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Biological condensates are assemblies of proteins and nucleic acids that form membraneless compartments in
cells and play essential roles in cellular functions. In many cases they exhibit the physical properties of liquid
droplets that coexist in a surrounding fluid. Recently, quantitative studies on the material properties of biological
condensates have become available, revealing complex material properties. In vitro experiments have shown that
protein condensates exhibit time dependent material properties, similar to aging in glasses. To understand this
phenomenon from a theoretical perspective, we develop a rheological model based on the physical picture of pro-
tein diffusion and stochastic binding inside condensates. The complex nature of protein interactions is captured
by a distribution of binding energies, incorporated in a trap model originally developed to study glass transitions.
Our model can describe diffusion of constituent particles, as well as the material response to time-dependent
forces, and it recapitulates the age dependent relaxation time of Maxwell glass observed experimentally both
in active and passive rheology. We derive fluctuation-response relations of our model in which the relaxation
function does not obey time translation invariance. Our study sheds light on the complex material properties of
biological condensates and provides a theoretical framework for understanding their aging behavior.
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I. INTRODUCTION

The formation of biological condensates by phase sepa-
ration of proteins and nucleic acids in the cell has became
a new paradigm in molecular biology over the last decade
[1–3]. Such condensates provide membraneless biochemical
compartments with liquidlike properties. They typically ex-
hibit a spherical shape to minimize the surface tension and
have properties of droplets in a fluid environment. Recent
studies suggest that rheological properties of biomolecular
condensates can be considerably richer than those of simple
liquids [4–6], which may have biological consequences [6–9].

Recently, the rheological property of RNA associated con-
densates of PGL-3 and FUS protein condensates were studied
in vitro using active and passive microrheology [5]. The
study revealed time-dependent material properties of these
protein condensates, summarized as follows: (1) The rheolog-
ical properties of the condensates depend on the waiting time
(tw) between droplet formation and experiment; they are well
fit by a Maxwell fluid model with elastic behavior on short
time scales up to the relaxation time (τc) and liquid behavior
at the longer time scales. (2) The relaxation time, τc, of the
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Maxwell fluid increases for longer waiting time tw. The in-
crease of τc is associated with an strong increase of viscosity,
while the change of elasticity is small. (3) Various quantities
reflecting the material property, such as complex modulus
and mean-squared displacement, collapse on a master curve
upon rescaling of frequency and modulus for different tw.
These time-dependent rheological properties suggest that the
rheology of the protein condensates is an aging Maxwell fluid,
termed Maxwell glass, referring to aging phenomena in glassy
materials [10,11].

Viscoelastic properties of condensates have been reported
in multiple experimental studies. Alshareedah et al. [12] found
that condensate viscoelasticity can be modulated by varying
aminoacid sequence of condensate-forming proteins. Ghosh
et al. [4] investigated the relationship between condensate
rheology and fusion dynamics showing that shorter relaxation
times lead to faster fusion. Theory on viscoelastic condensates
has addressed the shape dynamics of condensate droplets [13],
as well as salt dependence of viscoelastic material properties
[14]. A two fluid model describing the transition from a
liquid to an elastic droplet was proposed to discuss the
observed solidlike condensate behaviors [15]. Shen et al. [16]
reported the spatially heterogeneous condensate organization
during the transition from a liquid to a solid state in an aging
condensate.

Aging and complex rheology of nonbiological materials
has a long history of research [17] due to its abundance and
close connection to daily life [18]. A comprehensive experi-
mental study of aging materials by Struik dates back to the
1970s [19]. More recently, aging colloidal glasses have been
studied using microrheology [20]. The soft glassy rheology
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FIG. 1. Schematics of the model and methods of microrheology.
(a) Left: Schematics of active rheology. The external force (F ) is
applied to the protein condensates (green spheres) having complex
modulus G(ω) using optical tweezers (yellow). The relation between
strain and stress gives the material property of condensates. Right:
Schematics of passive rheology. The motion of the tracer element
(red) embedded into the condensate is tracked. The element’s mean
square displacement encodes the condensate’s material property,
which manifests as diffusion coefficient D(t ). (b) Schematics of the
model. The diffusing element takes two states. One is the bound state,
where chemical crosslinks are densely connected at the reaction sites
(green circles) so that the diffusion of the elements is hindered. The
other is the unbound state, where the the diffusing elements can
freely undergo diffusive motion. We denote the probability density
of the bound state as pb(E , t ) and the probability of the unbound
state as Pu(t ) (see the main text for the detail).

