
coupling parameters Ci.) As we will show below, the shape
of the aggregate spectrum in this region depends decisively
upon the nature of the QM spectrum at this energy. It
depends also upon the sign of the interaction C, which
shifts the aggregate spectrum with respect to that of the
QM. If the QM excited-state spectrum is bounded, usually
from below, then a shift in that direction beyond the bound
in all cases will lead to gR�E� � 	E�1 [see Eq. (12)], and a
single exciton peak is obtained at E � 	C [see Eq. (11)].
Of course, this extreme case of absolutely vanishing QM
absorption, i.e., a lower bound on the spectrum, is not
realized in practice, precisely due to the broadening effects
described above.

Let us consider typical QM broadened profiles. Taking
the QM spectrum to be centered on E � 0 and to have a
finite width �, it is clear from (12) that for E
 �

hg�E�i �
1

E
� igaI �E�; (13)

where gaI �E� is the asymptotic form of gI for E
 �. Then
from Eq. (11) the QA spectrum is approximately

�ImhG�E�i � �
E2gaI �E�

�E� C�2 � �CEgaI �
2 : (14)

Hence:
(A) For an inverse power law in the QM spectral wings,

i.e., gaI � �n�1=En, the peak at E � C has width diminish-
ing as C��=C�n�1. For the Lorentzian case n � 2, the
aggregate spectrum has the same width � as the QM
 0
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spectrum and indeed the same shape; a Lorentzian does
not narrow as C increases.

(B) For a Gaussian QM absorption with gaI /
��1 exp��E2=�2�, the width of the QA exciton peak is
��1C2 exp��C2=�2� i.e., becomes extremely narrow as C
increases.

(C) For a QM obeying the important Urbach-
Martienssen (UM) rule [9] in the wings, i.e., gaI /
k exp��kjEj�, the width of the exciton peak at E � C is
of the order kC2 exp��kjCj� i.e., becomes narrower with
increasing C but much more slowly than the Gaussian
peak.

It is useful to consider further the wings of the QA
spectrum (14) itself. Taking E
 C, one has

Im hG�E�i �
gaI �E�

1� �CgaI �E��
2 � gaI �E�: (15)

This shows that, ultimately, the wings of the QA spectrum
have the same shape as the wings of the QM spectrum. In
particular, a QM obeying the UM rule will give a QA
spectrum obeying the same rule, with the same slope of
the linear spectral wings on a logarithmic plot.

To illustrate the application of the CES, we will compare
it against spectra calculated using a completely different
model similar to methods popular in the theory of exciton
line shapes [6,17]. In this approach, vibrations are ignored
initially, and a purely electronic aggregate Hamiltonian is
diagonalized numerically. However, the transition energies
of the various QMs are not identical but fluctuate along the
aggregate according to some chosen distribution. The di-
agonalization is then repeated many times for random
choices of the ‘‘diagonal disorder,’’ in order to obtain a
smooth QA spectrum. In this way, the implicit effects of
coupling to vibrations are included. We call this the
diagonal-disorder approximation (DDA).

The Hamiltonian of 20 QMs, forming a circular aggre-
gate, whose transition energies vary about some mean
position and are uncorrelated, has been diagonalized for
a particular random choice of the energies. The calculation
has been repeated 50 000 times such that the averaged QM
spectrum has a Voigt profile. By varying the parameters of
 1 0.5 0

(d)

(b)

FIG. 1. QA line shapes for coupling
strengths (from right to left) C � 0:0
(QM), 0.5, 1.0, and 2.0. Points are DDA
results and continuous lines the CES re-
sults. The Voigt parameters are (a) ��0
(Lorentzian), (b) �=��1:25, (c) �=��
38, and (d) � � 0 (Gaussian).
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FIG. 2. PIC absorption spectra: dotted line, QM spectrum;
dashed line, QA experiment; thick solid line, CES calculation;
thin solid fluctuating line, DDA calculation.
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the profile, one can extrapolate smoothly between the
extreme cases of pure Lorentzian and pure Gaussian QM
spectra. In Fig. 1, the DDA spectra are compared with CES
results obtained by using the analytic Voigt profile as input
to Eq. (12) and then calculating the QA spectrum from the
CES formula of Eq. (11). For pure Lorentz broadening, the
CES and DDA results are indistinguishable for all coupling
strengths C [measured in Fig. 1 in units of the (constant)
Voigt profile width]. In this case, the QA CES spectrum is
simply the shifted QM Lorentzian spectrum, as can be
proved easily from Eq. (11), with hgi � �E� i���1. In
all other cases, the positions of the QA peaks agree and
there is good overall agreement in shape. Only in the
extreme case of a Gaussian QM spectrum [Fig. 1(d)] is
the narrowing of the QA spectrum in the strong coupling
case not reproduced by the DDA model. The drastic nar-
rowing of the CES Gaussian peak has been explained
above, and it is clear that diagonal disorder will always
give a broader peak. What is not clear is which of the two
approximations is correct. The question may be academic,
since a Gaussian decay of absorption is rarely met in
practice. Very common is a spectrum obeying the UM
rule [9]. Indeed, for the dye molecule pseudo-isocyanine
(PIC) detailed QM and QA spectra have been measured
[18] and the presence of UM tails established in both cases
(see Fig. 2; of particular note is the UM tail in the region
below ca. 18 000 cm�1). This distribution is used as the
sampling distribution in the DDA and as gI�E� in the CES.
As seen from the log-linear plot of Fig. 2, the CES gives a
good agreement with experiment for the shape, position,
and width of the QA exciton peak and particularly repro-
duces the exponential dependence and slope of the UM
tail. The DDA, after averaging 100 000 diagonalizations of
an aggregate consisting of 100 monomers, shows overall
less-satisfactory agreement with experiment but also re-
produces clearly the UM tail of the experiment (both
theory curves are normalized to experiment at
16 500 cm�1).
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To summarize, we have presented an extremely simple
formula to estimate the shape of the absorption spectra of
quantum aggregates interacting via long-range forces.
When the QM spectrum is known, either from calculation
or experiment, the shape of the aggregate spectrum can be
calculated from Eq. (11). The coupling strength C may be
calculated or used as a fit parameter. In either case, it is
dependent upon the detailed geometry of the aggregate. In
addition, different light polarizations x̂ give rise to differ-
ent bands with different C values. Hence, the aggregate
spectrum provides information on the often unknown ag-
gregate structure. Although the factored form Eq. (9) relies
on the CES approximation for its validity, which may be
satisfied to a greater or lesser degree in individual cases, its
extreme simplicity and the evidence provided by Fig. 2
suggest that the formula may be recommended as a pre-
liminary calculation to be made before embarking on a
more exact calculation involving large basis-set diagonal-
izations in which the degrees of freedom giving rise to
broadening must first be included explicitly and then aver-
aged over in a lengthy numerical procedure.
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