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In a previous paper [J. S. Briggs and A. Eisfeld, Phys. Rev. A 85, 052111 (2012)] we showed that the time
development of the complex amplitudes of N coupled quantum states can be mapped by the time development of
positions and velocities of N coupled classical oscillators. Here we examine to what extent this mapping can be re-
alized to simulate the “quantum,” properties of entanglement and qubit manipulation. By working through specific
examples, e.g., of quantum gate operation, we seek to illuminate quantum and classical differences which hitherto
have been treated more mathematically. In addition, we show that important quantum coupled phenomena, such
as the Landau-Zener transition and the occurrence of Fano resonances can be simulated by classical oscillators.
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I. INTRODUCTION

Scattered throughout the recent literature, responding to a
renewed interest in studying the ostensibly unique properties
of quantum systems, there have been many papers devoted
to demonstrating that some aspects of quantum dynamics
can be reproduced by classical systems. These classical
systems are often assemblies of classical oscillators and the
equivalence to quantum coupled systems stems essentially
from the mathematical correspondence between classical
eigenfrequencies and quantum eigenvalues. Depending on the
system, sometimes the correspondence presented has been
merely an analogy; sometimes it has been more exact. How-
ever, very few papers point out that the mapping of quantum
dynamics, as represented by the time-dependent Schrödinger
equation (TDSE), can be traced right back to the very first
paper applying this equation by Dirac [1], who showed that
the first-order time-dependent coupled equations for quantum
state amplitudes are identical to classical Hamilton equations.
Much later this equivalence was discovered independently by
Strocchi [2] but without application.

In previous publications [3–5] we have extended this
analysis and in particular shown how, for Hermitian quantum
Hamiltonians, the quantum dynamics corresponds specifically
to the classical mechanics of the generalized coupled motion
of mechanical or electrical oscillators. In particular we showed
that, although an exact mapping of the TDSE is possible, it can
lead to coupled classical equations involving simultaneously
position and momentum coupling of the oscillators, which
are rather complicated to realize. More standard classical
equations, where the coupling between the oscillators is only
via the position coordinates, can be achieved in a weak-
coupling approximation which we referred to as the “realistic
coupling approximation” (RCA). Indeed, almost all previous
publications simulating quantum dynamics with classical
coupled systems implicitly assume the RCA and write classical
oscillator equations without reference to the exact Dirac map-
ping. One aim of our previous work was to assess the accuracy
of the RCA. To this end, as an example, we have shown [3,4]
that the coherent transfer of electronic excitation between cou-
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pled molecules (for example in the photosynthetic unit), often
ascribed as due to a manifestation of quantum entanglement,
can be simulated exactly by transfer between coupled classical
harmonically oscillating electric dipoles and the RCA can give
an excellent approximation to the exact dynamics.

In this paper we explore the consequences of the Dirac
mapping further, first by considering to what extent quan-
tum aspects such as entanglement and quantum gate op-
eration can be reproduced by purely classical motion. As
in our previous studies, these applications involve mapping
the quantum dynamics of real, Hermitian time-independent
Hamiltonians. We show that certain aspects of entanglement
measures and quantum gate operation are readily simulated
classically. In the more general case of time-dependent or
non-Hermitian Hamiltonians we demonstrate that quantum
interference effects and nonadiabatic transitions can be simu-
lated also.

However, it is also illustrative to see where differences
between quantum and classical cases arise. In this way we
hope to shed light on the oft-discussed problem of quantum-
classical correspondence by discussing concrete examples. It
will emerge that the key point of the Dirac mapping is that
each and every quantum state must be assigned to a separate
classical oscillator. Hence, if we have a given number of
“particles” (atoms, molecules, spin systems) with one level
each, this system may be simulated by N oscillators. However,
if each particle has many quantum states the total number of
many-body states proliferates, as does, correspondingly, the
number of classical oscillators required for the simulation.
As the simplest but important example, consider a quantum
system of N two-level “particles” (qubits). Each qubit can be
represented by two classical oscillators giving a total of 2N

oscillators. However, the N qubits give rise to 2N quantum
states, say corresponding to increasing number of qubits in the
upper state, all the way from zero to N . Hence, the simulation
of the general coupled system of qubits requires not 2N but
2N classical oscillators. That this proliferation of classical
systems with respect to their quantum counterpart, rather than
entanglement per se, is what decides the possible exponential
advantage of quantum compared to classical computing in
performing certain algorithms has been emphasized before,
particularly in Ref. [6].

The modeling of quantum systems by classical oscillators
goes right back to prequantum days when, for example,
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Lorentz [7] and Holtsmark [8] described absorption of light by
atoms as the excitation of classical oscillating electric dipoles.
This tradition was extended into the quantum mechanics era in
the work of Fano [9] on cooperative quantum states modeled by
the eigenmodes of coupled classical dipoles and more recently
by the simulation of Fano resonances by coupled oscillators
[10] or the analogous treatment of electromagnetic-induced
transparency (EIT) [11]. Many more examples have been
given of classical oscillator simulation of various few-level
quantum systems and several of these papers are referred to in
Ref. [5]. Hence, as a second problem, we examine the mapping
of the quantum dynamics of more general time-dependent
and non-Hermitian Hamiltonians. Again it is instructive to
consider specific examples and we have chosen two systems
ubiquitous in quantum physics, namely, the Landau-Zener
avoided crossing of two quantum states and the interaction of
a discrete quantum state with a continuum of states, giving rise
to so-called “Fano” resonances. In both problems we examine
the exact mapping and the utility of the simpler RCA coupled
equations.

Recently, Skinner [12] has extended our previous work
[3–5] on Dirac mapping to include complex Hermitian
Hamiltonians and more general dissipative systems. In partic-
ular, the interesting suggestion is made that in these systems
a simulation is more easily realized by doubling the number
of classical oscillators. This suggestion is discussed in more
detail below.

The plan of the paper is as follows. In Sec. II we introduce
the basic classical equations which map the time development
of quantum systems whose wave function is expanded in some
basis set. In Sec. III we examine the question of entanglement
measures and show simply how some measures have exact
classical counterparts. Also, we show that certain operations
of quantum computing can be performed readily by classical
oscillators. Our aim here is to give concrete, realizable classical
systems capable of demonstrating this correspondence in the
laboratory. It emerges that an arrangement of N coupled
oscillators can mimic exactly a quantum system of N coupled
two-level systems, so long as the excitation is confined to one
quantum. However, in the more general case, including all
states with up to N quanta giving a total of 2N quantum states,
then 2N oscillators are required to achieve a simulation.

In Sec. IV we discuss time-dependent Hamiltonians and
examine simulation of the celebrated Landau-Zener nonadi-
abatic transition as an example. Section V is devoted to the
question of non-Hermitian Hamiltonians in the Schrödinger
equation. The consequences of the results are discussed in the
concluding Sec. VI.

