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We present a theory that efficiently describes the quantum dynamics of an electronic excitation that is

coupled to a continuous, highly structured phonon environment. Based on a stochastic approach to non-

Markovian open quantum systems, we develop a dynamical framework that allows us to handle realistic

systems where a fully quantum treatment is desired yet the usual approximation schemes fail. The

capability of the method is demonstrated by calculating spectra and energy transfer dynamics of

mesoscopic molecular aggregates, elucidating the transition from fully coherent to incoherent transfer.
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One often encounters the situation where a quantum
particle or an elementary excitation couples to a complex
environment. Examples range from the classical polaron
problem [1] over electron-phonon interaction in supercon-
ductors [2], ultracold impurity atoms immersed in a Bose-
Einstein condensate and trapped in a tight optical lattice
[3], molecular aggregates and crystals [4–6], atoms or
molecules in photonic band gap materials [7] or light-
harvesting units in photosynthesis [8]. We speak of a
quantum aggregate (QA), if the excitation can reside on
N different sites, if it can be handed over from site n to site
m mediated by a matrix element Vnm, and, importantly, if
the excitation couples to a complex environment. In the
following we will use the language of exciton-phonon
coupling in molecular aggregates, although this scenario
is obviously much more general.

For very small QAs (N < 10) it may be possible to
extract the few most relevant phonon modes and treat
them fully quantum mechanically [5,9]. Then, however,
the overall irreversible nature of the dynamics caused by
the existence of many more environmental modes is
ignored. Other approaches, like the coherent exciton scat-
tering approximation [10], are best suited for large aggre-
gates (N ! 1), yet fail for a small number of monomers. If
the overall influence of the vibrational environment is
small, a perturbative approach (Redfield) may be appro-
priate [11,12].

All these established approaches fail for the QAs we are
interested in: a quantum excitation that may reside on a
finite number of sites, significantly coupled to a complex
environment of phonons that consists of a few distinct
vibrations embedded in an overall dissipative bath. We
tackle this intricate regime of complex dynamics fully
quantum mechanically using ideas from a stochastic de-

scription of non-Markovian open quantum systems [13]
(see also [11]). We present a dynamical framework based
on a stochastic Schrödinger equation (SSE) that allows us
to determine the quantum dynamics emerging from a
significant exciton-phonon coupling in complex QAs. We
are able to treat QAs consisting of a very small to a large
number of monomers, bridging a gap in previous ap-
proaches. Moreover, being nonperturbatively, in a single
unified theory we may describe exciton-dynamics ranging
from fully coherent, over weakly perturbed, to strongly
affected by the vibrations. To demonstrate the capability of
the method, it is applied to study optical absorption and the
coherent-incoherent transition of energy transfer in ring-
shaped molecular aggregates [6], as they appear, e.g., in the
light-harvesting units of some bacteria.
We consider QAs where the wave functions of different

monomers do not overlap (tight binding) and each mono-
mer has two electronic states with a transition energy "n for
monomer n. A state in which monomer n is electronically
excited and all other monomers are in their electronic
ground state is denoted by j�ni. The Holstein model [14]
includes the crucial influence of (possibly damped) vibra-
tions on each monomer and is given by the Hamiltonian

H ¼ Hel þHint þHvib: (1)

Here,

Hel ¼
XN

n;m¼1

ð"n�nm þ VnmÞj�nih�mj; (2)

is the purely electronic part of the Hamiltonian and

Hvib ¼
XN
n¼1

X
j

@!nja
y
njanj (3)
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describes the collection of phonon modes. Here anj de-

notes the annihilation operator of mode j of monomer n
with frequency !nj. For each monomer n, the sum over j

takes into account internal vibrations and their coupling to
modes of the local environment. The coupling of electronic
excitation to these vibrations is contained in

Hint ¼ � XN
n¼1

X
j

�njðaynj þ anjÞj�nih�nj (4)

where the coupling constants �nj are related to the dimen-

sionless Huang-Rhys factor Xnj through �nj ¼ @!nj

ffiffiffiffiffiffiffi
Xnj

p
[15]. An energy shift

P
j@!njXnj is incorporated into the

transition energy "n.
The complex structure of the phonon ‘‘bath’’ of mono-

mer n is encoded in the bath correlation function at tem-
perature T [12]

�nð�Þ¼
Z
d!Jnð!Þ

�
cosð!�Þcoth @!