(SGR) model has been developed to describe the aging and
rheology of soft materials [21–23], based on seminal works
by Bouchaud and coworkers [24,25]. However, in the aging
regime, the SGR model exhibits a solid-like behavior which
does not describe an aging Maxwell fluid. Recently, Lin [26]
proposed a related mean-field model for condensate aging,
based on the assumption of strongly correlated transitions
between trap energies, in contrast to the soft glassy rheology
model. Calculating the linear response function in this model
yields a linear aging of the condensate relaxation time scale.

In this work, we develop a mean-field model of aging
biological condensates that can describe their time-dependent
material properties, observed in experiments. We clarify how
the aging of the protein condensates is reflected in active and
passive microrheology. Active and passive rheology methods
are illustrated in Fig. 1(a). The structure of the paper is as
follows. In Sec. II, we propose a mean-field model to describe
the binding and unbinding of diffusive elements inside the
protein condensates. Using the unbound probability of ele-
ments in condensates, we write the constitutive equation of
the aging Maxwell fluid, leading to the relaxation function
for Maxwell glass (Sec. III A). In Sec. III C, we examine the
time-dependent rheology of the model using active rheology

and propose the time-dependent complex modulus. Finally,
in Sec. IV, we derive fluctuation-response relations between
response functions and mean-squared displacement of the dif-
fusive elements, which can be employed in passive rheology
experiments. We conclude with a discussion of our results.
For readers unfamiliar with the subject, we have included an
introduction to the rheology of aging materials in Appendix A,
which summarizes the essential concepts employed through-
out the paper.

II. TRAP MODEL OF CONDENSATE AGING

We introduce a mean-field model of an aging protein
condensate composed of crosslinked elements forming an
elastic network. These elements occasionally unbind and
freely diffuse before attaching at a new location, see Fig. 1(b).
Dynamics of unbinding is determined by the binding energy
E of individual crosslinks. To describe crosslinking of large
proteins in a complex environment we draw binding energies
from a distribution ρ(E ). The state of each crosslinker at time
t is described by probabilities pb(E , t ) and Pu(t ) to find it
bound with energy E or unbound, respectively. In our mean-
field model individual crosslinker probabilities also represent
the fraction of all crosslinkers in the corresponding state. The
dynamical equations for these probabilities are

1

�0

∂ pb(E , t )

∂t
= −pb(E , t )e−βE + Pu(t )ρ(E ), (1a)

1

�0

∂Pu(t )

∂t
= −Pu(t ) +

∫ ∞

0
dE pb(E , t )e−βE , (1b)

where β ≡ 1/kBT , with temperature T and Boltzmann con-
stant kB. T is the temperature of the heat bath to which the
condensates are coupled.

Equation (1) is an extension of trap model by Bouchaud
[24,25]. The first term of the right-hand side in Eq. (1a) de-
scribes the transition from a bound state with energy −E to the
unbound state at E = 0, which occur at a rate �0e−βE , where
�0 is a rate parameter and binding energy E > 0 is positive.
The second term describes transitions from the unbound state
to a bound state which occur at a density ρ(E ).

Here, we choose an exponential distribution of binding
energies, ρ(E ) = β0e−β0E , which can describe both equilib-
rium and aging regimes of the model [24]. The parameter,
α ≡ β0/β controls qualitatively different solutions of Eq. (1).
For α > 1, the rate at which bound states are populated decays
faster with E than the unbinding rate, and the system relaxes
to an equilibrium steady state with peq

b (E ) ∼ ρ(E ) exp(βE ),
and

Peq
u = α − 1

2α − 1
, (2)

see Appendix C. As shown in Ref. [24], for 0 < α < 1 the
rate at which bound state are populated decays slower with E
than the unbinding rate, so that peq

b (E ) is no longer normaliz-
able and the equilibrium state of Eq. (1) does not exist. The
probability Pu(t ) vanishes asymptotically as