II. THE QUANTUM AND CLASSICAL EQUIVALENT
EQUATIONS

In Ref. [5], to be referred to as paper I, it was shown how the
coupled TDSE for the complex amplitudes of a quantum level
system involving a finite number of levels can be mapped to
the Newton equations of the same number of coupled classical
oscillators. Here we reiterate this mapping briefly for the case
of a real and time-independent quantum Hamiltonian. Later
we extend to complex and time-dependent Hamiltonians.

The basis set expansion,

|�(t)〉 =
∑

n

cn(t)|φn〉, (1)

of solutions of the TDSE, where the cn are complex coefficients
and |φn〉 denotes an arbitrary orthonormal time-independent
basis, leads to a set of coupled equations (we use units such
that h̄ = 1),

iċn(t) =
∑
m

Hnmcm(t). (2)

In the special case that all matrix elements Hnm are real
the TDSE coupled equations (2) are equivalent to classical
Hamilton equations, i.e., cn = zn with zn ≡ (qn + ipn)/

√
2,

and pn and qn real momenta and positions, if the “classical”
Hamiltonian function is taken as the expectation value of the
quantum Hamiltonian, i.e.,

H = 〈�(t)|H |�(t)〉 =
∑
nm

c∗
n(t)Hnmcm(t). (3)

The Hamiltonian becomes

H = 1

2

∑
nm

Hnm(qnqm + pnpm), (4)

which is that of coupled real harmonic oscillators. Note that
the coupling is of a very special form in which there is both
bilinear position and momentum off-diagonal coupling with
exactly the same coupling strengths. We call the equations of
motion derived from this Hamiltonian the “p- and q-coupled
equations.”

The Hamilton equations resulting from a time-independent
quantum Hamiltonian are

q̇n =
∑
m

Hnmpm, ṗn = −
∑
m

Hnmqm. (5)

Taking the time derivative of the q̇n equation and inserting the
ṗn equation, one obtains

q̈n = −
∑
mm′

HnmHmm′qm′ . (6)

A similar equation can be obtained for the momenta pn.
Symbolically, writing q and p as vectors and H as a matrix,

the above equations are

q̇ = Hp, ṗ = −Hq, (7)

and formally

q̈ = Hṗ = −H2q, (8)

which are a set of coupled oscillator equations and can be
solved for q(t) and q̇(t). Typically, in a physical realization
of the coupled classical oscillators one would measure the
positions qn and the velocities q̇n. However, to construct the
quantum amplitudes one needs q + ip, i.e., the momenta pn.
The momenta at time t can be calculated from

p = H−1q̇. (9)

The set of complex amplitudes, the vector z, is constructed as

z = 1√
2

(q + ip). (10)
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From the Hamilton Eqs. (7) we have

z̈ + H2z = 0. (11)

Similarly, the Schrödinger equation (2) is written

iċ = Hc (12)

or

c̈ + H2c = 0, (13)

which is exactly the classical equation (11) and makes the
similarity to the equations of a set of coupled classical oscil-
lators obvious, at least formally. Hence, the p- and q-coupled
classical equations and the coupled quantum Schrödinger
equations are identical.

It is clear that the form of the above Eqs. (13) and (11)
are also applicable when H is complex. This is illustrated in
Sec. V where coupling of dissipative states is considered.

III. ENTANGLEMENT AND QUANTUM GATES

A. Entanglement and J aggregates

One prominent example of an entangled quantum system
is the excitonic J band formed by certain aggregates of dye
molecules. The eigenstates (known as Frenkel excitons) form-
ing the J -band states of such a system are linear combinations
of states in which one molecule is electronically excited and
all others are in their electronic ground state. We call these
states |πn〉, where the nth molecule is excited. Note that within
this so-called one-exciton manifold the states |πn〉 can be
readily identified with the states |φn〉 of Eq. (1). Therefore,
quantum mechanical excitation of a certain molecule can be
associated, within the classical mapping, with oscillation of
the corresponding classical oscillator [3–5].

Thilagam [13] has studied the entanglement dynamics of
a J aggregate by calculating the entanglement measures of
von Neumann entropy and concurrence. She suggests that
“the entangled properties highlight the potential in utilizing
optoelectronics properties of J-aggregate systems for quantum
information processing.” These measures are constructed from
the density matrix whose elements are composed of bilinear
products of the complex amplitudes cn. However, since these
complex numbers are identical to the classical zn numbers, it is
clear that these entanglement measures are reproduced exactly
by the classical dynamics. Hence, this is a completely classical
reproduction of “quantum entanglement.”

We emphasize that the simulation of the entanglement of
quantum states by classical oscillators is quite general as far
as the entanglement measures (e.g., entropy, concurrence,
negativity, quantum discord) are calculated using density
matrix elements, written as binary products of amplitudes,
since these are identical in quantum and classical dynamics.
Note however, in the J -aggregate excited state considered
by Thilagam, we only have one excitation shared between
N oscillators and hence our excited-state Hilbert space is of
dimension N and can be mapped exactly onto N classical
oscillators where initially only one oscillator is excited. Thus,
it is the restriction to the one-exciton space that allows one
to associate a localized excitation on a certain monomer
with a single classical oscillator. In the case of more than
one excitation in the system, there will be quantum states

which contain excitation on two (or more) molecules. Such
a state would map to its own oscillator; thus, the simple
correspondence molecule-oscillator no longer holds. This is
another example of the necessity, mentioned in the Introduc-
tion, to have more classical oscillators as the number of excited
quantum two-level systems increases.

In view of the ability of classical coherent coupled motion
to reproduce certain aspects of what is viewed as a purely
quantum effect, it appears apposite to examine other features
of quantum information processing to ascertain which aspects
are reproduced by classical coupled oscillator motion. To
do this the basic ingredients of quantum information must
be simulated classically. The most important of these are
definition of a qubit, its rotation on the Bloch sphere and the
coupling (entanglement) of two qubits in the construction of
quantum gates. These questions are examined in the following
sections.

B. The classical qubit

We first define a classical state of a pair of oscillators which
corresponds to the state of a single quantum two-level system,
a qubit. Then we show that by changing the amplitude and
phase of the classical oscillators we can perform arbitrary
rotations on the Bloch sphere. In paper I we pointed out that
the complex amplitudes of monomer eigenstates coupled into
a quantum dimer are identical to suitably defined classical
complex amplitudes of coupled oscillators. Essentially these
results are the same as given in Sec. III A but restricting the
excitation to N = 2 monomers. Here the states of coupled
classical oscillators are defined in a way that allows quantum
gate operations to be performed with them.

1. The single qubit: Quantum monomer and two
coupled oscillators

We consider the quantum monomer to consist of only two
states, a ground state and an excited state denoted by |0〉 and
|1〉, respectively. These two states can constitute a qubit.