2kBT
� isinð!�Þ

�
(5)

with the spectral density Jnð!Þ ¼ P
jj�njj2�ð!�!njÞ of

monomer nwhich is usually replaced by a smooth function
to guarantee genuine irreversibility. For simplicity we will
restrict ourselves in the following to the zero-temperature
limit.

We use recently developed ideas from a SSE approach to
open quantum system dynamics [13,16] to treat the model
with a complicated continuous and structured phonon dis-
tribution fully quantum mechanically. In brevity, the SSE
approach amounts to a solution of the full Schrödinger
equation for a total Hamiltonian of the type of Eq. (1). It
may be derived using a (Bargmann) coherent state basis

[17] with jznji ¼ expðznjaynjÞj0i for each environmental

(vibrational) degree of freedom. Here j0i is the state where
no vibrations are excited and znj is a complex number.

Thus (here for a zero-temperature environment) the full
state of system and environment at all times is written in
the form [17]

j�ðtÞi ¼
Z d2z

�
e�jzj2 jc ðt; z�Þijzi (6)

with z representing the collection of coherent state labels
znj. Remarkably, in an approximation to be discussed

below (see also section III.B of [18]), the dynamics of
the Holstein model (1) is now captured in the
Schrödinger equation

@tjc ðt; z�Þi ¼ � i

@
Heljc ðt; z�Þi �X

m

j�mih�mjðz�mðtÞ

� �DðmÞðtÞÞjc ðt; z�Þi (7)

in the small Hilbert space of the electronic degrees of free-
dom alone—a huge reduction in complexity. In Eq. (7), we
use the abbreviations z�mðtÞ ¼ � i

@

P
j�mjz

�
mje

i!mjt and

�D ðmÞðtÞ ¼
Z t

0
ds�mðt� sÞDðmÞðt; sÞ: (8)

Here,DðmÞðt; sÞ represents a z�-independent operator in the
electronic Hilbert space, introduced to approximate a func-

tional derivative �
�z�mðsÞ jc ðt; z�Þi � DðmÞðt; sÞjc ðt; z�Þi that

appears in the exact equation [19]. The reasoning under-
lying this approximation is elaborated upon further at the

end of this Letter. The operator DðmÞðt; sÞ is obtained by
solving

@tD
ðmÞðt; sÞ ¼

�
� i

@
Hel; D

ðmÞðt; sÞ
�

þX
l

½j�lih�lj �DðlÞðtÞ; DðmÞðt; sÞ�; (9)

with initial condition DðmÞðt ¼ s; sÞ ¼ �j�mih�mj [18].
Equation (7) (for the electronic state), together with

Eqs. (8) and (9) (for operators in the electronic Hilbert
space) is the new dynamical framework which will be used
to determine all properties of interest of the QA [20].
Together with expression (6), jc ðt; z�Þi constitutes the
full state and thus all information about electronic and
vibronic degrees of freedom is available.
The cross section for absorption of light with frequency

� in dipole approximation at zero-temperature turns out to
be connected to a simple autocorrelation function:

�ð�Þ ¼ 4�

@c
�Re

Z 1

0
dtei�thc ð0; z ¼ 0Þjc ðt; z ¼ 0Þi:

(10)