Pu(t ) � κ (�0t )α−1; κ = 1

α

sin(απ )

π�[α]
, (3)

as derived in Appendix C. Here �[α] denotes the Gamma
function. Figure 2 shows Pu(t ) for initial condition Pu(t = 0)
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FIG. 2. Dynamics of the unbound probability Pu(t ). Solid lines
are numerically obtained from Eq. (1) and dashed lines are analytical
solutions from Eq. (2) or Eq. (3). The initial condition pb(E , 0) =
0 (Pu(t = 0) = 1). We set �0 = 1, which characterizes the time scale
of the initial relaxation (t ≈ 1/�0), and measure the time (t) in
the unit of 1/�0. We fix β0 to 1 and vary β. (a) Pu(t ) for α � 1.
The dashed lines in cyan are the analytical solutions from Eq. (2).
The equilibrium solutions exist for α > 1. (b) Pu(t ) for α < 1. Pu(t )
shows aging dynamics (slow relaxation) for long time regime. The
dashed lines in cyan are the analytical solutions from Eq. (3).

= 1 evaluated for different values of α, showing the equilib-
rium and aging dynamics.

To complete the model of an aging protein condensate we
derive a mean-field constitutive equation of the condensate
rheology. Crosslinked elements in the condensate are elas-
tic with a shear modulus G0. When they unbind they can
flow with viscosity η0. Crosslink binding and unbinding is
accounted for by the trap model in Eqs. (1). The shear strain
rate of an unbound element is ε̇u(t ) = σ (t )/η0 while the strain
of an element in the bound state is εb(t ) = σ (t )/G0, where
σ (t ) is the shear stress. Assuming the shear stress to be
uniform within the condensate, the overall shear strain rate
ε̇(t ) = Pu(t )ε̇u(t ) + (1 − Pu(t ))ε̇b(t ) is therefore

ε̇(t ) = σ (t )

η0
Pu(t ) + σ̇ (t )

G0
(1 − Pu(t )). (4)

This is an equation of a viscoelastic Maxwell material with an
effective viscosity ηc = η0/Pu(t ) and an effective elastic mod-
ulus Gc = G0/(1 − Pu(t )), that can exhibit aging dynamics
described in Eq. (3). In the aging regime Pu(t ) decays towards
0, see Eq. (3) and Fig. 2(b), so that the effective viscosity
diverges and the effective elastic modulus decreases towards
the value G0. For simplicity, in the analytical calculations,
we approximate the effective elastic modulus with the value

Gc � G0 to which it converges at long times. This approxima-
tion is exact at the lowest order in Pu(t ), see Appendix D for
details.

III. ACTIVE RHEOLOGY OF AGING CONDENSATES

A. Relaxation function of a Maxwell glass

We now derive and discuss the linear response of a vis-
coelastic material described by Eqs. (1) and (4) with a constant
elastic modulus G0. In order to compare our model with rhe-
ology experiments, we solve Eq. (4) for the shear stress

σ (t ) =
∫ t

0
dt ′K (t, t ′)ε̇(t ′), (5)

where

K (t, t ′) = G0e− G0
η0

∫ t
t ′ dt ′′Pu(t ′′ ) (6)

is the relaxation function and t = 0 corresponds to the sample
preparation time at which σ (0) = 0.

For α > 1, the equilibrium steady state Peq
u (t ) ex-

ists and the relaxation function becomes K (t − t ′) =
G0 exp (−Peq

u G0/η0(t − t ′)). This is the exponential relax-
ation with the rate Peq

u G0/η0, which corresponds to a Maxwell
fluid. For 0 < α < 1, no steady state exists, and the relaxation
function exhibits glassy behavior. In the asymptotic regime,
Pu(t ) follows Eq. (3), from which we obtain

K (t, t ′) � G0 exp

[
− κG0

α�0η0
((�0t )α − (�0t ′)α )

]
. (7)

Therefore, in the aging regime, the relaxation function takes
the form of a stretched exponential that often appears in the
relaxation of glass forming materials [27,28]. Note that the
time translational invariance is broken in Eq. (7), a signature
of the aging regime. We refer to the relaxation function in
Eq. (7) as the relaxation function of an aging Maxwell fluid,
i.e., Maxwell glass.