To define a qubit, in the standard notation we consider a
linear superposition of the two states, |0〉 and |1〉, with complex
coefficients. Generally, up to an irrelevant overall phase, one
can take the coefficient of |0〉 to be real and non-negative and
define a state on the Bloch sphere by

|ψ〉 = cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉, (14)

where the parameters θ and φ are the usual angles defining
the unit sphere. Then the state is normalized 〈ψ |ψ〉 = 1; the
state |0〉 is at the north pole and |1〉 at the south pole. In
addition, particular superpositions of these states can be used
as basis. Clearly, the position on the Bloch sphere is defined
by a single complex number subject to the normalization
condition. According to the mapping prescription, a classical
oscillator corresponds to each of the two states. The motion
of each oscillator is uniquely defined by the two real numbers
of maximum amplitude and phase, from which the complex
number q + ip may be specified. Hence, there are four real
numbers specifying the classical “qubit.” However, as in
the quantum case, only relative phase is significant, which
eliminates one number. In the classical case, conservation of
total energy of the two oscillators gives a relation between
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amplitudes and plays the role of normalization in the quantum
case. Hence, only two real numbers specify the complex
number locating the pair of oscillators on the Bloch sphere and
the state of the oscillators can also be described symbolically
by Eq. (14).

In the quantum case the rotation on the Bloch sphere is
achieved by allowing the states |0〉 and |1〉 to interact for a
time to form a new linear superposition. This time development
is a unitary transformation. The same is true classically; the
corresponding two oscillators interact for a time and unitarity
is mapped to the classical dynamics by ensuring energy
conservation during the interaction. Since this interaction of
two states is the cornerstone of our simulation we examine the
transformation in some detail.

We consider two arbitrary quantum states, for simplicity
but without great loss of generality, which we take to be
degenerate in energy (in real systems slight nondegeneracy
is often desirable to inhibit interaction but may be lifted by
application of external fields). We call the two states, as above
for a qubit, |0〉 and |1〉.

A coherent superposition of |0〉 and |1〉 is achieved by
switching on an interaction V between the two states for a
certain time. The coupled qubit has + and − eigenstates of the
form

|ψ±〉 = 1√
2

(|0〉 ± |1〉), (15)

with eigenenergies ε± = ε ± V , where ε is the energy of the
pair of states. Then one can show (see paper I) that a general
solution of the TDSE can be written

c1(t) = exp[−(i/h̄)εt] cos[V t/h̄],
(16)

c2(t) = −i exp[−(i/h̄)εt] sin[V t/h̄],

which are the exact quantum solutions and describe a periodic
transfer of energy between the two states. A particular change
in amplitude and phase can be achieved by choosing the
coupling time and so a rotation on the Bloch sphere is
performed.

Exactly the same transformation can be made using the two
classical oscillators. When mapped to the Hamilton equations,
the Hamiltonian of the two coupled quantum states gives rise
to classical equations of motion for the displacements q1 and
q2 of two identical coupled pendula of natural frequency ω.
The coupled oscillator equations (derived in paper I) are

q̈1 + (ω2 + V 2)q1 = −2ωV q2,
(17)

q̈2 + (ω2 + V 2)q2 = −2ωV q1.

In the usual way these symmetric equations can be diagonal-
ized by the transformation q± = (q1 ± q2)/

√
2 to give normal

modes satisfying the uncoupled equations

q̈± + (ω ± V )2q± = 0, (18)

with eigenfrequencies 	± = ω ± V . As they should be, these
are exactly the eigenfrequencies ε ± V of the quantum two-
state problem derived above. Then one can show that the
classical complex amplitudes z1 and z2 obey exactly the same
equations as the quantum amplitudes c1,c2 of Eq. (16). Again
by choosing interaction time and strength of coupling the
relative amplitudes can be changed arbitrarily. A relative phase

change simply requires a change of the phase of one oscillator.
Accordingly, one sees that the operation leading to the quantum
mixing of the two qubit states, or rotation on the Bloch sphere,
also can be performed exactly by a pair of classical coupled
oscillators.

In particular, the Hadamard gate is defined

H = 1√
2

[
1 1

1 −1

]
(19)

and transforms the basis |0〉 and |1〉 into the mixed basis |ψ+〉
and |ψ−〉, i.e.,

H|0〉 = 1√
2

(|0〉 + |1〉) ≡ |ψ+〉 (20)

and

H|1〉 = 1√
2

(|0〉 − |1〉) ≡ |ψ−〉. (21)

Hence, this operation produces eigenvectors of the interaction
(which are actually eigenvectors of the Pauli matrix σx) from
the two-state basis. Clearly, this simple quantum gate can be
simulated by the classical oscillators by bringing them into
interaction to form the eigenmodes q±.

2. Two qubits: Quantum dimer and four coupled oscillators

In the dimer composed of two qubits we denote the states
with a double index, the first referring to monomer a, the
second to monomer b. Then the absolute ground state is
denoted |0〉a|0〉b ≡ |00〉. The doubly excited state is then
|1〉a|1〉b ≡ |11〉. The two singly excited states are |0〉a|1〉b ≡
|01〉 and |1〉a|0〉b ≡ |10〉. The total of 4(= 22) noninteracting
states are designated

|00〉 =

⎡
⎢⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎥⎦ , |01〉 =

⎡
⎢⎢⎢⎣

0

1

0

0

⎤
⎥⎥⎥⎦ ,

(22)

|10〉 =

⎡
⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎦ , |11〉 =

⎡
⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎦ .

In the notation of Sec. II we make the identification |π1〉 ≡ |10〉
and |π2〉 ≡ |01〉. To operate, the two qbits must be entangled
through interaction, which must be on/off switchable. The
general entangled state is usually written in the noninteracting
(computational) basis as

|ψ〉 = α|00〉 + β|01〉 + γ |10〉 + δ|11〉. (23)

Now we consider simulation of two-qubit gates.
The first, called the SWAP gate, involves mixing of only two

of the four states which we take here to be the |10〉 and |01〉
states. This gate simply swaps the amplitudes of the two states
involved and hence can be achieved as is done in the rotation
of a single qubit. For example, starting with unit amplitude
c1 for state |10〉 and zero amplitude c2 for state |01〉, after an
interaction time t the amplitudes are given exactly by Eq. (16).
The SWAP gate corresponds to switching on interaction for a
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time t = π/(2V ), which transforms |10〉 into −i|01〉, i.e.,

SWAP =
[

0 1

1 0

]
. (24)

More importantly, for a time t = π/(4V ) the entanglement
corresponds to the SQISW gate represented in the two-state
space as

SQISW = 1√
2

[
1 −i

−i 1

]
. (25)

Beginning in the separable state |10〉 this gate produces
the entangled state (−i|01〉 + |10〉)/√2. This SQISW gate,
which can be simulated by a pair of coupled oscillators,
was employed, for example, in the quantum tomography
experiment of Ref. [14].