The state jc ðt; z ¼ 0Þi is obtained from Eq. (7) with initial

condition jc ð0; z ¼ 0Þi ¼ P
N
n¼1ðÊ � ~�nÞj�ni where the

geometry of the aggregate enters explicitly via the transi-

tion dipoles ~�n and the polarization of the light Ê. Note
that only the projection of the total state onto the vibronic
ground state j0i is needed, which is the single solution of
Eq. (7) with the choice z�mðtÞ ¼ 0.
More involved is the determination of transport proper-

ties which requires the reduced density operator �ðtÞ ¼
Trvibj�ðtÞih�ðtÞj. It is found by considering the z�mðtÞ in
Eq. (7) to be independent colored stochastic processes with
correlations hhzmðtÞznðsÞii ¼ 0 and hhzmðtÞii ¼ 0. The co-
variance of these processes is connected to the bath corre-
lation function via hhz�mðtÞznðsÞii ¼ �mðt� sÞ�mn. It
follows that the reduced density operator of the electronic
part can be obtained as an ensemble mean �t ¼
hhjc ðt; z�Þihc ðt; z�Þjii over the noises z1ðtÞ; . . . ; zNðtÞ.
Our novel approach is now applied to study optical

absorption and transfer properties of molecular aggregates
[6]. The spectral density of the monomers Jð!Þ is taken to
be a sum of Lorentzians, see Fig. 1, resulting in the mono-
mer absorption spectrum shown in Fig. 2(a), which nicely
resembles that of a typical organic dye [21]. In the follow-
ing we will take the width � (standard deviation) of this
monomer spectrum as the unit of energy (for organic dyes
� is in the order of 0.1 eV). The vibrational progression
due to the high-energy modes with energies around 1.5 �
in the spectral density (see Fig. 1) is clearly visible. The
considerable broadening of this progression mainly stems
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from the low-energy vibrations below 0.5 � in the spectral
density.

In the following we focus on aggregates for which the
absorption exhibits a narrow band, redshifted with respect
to the monomer absorption, the so-called J band [6,22]. We
consider an aggregate of N identical monomers arranged
equidistantly along a ring with transition dipoles lying in
the plane of the ring, such that the angle between the
transition dipoles of neighboring monomers is identical
for all monomers. In the calculations we have taken into
account the interaction V � Vn;nþ1 between neighboring

monomers only. For the chosen geometrical arrangement,
without coupling to vibrations, the aggregate absorption
would be a single line, shifted by an energy C �
2 V cosð2�=NÞ with respect to the electronic monomer
absorption line.

Figures 2(b)–2(d) show aggregate absorption spectra for
C ¼ �2:6 � for different N. We find that the mean of the
aggregate spectrum is shifted by the energy C with respect
to the mean of the monomer spectrum, in accordance with
sum rules [23]. Furthermore, with increasing N the vibra-
tional structure vanishes and the lowest peak (around�2:6

�) becomes narrower by roughly a factor 1=
ffiffiffiffi
N

p
. This is the

well-known effect of motional narrowing which leads to
the narrow shape of the J band of molecular aggregates
[22,24], obtained here from a fully dynamical calculation.
Upon increasing jCj further the shape of the aggregate
spectrum (especially the width) undergoes only very small
changes, hardly noticeable even for jCj ! 1. Therefore
one might assume that also other properties of the QAwill
only slightly change when increasing jCj.

However, this is not the case as we will now show
considering energy transfer for the same situation as in
Fig. 2(d), (i.e., N ¼ 15 and C ¼ �2:6 �). Initially, the
electronic excitation is chosen to be localized on monomer
number eight. As unit of time we take the typical time
@=jCj of intermonomer electronic excitation transfer [25].
In Fig. 3(b) we show the time-dependent probability to be
electronically excited as a function of site number and time
(note that the aggregate is ring-shaped). For reference, in
Fig. 3(a) the case where the electronic transfer does not
couple to any vibrational modes is shown [26]. While the
transfer in Fig. 3(a), obtained from a purely electronic

theory, exhibits clear excitation maxima over a long period
of time, the excitation in Fig. 3(b) is distributed quickly
over all monomers due to the coupling to the vibrational
continuum (the transfer shown is averaged over 1000
realizations of the stochastic noise z�, but was well con-
verged after only 600 realizations). We have found that
upon increasing jCj the fast smearing of the excitation in
Fig. 3(b) is suppressed and at about C ¼ �13 � the purely
electronic situation of Fig. 3(a) is reached. This is quite
remarkable, showing, that from the width of the J band
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FIG. 1. The spectral density used for the calculation of spec-
tra in Fig. 2 and energy transfer in Fig. 3. The unit of energy is
the width � of the resulting monomer absorption spectrum
[Fig. 2(a)].