B. Age dependent relaxation time

We consider an experimental protocol where the system is
prepared at t = 0 and the system is strained starting at the
waiting time tw. The resulting stress is written as

σ (t ) �
∫ t

tw

dt ′K (t, t ′)ε̇(t ′), (8)

where ε(tw ) = 0. We consider the relaxation function in terms
of the observation time τ = t − tw. In the limit of a short
observation time compared to the waiting time τ � tw, the
relaxation function K (tw + τ, tw + τ ′) can be approximated
by a time translation invariant function

Ktw (τ − τ ′) ≡ G0e− κG0
η0

(�0tw )α−1(τ−τ ′ )
. (9)

This relaxation function shows that a Maxwell glass behaves
as a Maxwell fluid when observed on short times τ � tw, but
with age-dependent relaxation time

τc(tw ) = η0

κG0
(�0tw )1−α. (10)

The age-dependent Maxwell relaxation time derived here
provides a connection between underlying dynamics of the
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crosslinker network and Maxwell glass rheology [5]. The
aging of the Maxwell relaxation time stems from the stretched
exponential relaxation in Eq. (7) that reflects the glassy nature
of the material.

C. Instantaneous complex modulus

The relaxation time τc in a Maxwell fluid is related to
the complex modulus as G(ω) = iωτcG0/(1 + iωτc) [29].
The complex modulus G(ω) = G′(ω) + iG′′(ω), where G′(ω)
and G′′(ω) represent the storage and loss moduli, respec-
tively, characterizes the linear response of a time-translation-
invariant material as a function of the angular frequency ω.
However, for an aging material, G(ω) is not a well-defined ob-
servable. Nevertheless, a frequency-dependent linear response
can still be employed if the observation time window τ is
short enough such that the material properties do not undergo
significant changes during the observation (Appendix A). To
remove the restriction of a short observation time window,
which limits the applicability of active rheology for aging
material, we now introduce an analytic signal method that
allows us to define the instantaneous complex modulus of
an aging material G(ω, t, tw ) at time t and at frequency ω,
similar to the time-varying viscoelastic spectrum [21], see
Appendix E.

The analytic signal of a function f (t ) is defined as fa(t ) ≡
f (t ) + iH[ f (t )](t ), where H is the Hilbert transform, see Ap-
pendix E. The analytic signal fa(t ) is a complex function and
can be written in the polar form, fa(t ) = | fa(t )| exp(iϕ(t )),
where | fa(t )| is the instantaneous amplitude, also called enve-
lope, and ϕ(t ) = arg[ fa(t )] is the instantaneous phase of the
signal f (t ). Using this definition of the analytic signal, we
define the instantaneous complex modulus as

G(ω, t, tw ) ≡ σa(ω, t, tw )

εa(ω, t )

= |σa(ω, t, tw )|
|εa(ω, t )| exp (iδϕ(ω, t, tw )), (11)

where δϕ(ω, t, tw ) is the instantaneous phase difference
between shear strain and stress. Here σa(ω, t, tw ) is the
analytic signal of measured shear stress σ (ω, t, tw ) in re-
sponse to an imposed sinusoidal shear strain ε̄(ω, t, tw ) =
�(t − tw )ε(ω, t ) with frequency ω starting at t = tw, where
ε(ω, t ) = ε0 cos (ωt + ϕ0) and � is the Heaviside step func-
tion. ε0 and ϕ0 are the amplitude and initial phase of the
shear strain, respectively. The analytical signal of the strain
is εa(ω, t ) = ε0ei(ωt+ϕ0 ). The instantaneous complex modulus
G(ω, t, tw ) is a generalization of the conventional complex
modulus G(ω) to the time dependent signals and they become
equal for a time translation invariant system, see Appendix E.
It reduces to the time-varying viscoelastic spectrum defined in
Ref. [21] for slow aging limit as discussed in Appendix E.