The most important two-qubit quantum gate is the CNOT

gate, which operates on the entangled wave functions of
interest for quantum computing. The operation uses qbit a

as control bit and qbit b as target bit. The gate corresponds
simply to the instruction: If a is in the ground state, do not
change b, if a is in the excited state, then change the state of
b, i.e.,

CNOT |00〉 → |00〉, CNOT |01〉 → |01〉,
(26)

CNOT |10〉 → |11〉, CNOT |11〉 → |10〉.
In the four-dimensional computational basis CNOT has the
representation

CNOT =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤
⎥⎥⎥⎦. (27)

The CNOT gate can be decomposed into a sequence of
operations involving rotations of the individual qubits and
operation of the SQISW gate, which generates an entanglement
of the degenerate |01〉 and |10〉 states only. The decomposition
is

CNOT = Ra
y (−π/2)

[
Ra

x (π/2) ⊗ Rb
x (−π/2)

]
× SQISWRa

x (π )SQISWRa
y (π/2). (28)

where, for example, Ra
x (θ ) denotes a rotation of qubit a through

an angle θ about the x axis. In order to compare with operations
on classical oscillators, we show in Appendix A how to follow
this sequence of transformations through for a given initial
state.

Now we consider the same sequence of operations per-
formed with four identical classical oscillators. We assign a
separate classical oscillator to each of the four quantum states.
We consider the quantum gate transformations sequentially
and use matrix notation to indicate the couplings operating in
each step. Consider first a rotation Ra

y (π/2) ⊗ 1b operating on
|00〉 as initial state. The result is

1√
2

⎡
⎢⎢⎢⎣

1 0 −1 0

0 1 0 −1

1 0 1 0

0 1 0 1

⎤
⎥⎥⎥⎦

⎛
⎜⎜⎜⎝

1

0

0

0

⎞
⎟⎟⎟⎠ = 1√

2

⎛
⎜⎜⎜⎝

1

0

1

0

⎞
⎟⎟⎟⎠ , (29)

which corresponds exactly to |�ab〉2 of Eq. (A4). The
matrix represents the unitary transformation |00〉 → (|00〉 +
|10〉)/√2, i.e., to rotating qubit a and can be achieved by
coupling the two oscillators representing the two states of
qubit a only.

Similarly the SQISW gate can be reproduced by coupling
the oscillator |10〉, which is now in motion, to |01〉 for the
appropriate time. This is the operation

1√
2

⎡
⎢⎢⎢⎣

1 0 0 0

0 1√
2

−i√
2

−0

0 −i√
2

1√
2

0

0 0 0 1

⎤
⎥⎥⎥⎦

⎛
⎜⎜⎜⎝

1

0

1

0

⎞
⎟⎟⎟⎠ = 1√

2

⎛
⎜⎜⎜⎝

1
−i√

2
1√
2

0

⎞
⎟⎟⎟⎠ , (30)

again which corresponds exactly to the entangled state |�ab〉3

of Eq. (A5). The correlated motion of the four oscillators now
corresponds to the entangled state.

The next step is a rotation of this state by Ra
x (π ) ⊗ 1b given

by⎡
⎢⎢⎢⎣

0 0 −i 0

0 0 0 −i

−i 0 0 0

0 −i 0 0

⎤
⎥⎥⎥⎦

⎛
⎜⎜⎜⎝

1√
2

−i√
2

1
2

0

⎞
⎟⎟⎟⎠ = 1√

2

⎛
⎜⎜⎜⎝

−i√
2

0

−i

− 1√
2

⎞
⎟⎟⎟⎠ , (31)

again which corresponds exactly to the entangled state |�ab〉4

of Eq. (A6). Although only a rotation of qubit a, since we have
an entangled state this involves a change in the amplitude of
all four oscillators and so looks to involve coupling all four
oscillators. However, from the structure of the matrix one sees
that the operation of swapping the occupation amplitudes of
the states |0〉 and |1〉 of qubit a only involves subjecting the
two pairs of oscillators |00〉,|10〉 and |01〉,|11〉 separately to
the SWAP operation. This can be achieved by interaction for a
time corresponding to a π/2 phase shift in the SWAP operation.

We do not consider the further transformations of
Appendix A explicitly since it is clear they can be performed
analogously to the steps above. In this way all transformations
of the CNOT quantum gate can be simulated by the classical
oscillators. In any case, one sees that the complete CNOT gate

CNOT =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤
⎥⎥⎥⎦ (32)

involves only a SWAP gate operation between the states |10〉
and |11〉 and so could be performed directly with classical
oscillators. This is the advantage of having one directly
addressable oscillator for each quantum state. The great
disadvantage, of course, is that for N qubits with two states
each one needs a total of 2N oscillators to perform the quantum
simulation. This is one key element in the superiority of a
quantum system in executing certain computing algorithms
[6].

IV. THE LANDAU-ZENER PROBLEM

The aim of this section is to study time-dependent
Hamiltonians. The Landau-Zener (LZ) problem of transitions
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between two coupled quantum levels of varying energy is
ubiquitous in quantum physics. LZ systems are characterized
by the adiabatic, i.e., time-independent eigenenergies of the
coupled system exhibiting a typical avoided-crossing behavior.
Hence, first we show how this behavior of the eigenenergies
can be reproduced exactly by the eigenfrequencies of a pair
of classical oscillators. Then we examine the time-dependent
transition probability between the two coupled states and show
that, to a very good approximation, the LZ transition also can
be demonstrated with coupled oscillators.

A. The Landau-Zener eigenenergies:
The general two-level problem

In Sec. III B we considered the eigenvalues of a pair
of degenerate quantum levels interacting via an off-diagonal
element V and showed that the quantum eigenvalues E are
identical to the eigenfrequencies 	 of a pair of equal-frequency
coupled oscillators, when we put h̄ = 1. The simplest version
of the LZ quantum problem involves two levels of varying
energy, E1 and E2, interacting via a fixed matrix element V .
As the relative energy is varied the eigenvalues of the coupled
system show an avoided crossing around E1 = E2. As a first
step we show for the time-independent case how to construct
a pair of classical oscillators whose eigenfrequency behavior
is identical to the quantum case.

The quantum coupled equations (12) have eigenvalues
obtained by diagonalizing the Hamiltonian matrix,

H =
(

E1 V

V E2

)
, (33)

with the well-known result

E± = 1
2 {E1 + E2 ± [(E1 − E2)2 + 4V 2]1/2}, (34)

exhibiting the avoided crossing when E1 = E2. The classical
Hamiltonian corresponding to this quantum Hamiltonian is

H = 1
2E1

(
p2

1 + q2
1

) + 1
2E2

(
p2

2 + q2
2

) + V q1q2 + Vp1p2.

(35)

The Hamilton equations of motion are

q̇1 = ω1p1 + Vp2, q̇2 = ω1p2 + Vp1,
(36)

ṗ1 = −ω1q1 − V q2, ṗ2 = −ω2q2 − V q1,

where we set En = ωn.
The resulting Newton coupled equations are

q̈1 + (
ω2

1 + V 2
)
q1 + V (ω1 + ω2)q2 = 0,

(37)
q̈2 + (

ω2
2 + V 2

)
q2 + V (ω1 + ω2)q1 = 0.