 0

 1

 2

 3

 0

 5

 10

 15

 0

 5

 10

 15

 0

 5

 10

 15

-4 -3 -2 -1  0  1  2  3  4

(a)

(b)

(c)

(d)

FIG. 2. (a) Absorption spectrum of the monomer [its width �
(standard deviation) is used as the unit of energy]. (b)–(d) J band
spectra of ring-shaped aggregates with C ¼ �2:6 �. The values
of N are indicated in the figures.

2 4 6 8 10 12 14
0

6

12

18

2 4 6 8 10 12 14
 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 6 8 10 12 14
0

6

12

18

2 4 6 8 10 12 14 2 4 6 8 10 12 14

(a) (b)

(c) (d) (e)

FIG. 3 (color online). Transfer of the electronic excitation
energy on a ring-shaped 15-mer for C ¼ �2:6 �. Initially
only monomer 8 is excited. (a) Without coupling to a phonon
bath. (b) With coupling to a phonon bath with spectral density of
Fig. 1. (c)–(e) Three of the 1000 single realizations over which
the transfer in (b) is averaged.
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alone it is not easily possible to infer the influence of the
phonon bath on transfer properties. To gain deeper insight
into the nature of the transfer, in Figs. 3(c)–3(e) three of the
1000 single realizations over which the transfer in Fig. 3(b)
is averaged are shown. In these single realizations the
excitation stays localized in a small region (about 3 mono-
mers) and performs a random-walk-like motion.

These considerations show that our dynamical frame-
work based on a SSE in the Hilbert space of electronic
excitation allows an efficient and detailed description of
properties of QAs, including complex vibrational cou-
plings. Therefore an examination of the approximation
underlying Eq. (7) is in order. It is based on a functional
expansion of �

�z�mðsÞ jc ðt; z�Þi with respect to the noise z�

[18], taking only the lowest order term into account. This
approximation has been confirmed to be true in many cases
of interest: it is true near the Markov limit (Lindblad), and
contains the weak coupling (Redfield) limit [27]. More-
over, it holds true for many soluble cases, including the
case of independent monomers (Vnm ¼ 0) of this Holstein
model. To check the quality of the approximation beyond
the usual limits (Markov, Redfield), we investigated the
case of a spectral density consisting of a single Lorentzian
in more detail. For the dimer (N ¼ 2) we were able to
compare with spectra obtained from full quantum calcu-
lations and found overall good agreement. Last but not
least, we have confirmed that the sum rules [23,28] for the
first five moments of the absorption spectrum are satisfied.

To conclude, we have developed a new dynamical
framework for the determination of optical and transport
properties of QAs. This method allows a fully quantum
treatment with realistic complex vibrational environments.
The usefulness has been shown by considering the emer-
gence of the J band as N grows and by capturing the
transition from coherent to incoherent energy transfer.
The next step is to investigate the much more complicated
case of theH band [29] where the details of the vibrational
structure play a more pronounced role. Since the method is
based on the time-propagation of a SSE, it is also ideally
suited to include external time-dependent fields. This
should enable us to efficiently study coherent control
schemes or describe multidimensional spectroscopy using
realistic spectral densities. Clearly, as indicated in the
introduction, the model we solve here and variants thereof
appear in many applications well beyond molecular aggre-
gates which will be a subject of future research.

We thank John S. Briggs for many fruitful discussions
and for initiating this collaboration.
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