We use the instantaneous complex modulus to analyze the
rheology of our model. For simplicity we choose a waiting
time tw = 0, which does not affect the aging process in our
model. We, therefore, omit the tw dependence in the fol-
lowing. We solve Eq. (4) with Eq. (1) numerically for the
sinusoidal shear strain as input ε̄(ω, t ) and obtain the shear
stress σ (ω, t ) as output. Figure 3(a) shows the shear strain
and stress for ω = π/10 and ω = π/100 for α = 10 and

α = 0.5, respectively. For α = 10, the strain is stationary,
reflecting the equilibrium viscosity in Eq. (4). In contrast, for
α = 0.5 the amplitude of shear stress increases in time due to
aging, reflected in changing viscosity η0/Pu(t ). In Fig. 3(b),
we calculate the real and imaginary part of the instantaneous
complex modulus, G′(ω, t ) and G′′(ω, t ), respectively, for a
range of input frequencies. For α = 10, G(ω, t ) does not
depend on the time. On the contrary, we observe a striking
difference for α = 0.5: the instantaneous complex modulus
shifts to lower frequencies over time, showing that the char-
acteristic relaxation time of the material increases, as shown
in Fig. 3(b), right panel. Such aging behavior was observed
experimentally in the protein condensates [5]. Moreover, Jaw-
erth et al. [5] demonstrated that experimentally measured
complex moduli in the Maxwell glass collapse when rescaled
by Gc and frequencies by ωc, where Gc and ωc are defined
by G′(ωc, t ) = G′′(ωc, t ) = Gc. We show in Fig. 3(c) that
our numerically evaluated complex moduli indeed collapse
on a single master curve of the Maxwell fluid when rescaled
moduli and frequency by Gc and ωc, respectively.

IV. FLUCTUATION-RESPONSE RELATIONS
IN AGING CONDENSATES

In an equilibrium system, the relaxation of spontaneous
fluctuations and the linear response to an external perturbation
are closely related by the fluctuation-dissipation theorem [30].
Using the generalized Stokes-Einstein relation derived from
the fluctuation-dissipation theorem, rheological properties of
the material can be determined from equilibirum fluctua-
tions [5,31]. Although the equilibrium fluctuation-response
relations do not apply in the aging materials, we derive spe-
cific fluctuation-response relations that characterize the aging
Maxwell fluid.

To this end, we consider a spatially resolved version of
Eq. (1) that takes into account diffusion of unbound elements

1

�0

∂ pb(x, E , t )

∂t
= −pb(x, E , t )e−βE + pu(x, t )ρ(E ),

(12a)

1

�0

∂ pu(x, t )

∂t
= D0

�0

∂2 pu(x, t )

∂x2
− pu(x, t )

+
∫ ∞

0
dE pb(x, E , t )e−βE , (12b)

with the initial condition pb(x, E , 0) = 0 and pu(x, 0) = δ(x).
In Eq. (12), pb(x, E , t ) is the probability density of elements
bound at position x with energy E at time t and pu(x, t ) is the
density of diffusing elements at position x at time t .

The mean-square displacement of fluctuating elements is

〈�x2〉(t ) = �u(t ) +
∫ ∞

0
dE�b(E , t ), (13)

where we have defined the positional variance of diffusing and
bound states, respectively, as

�u(t ) ≡
∫ ∞

−∞
dxx2 pu(x, t );

�b(E , t ) ≡
∫ ∞

−∞
dxx2 pb(x, E , t ). (14)
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FIG. 3. Active rheology for the Maxwell fluid and glass. In the case of α = 10.0 the system has a stationary equilibrium state and thus
behave as conventional Maxwell fluid. For α = 0.5, the system shows aging, thus behaving as the Maxwell glass. The unit time is 1/�0 in
Eq. (1). (a) The input shear strain ε̄(ω, t ) (cyan solid line) and the output shear stress σ (ω, t ) (orange dashed lines). ω = π/10 for α = 10.0
and ω = π/100 for α = 0.5. (b) The instantaneous complex modulus G(ω, t ) in equilibrium and aging regime. The real and imaginary part
of G(ω, t ) is G′(ω, t ) and G′′(ω, t ), respectively. (c) The collapse of the G(ω, t ) for different instances onto the single master curve of the
Maxwell fluid (dashed line in cyan). The bare viscosity is set to η0 = 0.5. We fix β0 to 1 and vary β. Detailed numerical procedures are in
Appendix H.