The eigenfrequencies are those of the matrix

H2 =
(

E2
1 + V 2 V (E1 + E2)

V (E1 + E2) E2
2 + V 2

)
, (38)

which are the eigenfrequencies 	± with,

	2
± = 1

2

{
E2

1 + E2
2 + 2V 2

± [(
E2

1 − E2
2

)2 + 4V 2(E1 + E2)2]1/2}
. (39)

Although not immediately obvious it is readily shown that
	± = E± of Eq. (34) as should be, since the eigenvalues of
H2 are clearly the square of the eigenvalues of H.

As shown in the Appendix B, the standard equations de-
scribing coupled harmonic mass oscillators, when transformed
to dimensionless coordinates, can be brought to the form

Ẍ1 + ω2
1X1 − KωX2 = 0,

(40)
Ẍ2 + ω2

2X2 − KωX1 = 0,

where ω ≡ (ω1ω2)1/2. By suitable choice of frequencies and
couplings these equations can be put in the form of the exact
mapping Eqs. (37) and hence the quantum eigenenergies can
be simulated easily.

However, a more usual form of the standard equations
for unequal frequency oscillators, derivable directly from
the Hamiltonian Eq. (35) when the coupling term p1p2 is
neglected, is

q̈1 + ω2
1q1 − Kω1q2 = 0, q̈2 + ω2

2q2 − Kω2q1 = 0. (41)

It is clear that these equations are not identical to the
exact mapping Eqs. (37) or to Eqs. (40). The approximation
involving the neglect of the momentum coupling and leading
to these RCA equations is analyzed in paper I. The RCA
requires the validity of two approximations. The first is to
assume a weak classical coupling such that V/ωn 
 1 for
n = 1,2. The second is to replace V (ω1 + ω2) by 2V ω1 or
2V ω2, respectively, in the off-diagonal coupling terms in
Eqs. (37). This is valid when ω1 ≈ ω2. Then the RCA in
Eqs. (37) gives the Newton equations (41) with K = −2V .
Replacing E1 ≡ ω1 and E2 ≡ ω2, the eigenvalues of Eq. (41)
are given by

	2
± = 1

2

{
E2

1 + E2
2 ± [(

E2
1 − E2

2

)2 + 16V 2E1E2
]1/2}

. (42)

These eigenvalues are not equal to the exact ones of Eq. (39).
However, when E1 = E2 = E the exact eigenvalues are 	2

± =
(E ± V )2 and the RCA values are 	2

± = (E2 ± 2V E)2, as
shown above. The RCA expresses the approximation that
V 
 E so that in RCA 	± ≈ (E ± V ), the exact values.
Hence, when the detuning is not large, i.e., E1 ≈ E2, it
is possible to use classical oscillators satisfying the RCA
“normal” equations (41) rather than the exact equations (37) to
achieve a classical analog of the quantum equations. The RCA
equations involving only position couplings are easy to realize
practically, e.g., with coupled masses or LCR circuits, which
explains why most previous simulations of quantum systems
have simply assumed this form.

In summary, when the two oscillators have different
frequency as in the LZ problem, it is possible to construct a set
of classical oscillators whose eigenfrequencies give the exact
eigenvalues of the quantum LZ problem. The RCA equations
also will provide a reasonable approximation as long as the
frequency difference is not great. Of course, this is the case
close to the avoided crossing in the LZ coupled equations.
As already mentioned, by comparing the Hamiltonians of
Eqs. (B3) and (35) the RCA is equivalent to neglecting the
off-diagonal momentum terms in the “quantum” Hamiltonian.
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B. The Landau-Zener transition

The quantum to classical mapping changes somewhat
drastically when time-dependent Hamiltonians are admitted.
Then upon differentiating the Schrödinger equation,

iċ(t) = H(t)c(t), (43)

with respect to time one has not Eq. (13) but the more
complicated equation

c̈ + H2c + iḢc = 0. (44)

The classical analog is then written in the form

z̈ + H2z + iḢz = 0. (45)

Using the Hamilton equations (5) one obtains the coupled
Newton equations for the real displacements,

q̈ + H2q + ḢH−1q̇ = 0. (46)

Hence, one sees that the time dependence of the quantum
Hamiltonian has introduced new “forces” into the effective
classical equations of motion that involve the velocities and
therefore appear as generalized frictional forces (although they
do not have to be dissipative).

The standard two-level Hamiltonian corresponding to the
LZ problem has the diagonal energies now time-dependent
although the coupling V is still constant. This gives

H =
(

E1(t) V

V E2(t)

)
. (47)

The time-dependent LZ problem consists of beginning in one
state and calculating the probability amplitude for populating
the other state as the avoided crossing is traversed. The
classical equations of motion corresponding to the quantum
LZ problem are obtained by substituting the Hamiltonian (47)
in Eq. (46). In terms of the components qn this gives, with
En = ωn,

q̈1 + (
ω2

1 + V 2
)
q1 + ω̇1ω2

(ω1ω2 − V 2)
q̇1

+V (ω2 + ω1)q2 − ω̇1V

(ω1ω2 − V 2)
q̇2 = 0,

(48)
q̈2 + (

ω2
2 + V 2

)
q2 + ω̇2ω1

(ω1ω2 − V 2)
q̇2

+V (ω1 + ω2)q1 − ω̇2V

(ω1ω2 − V 2)
q̇1 = 0.

Compared to Eqs. (37) these equations have acquired new
diagonal and off-diagonal velocity coupling terms. Although,
in principle, possible, it remains a challenge to find a real
physical oscillator system with couplings that reproduce the
quantum conditions. Note that the diagonal velocity coupling
terms can be removed from the equations by a simple phase
transformation but the off-diagonal velocity coupling cannot.
Interestingly, however, in the RCA this direct velocity coupling
term disappears also.

In RCA the Eqs. (48) reduce to

q̈1 + ω2
1q1 + ω̇1

ω1
q̇1 + 2V ω1q2 = 0,

(49)
q̈2 + ω2

2q2 + ω̇2

ω2
q̇2 + 2V ω2q1 = 0.

Now the removal of the diagonal velocity terms by a phase
transformation brings the equations to the standard q-coupled
form realizable by linearly coupled oscillators. Hence, it is
interesting to test the validity of the RCA in the dynamic
LZ problem of the traversal of the avoided crossing (see the
next section). The RCA is only valid when ω1 ≈ ω2 ≡ ω and
V 
 ω. Although the latter condition is easily satisfied, the
former does not hold in general. Nevertheless, the condition is
valid precisely near the avoided crossing which is the region
where the transition takes place.

C. The Landau-Zener transition probability

We consider the problem originally solved by Zener
and Stückelberg [15,16], where the time dependence of the
crossing states is considered linear. That is, we take E1 =
E0 + At and E2 = E0 − At , where E0 and A are constants.
The solution of the quantum LZ problem does not depend upon
E0 but for the RCA approximation to the classical equations
to be valid we need to have E0 � V so that we take E0 as
finite. Beginning at infinite negative time in state 1, Zener’s
solution for the probability P2 to occupy state 2 at infinitely
large positive times can be derived analytically as

P2 = exp (−πV 2/A). (50)

In Fig. 1 we compare P1(t) = |z1(t)|2 and P2(t) = |z1(t)|2
obtained from solving the RCA equations (49) with the
same quantities obtained from the exact numerical solution
of Eqs. (48), which is, of course, the quantum solution. We
show the exact and RCA results and explicitly the difference
between them. For weak-coupling V (top row) the agreement
of the RCA calculations with the exact quantum calculation
is excellent, the difference being of the order of one half of
a percent. As the coupling becomes stronger, however, the
agreement is less good but never exceeds a difference of a few
percent, even in the extreme case, where complete reversal
of probabilities occurs (bottom row). The choice of linear
diabatic energies for all t , somewhat unphysical but necessary
for the Zener analytic solution, actually turns out to be not
ideally suited to simulation since, unless one chooses E0 to be
extremely large the possibility exists that the frequency of the
classical oscillator can become negative. To remedy this, we
have also investigated a different time dependence that does
not possess this unphysical behavior by choosing the smooth
function E1/2(t) = 2E0[1 ± arctan(t/E0)], which also shows
a linear behavior in the crossing region. Generally, this leads
to an even closer agreement between RCA and exact results.

Several authors (e.g., [17–19]) have pointed out the similar-
ity of quantum LZ equations to weakly coupled classical oscil-
lators involving only position couplings. Here we have shown
that this correspondence requires the validity of the RCA.

V. DISSIPATIVE STATES

There is an extensive literature on non-Hermitian
Hamiltonians and the related questions of exceptional points
in connection with the eigenvalue spectrum and the repre-
sentation of environment coupling (for a recent review, see
Ref. [20]). A detailed discussion of this literature is beyond
the scope of this article; suffice it to say that most aspects of
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FIG. 1. (Color online) Occupation probability of state one (red) and two (blue). (Left column) Quantum result; (middle column) RCA;
(right column) difference between QM and RCA. In all cases E1/2(t) = E0 ± At . Time is given in units of

√
1/A and energies are in units of√

A. The initial time is taken as t0 = −25 and the energy E0 = 40. From top to bottom, V = 0.2, 0.4, 0.6, 1.0.

this quantum physics can be simulated by classical oscillators.
The connection of non-Hermitian quantum Hamiltonians to
classical Hamiltonians has been discussed in detail by Graefe
et al. [21]. The simulation of non-Hermitian and complex
Hermitian quantum systems by classical oscillators is treated
in a general way by Skinner [12]. Below we consider a simple
example in detail. Basically, a quantum complex Hamiltonian
operator has a corresponding complex classical Hamiltonian.
Nevertheless, as shown in Appendix C one does not need to
consider a Hamiltonian form since the TDSE leads directly to
real Newton equations for the variables q and p.

Note that the approach presented in the present paper differs
from the one that we used in Ref. [4] to treat open quantum
systems, which was based on a stochastic unraveling of the
reduced systems dynamic and results in the averaging over
the dynamics of oscillators with time-dependent frequencies,
dampings, and couplings.

A common way of representing coupling to the environment
in quantum mechanics is to make eigenergies complex, leading
to an effective damping term in the classical equations as
shown also in Appendix C. Hence, as the simplest model of
a dissipative quantum or classical system we take a two-state
system having quantum Hamiltonian of the form

H =
(

E1 + iλ1 V

V E2 + iλ2

)
. (51)

Despite its rather innocuous form this extension to com-
plex Hamiltonian gives rise to coupled oscillator equa-
tions which, as in the time-dependent case, involve
off-diagonal velocity couplings. The equation for q1, derived in
Appendix C, is

q̈1 + aq̇1 + bq1 + cq2 + dq̇2 = 0, (52)
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where the coefficients are of the form (with E ≡ ω),

a ≡ −
[
λ1 + (ω1ω2λ1 − V 2λ2)

(ω1ω2 − V 2)

]
, (53)

b ≡ (
ω2

1 + V 2
) + λ1

(ω1ω2λ1 − V 2λ2)

(ω1ω2 − V 2)
, (54)

c ≡ V (ω1 + ω2) −
(
V ω1λ1λ2 − V ω1λ

2
2

)
(ω1ω2 − V 2)

, (55)

d ≡ ω1V (λ1 − λ2)

(ω1ω2 − V 2)
. (56)

One readily sees that for no dissipation λ1 = λ2 = 0 the
equations reduce to the exact mapping equations Eqs. (37).

The momenta are given by (see Appendix C)

p1 = 1

(ω1ω2 − V 2)
[ω2q̇1 − V q̇2 − λ1ω2q1 + V λ2q2],

(57)

p2 = 1

(ω1ω2 − V 2)
[ω1q̇2 − V q̇1 − λ2ω1q2 + V λ1q1].

More importantly, in the RCA, valid when V 
 ω1,ω2, which
can always be realized for classical oscillators, the equations
reduce to the much simpler form,

q̈1 − 2λ1q̇1 + (
ω2

1 + λ2
1

)
q1 + V (ω1 + ω2)q2 = 0,

(58)
q̈2 − 2λ2q̇2 + (

ω2
2 + λ2

2

)
q2 + V (ω1 + ω2)q1 = 0,

which are just the equations (37) again but now with dissipation
included. Similarly, the momenta become

p1 = (q̇1 − λ1q1)

ω1
, p2 = (q̇2 − λ1q2)

ω2
. (59)

Hence, as in the LZ case one can anticipate that these RCA
equations give an excellent reproduction of the quantum
behavior. That this is indeed the case is shown in Fig. 2, where
we present the RCA result and the difference from the exact
classical (and hence quantum) result for exemplary realistic
values of the dynamical parameters. The RCA is in error by
less than 1% at all times.

When subjected to external oscillatory forces it has been
shown that the response of a pair of coupled oscillators obeying
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FIG. 2. (Color online) Coupled, damped two-level system. The
parameters are E1 = E2 = 40, λ1 = −0.0, λ2 = −0.2. All energies
are in units of V and time is in units 1/V . Red, dashed, q2

1 + p2
1;

blue, dotted, q2
2 + p2

2; black, (q2
1 + p2

1) + (q2
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2). The inset shows
the difference between RCA and the exact quantum calculation.
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FIG. 3. (Color online) Coupled, damped, driven two-level sys-
tem. The parameters and designation of the curves is the same as in
Fig. 2. The driving strength of level 1 is μ1 = 0.2 and initially both
states have no population. The inset shows the difference between
RCA and the exact quantum calculation.

the RCA equations Eq. (58) can simulate the profiles of typical
“Fano” interference resonances [10] and the phenomenon of
EIT [11]. From Appendix C one sees that the inclusion of a
harmonic driving term with external frequency ω results in an
inhomogeneous equation with the right-hand sides of Eqs. (52)
and (58) simply replaced with appropriate terms −μ1/2(ω1/2 +
V ) cos ωt , where μ1 and μ2 are the driving strengths from
some initial state to levels 1 and 2, respectively. In Fig. 3 we
show again that the RCA gives excellent agreement with the
quantum result for the occupation amplitudes of the two states
as a function of time. Of course, when driven the amplitudes
settle down to some steady-state values. The RCA error in
the asymptotic values is of the order of 2%. Here we have
chosen the example of one oscillator, the driven one, having
no damping and interacting with a damped second oscillator.
This choice is similar to the one made to simulate the quantum
situation of a Fano resonance where a narrow discrete state,
driven by the electromagnetic field, interacts with a broader
continuum state. Were we to plot the response (asymptotic val-
ues in time) as a function of driving frequency we would obtain
for appropriate parameters the typical Fano resonance profile.
Again we note that previous simulations of Fano resonance and
EIT phenomena have implicitly assumed the validity of RCA.

In the mapping of Dirac used here the real and imaginary
parts of the quantum amplitude cn(t) are identified with the q

and p variables, respectively, of a single classical oscillator.
Skinner [12] has made the suggestion that, since both q and
p vary harmonically, one can use each as an independent
oscillator variable. This has the clear disadvantage that the
number of classical oscillators required is doubled (e.g., in
the SWAP quantum gate one would require eight coupled
oscillators). However, in certain cases it can be advantageous.
In particular, let us map the above Hamiltonian of Eq. (51) in
this way. The coupling of two quantum states now is simulated
by four oscillators q = q1,q2 and p = p1,p2. The coupled
Newton equations read now (we present only q1 and p1, the
other two equations are analogous)

q̈1 + (
ω2

1 + V 2 − λ2
1

)
q1 + V (ω1 + ω2)q2 − 2ω1λ1p1

−V (λ1 + λ2)p2 = 0,
(60)

p̈1 + (
ω2

1 + V 2 − λ2
1

)
p1 + V (ω1 + ω2)p2 + 2ω1λ1q1

+V (λ1 + λ2)q2 = 0.
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Although four oscillators are involved, these equations prob-
ably are simpler to realize with actual oscillators than the
two coupled oscillators described by Eq. (52), which involve
off-diagonal velocity coupling.

VI. CONCLUSIONS

The quantum dynamics of the complex amplitudes cn(t) of
N coupled quantum states can be mapped, via cn(t) ≡ [qn(t) +
ipn(t)]/

√
2, onto the classical dynamics of N coupled oscil-

lators. This result is completely independent of the character
(e.g., single-particle or many-particle) nature of the quantum
states. The equivalent classical Hamiltonian is a function of
the quantum Hamiltonian matrix elements in the basis of N

eigenstates. Depending upon the nature of the matrix elements
the requirements for the simulation by realizable classical
oscillator systems can be straightforward or more difficult.
For real Hermitian quantum Hamiltonians the simulation is
straightforward and we have shown explicitly how, using the
molecular J aggregate as example, entanglement measures
based on pure states can be simulated by classical oscillators.
Further we showed that classical qubits can be defined and
Bloch rotations and all fundamental two-qubit gate operations
performed also by coupling classical oscillators. However,
since from N qubits one can build a total of 2N quantum
states, then, as N itself becomes large, one would need
an exceedingly large number of 2N oscillators to achieve
the simulation. Of course, this is precisely the departure
point between quantum and classical mechanics. Also, if
the quantum system is composed of individual subsystems
a corresponding decomposition of the system of classical
oscillators can usually not be achieved. That is, in general there
is no one-to-one correspondence between classical oscillator
and quantum subsystem.

One should also mention the difference in the measurement
process required to ascertain the complex amplitudes. In
the classical case, since the dynamics is deterministic, the
amplitude and phase can be measured directly. In the quantum
case the same numbers are obtained as the statistical averages
of many measurements. For example, in the case of the
SQISW quantum gate employed in [14], of the order of 1000
measurements are required to achieve the necessary accuracy.

We have considered the extension to time-dependent and
non-Hermitian quantum Hamiltonians, using the two-state
LZ problem and decaying states as the simplest examples.
Again, here an exact mapping is possible but gives rise to
more complicated Newton equations of motion involving
off-diagonal velocity couplings. Nevertheless, in principle,
these terms can be simulated, either by damping or driving,
as in the case of electrical oscillator circuits with negative
resistance, for example. However, in the RCA, which requires
that the coupling between oscillators is weak, the complicated
exact equations simplify to a standard form without such
off-diagonal velocity couplings. We have shown that the RCA
equations give excellent agreement with exact quantum results
when the weak-coupling criterion is satisfied.

Recently, an alternative way to achieve standard coupled-
oscillator classical equations has been proposed [12]. This is to
recognize that the pn variables in the uncoupled limit are also
harmonic and therefore to treat the momenta as the position

variables of N additional classical oscillators. Although this
doubles the number of independent oscillators required for the
mapping, it has the advantage that the troublesome velocity
couplings are eliminated. Hence, although not necessary
for real Hermitian Hamiltonians, doubling the number of
oscillators can be advantageous for non-Hermitian (and also
for time-dependent) Hamiltonians when the number of states
N is not large. Which of the two schemes is simpler to realize
in practice will depend upon the precise nature of the quantum
problem at hand. Without claiming to encompass all possible
scenarios, we would maintain that in most cases of practical
simulation, the use of N coupled oscillators satisfying the
RCA, leading to standard coupled equations as illustrated
above, will furnish sufficient accuracy. This is because weak
coupling is necessary to maintain the linearity of the oscillator
and coupling forces with displacement, i.e., to satisfy Hooke’s
Law or its electrical equivalent. If higher accuracy is required
one must additionally simulate the couplings neglected in
the RCA or resort to 2N oscillators according to Skinner’s
prescription [12]. However, it should always be remembered
that the truncated set of quantum equations in the examples
used here is also an approximation. Any actual quantum system
would show deviations from the predictions of our Schrödinger
equation since inevitable coupling to states not included in the
truncated basis is not taken into account. This is the quantum
analog of nonlinear terms neglected in the classical simulation
and, as in that case, would be a more serious approximation
when the coupling becomes strong.
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APPENDIX A: DECOMPOSITION OF THE CNOT GATE

The decomposition of the CNOT two-qubit quantum gate is

Ra
y (−π/2)

[
Ra

x (π/2) ⊗ Rb
x (−π/2)

]
× SQISWRa

x (π )SQISWRa
y (π/2). (A1)

We follow this sequence of transformations through and as
example we consider the state |00〉 as the initial state. The
normalized one-qubit states are then initially

|ψa,b〉 = 1|0〉a,b + 0|1〉a,b (A2)

and the two-qubit state is the separable product

|�ab〉1 = |ψa〉|ψb〉
= 1|00〉 + 0|01〉 + 0|10〉 + 0|11〉. (A3)

The first rotation Ra
y (π/2) results in the excitation of state |10〉;

i.e.,

| �ab 〉2 = 1√
2
|00〉 + 0|01〉 + 1√

2
|10〉 + 0|11〉. (A4)

The SQISW operation entangles only the two |01〉 and |10〉
states and in this two-dimensional space this entanglement
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operation does not affect the |00〉 and |11〉 states. There results
the nonseparable state

|�ab〉3 = 1√
2
|00〉 − i

2
|01〉 + 1

2
|10〉 + 0|11〉. (A5)

The interaction is now switched off and a further one-qubit
rotation Ra

x (π ) performed on qubit a to give

|�ab〉4 = − i

2
|00〉 + 0|01〉 − i√

2
|10〉 − 1

2
|11〉. (A6)

The second SQISW entanglement step gives

|�ab〉5 = − i

2
|00〉 − 1

2
|01〉 − i

2
|10〉 − 1

2
|11〉. (A7)

The two independent qubits are now simultaneously rotated
by angles π/2 and −π/2, respectively, about the x axis. The
resulting state is

|�ab〉6 = − 1
2 [(1 + i)|00〉 + 0|01〉

+ (1 + i)|10〉 + 0|11〉]. (A8)

The final rotation of qubit a alone results in the initial state, to
within a global phase factor, i.e.,

|�ab〉7 = −1 + i√
2

|00〉 + 0|01〉 + 0|10〉 + 0|11〉

= e(−iπ/4)(1|00〉 + 0|01〉 + 0|10〉 + 0|11〉). (A9)

It is interesting to note that the second SQISW operation is
actually a disentangling step since |�ab〉5 of Eq. (A7) is the
separable state,

|�ab〉5 = |ψa〉|ψb〉
= − i

2
(|0〉a + |1〉a)(|0〉b − i|1〉b). (A10)

Therefore, the subsequent one-qubit rotation operations can be
performed separately on these states. It is easy to check that for
each of the four CNOT operations of Eq. (26) after the second
SQISW a separable state is obtained. This must be so, since the
final target states are separable and the single-qubit rotations
subsequent to the second SQISW cannot induce entanglement.

APPENDIX B: STANDARD CLASSICAL EQUATIONS

Here we derive the standard classical equations of motion
for two harmonic oscillators of masses m1 and m2 coupled by
a spring. The Hamiltonian is taken as

H = p̃2
1

2m1
+ 1

2
m1ω

2
1x̃

2
1 + p̃2

2

2m2
+ 1

2
m2ω

2
2x̃

2
2 − κx̃1x̃2. (B1)

The scaling to dimensionless variables (x,p) is achieved by
the transformation

xn =
(

mnωn

h̄

)1/2

x̃n, pn = 1

(mnh̄ωn)1/2
p̃n, (B2)

for n = 1,2. This gives the new Hamiltonian

H/h̄ = 1
2ω1

(
p2

1 + x2
1

) + 1
2ω2

(
p2

2 + x2
2

) − Kx1x2, (B3)

where

K ≡ κ

(m1m2ω1ω2)1/2
(B4)

and all terms are of the physical dimension of inverse time.
Here we have included h̄ explicitly so that the connection
to the “quantum” Hamiltonian Eq. (35) is obvious. With
En = h̄ωn they are of the same form except that the classical
Hamiltonian is missing the p-coupling terms. Hence, we
call this expression the q-coupled Hamiltonian. With this
Hamiltonian the equations of motion are

ẋ1 = ω1p1, ẋ2 = ω2p2,
(B5)

ṗ1 = −ω1x1 + Kx2, ṗ2 = −ω2x2 + Kx1.

From these equations are derived the coupled Newton equa-
tions

ẍ1 + ω2
1x1 = Kω1x2, ẍ2 + ω2

2x2 = Kω2x1. (B6)

Note that we have chosen h̄ in the scaling to make contact with
the quantum Hamiltonian but since the final equations do not
depend on it, we could have chosen any other constant with
the dimension (energy × time) to fix the units.

Alternatively, we can take the Hamiltonian Eq. (B1) and
transform

X1 =
(

m1

m2

)1/4

x̃1, X2 =
(

m2

m1

)1/4

x̃2,

(B7)

P1 =
(

m2

m1

)1/4

p̃1, P2 =
(

m1

m2

)1/4

p̃2.

This gives the completely symmetric form

H = P1
2

2μ
+ 1

2
μω2

1X
2
1 + P2

2

2μ
+ 1

2
μω2

2X
2
2 − κX1X2, (B8)

with μ = (m1m2)1/2. The Newton equations are

Ẍ1 + ω2
1X1 − KωX2 = 0,

(B9)
Ẍ2 + ω2

2X2 − KωX1 = 0,

where we define a mean frequency ω ≡ (ω1ω2)1/2 so that
K = κ/(μω), as above. With this form one can satisfy the
exact mapping equations Eqs. (37) since the coefficient of the
coupling term is the same in the two equations. If we scale
the lengths Xn to become dimensionless by different factors
for each n as in Eqs. (B2), then we achieve equations of the
standard form Eqs. (B6). However, if we choose a common
scaling factor for length, e.g., [h̄/(μω)]1/2, then the equations
are unchanged and in particular the coupling terms retain
their common coefficient. This allows an exact mapping of
the quantum LZ equations for fixed energies.

APPENDIX C: NON-HERMITIAN DRIVEN
TWO-LEVEL SYSTEM

The Schrödinger equation is

ċ = −iHc. (C1)

With H = HR + iHI this gives real first-order equations [12],

q̇ = HRp + HIq ṗ = −HRq + HIp. (C2)
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The Newton equations for the real oscillator amplitudes q(t)
are then

q̈ = −HR
2q + HIq̇ + HRHIHR

−1q̇ − HRHIHR
−1HIq

(C3)

and the real momenta p(t) are given by

p = HR
−1(q̇ − HIq). (C4)

The Hamiltonian matrices for a two-level system with E ≡ ω

are

HR =
(

ω1 V

V ω2

)
(C5)

and

HI =
(

λ1 0

0 λ2

)
. (C6)

The inverse of HR is

HR
−1 = 1

(ω1ω2 − V 2)

(
ω2 −V

−V ω1

)
. (C7)

With these definitions, the Newton equations become those of
Eqs. (52) and (57) of Sec. V.

When driven by an oscillating external field of frequency
ω, the Schrödinger equation becomes

ċ = −iHc − if(t), (C8)

where

f = cos ωt

(
μ1

μ2

)
, (C9)

and μ1 and μ2 are the driving strengths from some initial state.
The Newton equations arising similarly have an additional
inhomogeneous term equal to −HRf(t).
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