Using Eqs. (12) and (14), we obtain the time evolution of the
mean-squared displacement,

1

�0

∂�b(E , t )

∂t
= −�b(E , t )e−βE + �u(t )ρ(E ), (15a)

1

�0

∂�u(t )

∂t
= 2

D0

�0
Pu(t ) − �u(t )

+
∫ ∞

0
dE�b(E , t )e−βE , (15b)

with the definition,

Pu(t ) ≡
∫ ∞

−∞
dxpu(x, t ). (16)

The expression for the effective diffusion coefficient, D(t ),
can be obtained by taking the time derivative of Eq. (13) and

using Eq. (15),

d

dt
〈�x2〉(t ) = 2D0Pu(t ), (17)

leading to

D(t ) ≡ D0Pu(t ). (18)

Equation (17) states that the effective diffusion coefficient is
proportional to the probability that the element being in the
diffusive state.

We now obtain a relation between the aging relaxation
function and the mean-squared displacement at different times
using Eqs. (6) and (17)

K (t, t ′) = G0 exp

(
− G0

2D0η0
(〈�x2〉(t ) − 〈�x2〉(t ′))

)
. (19)

This exact relation connects the time dependent rheol-
ogy K (t, t ′) of the Maxwell glass to the passive rheology
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characterised by the mean-squared displacement 〈�x2〉(t ).
Alternatively, we can write the second relation between mean-
squared displacement and linear response function. Using the
strain-stress response function χ (t, t ′) defined as

ε(t ) =
∫ t

0
χ (t, t ′)σ (t ′), (20)

we obtain (see Appendix F)

�(t − t ′)
d

dt ′ 〈�x2(t ′)〉 = 2kBT χ (t, t ′). (21)

Equation (21) stems from the fact that both the time de-
pendence of the diffusion coefficient D(t ) and of the active
response given in Eq. (4) are governed by Pu(t ). We have
used D0 = kBT/η0 implying that diffusion coefficient of the
unbound elements satisfies the Einstein relation. Note that
Eq. (21) is similar to but different from the time translation
invariant fluctuation dissipation theorem in equilibrium. It
applies to the aging Maxwell model and has both t and t ′
dependence signifying the glassy behavior.

V. DISCUSSION

We have presented a mean-field model of aging biological
condensates, based on a minimal trap model that exhibits
glassy behavior [24]. Our model recapitulates aging rheology
recently observed in biological condensates termed Maxwell
glass. A Maxwell glass exhibits at all times Maxwell fluid
behavior with an age-dependent relaxation time, correspond-
ingly the viscosity is age dependent and diverges for long
times, even though the system remains fluid. In addition,
it was observed that the elastic modulus decreased slightly
but remained roughly constant [5]. Interestingly the com-
plex modulus measured at different ages collapses on master
curves describing a Maxwell fluid. In the aging regime of our
model the fraction of unbound elements decays with time as
a power law Pu(t ) ∼ tα−1 (α < 1). This leads to a diverging
effective viscosity η0/Pu(t ) and a weakly decreasing effective
modulus G0/(1 − Pu(t )) that approaches a finite value. The
relaxation function K (t, t ′) in our model exhibits a stretched
exponential that decays at low temperatures, a characteristic
for glassy systems. The resulting Maxwell relaxation time
is age dependent and increases with waiting time tw as a
power law τc ∼ t1−α

w . The complex modulus determined in
our model collapses on curves describing a Maxwell model,
consistent with experiment.

For such an aging material for which time translation in-
variance is not obeyed, defining the frequency dependent com-
plex modulus poses a challenge. To overcome this challenge,
we introduce the time-dependent instantaneous complex mod-
ulus as a generalization of the conventional complex modulus
at steady state. The instantaneous complex modulus is based
on analytic signal construction and remains well-defined even
in nonstationary systems where approximative measures of
the conventional complex modulus would fail.

Our theory is a phenomenological mean-field model that
captures key characteristic rheological properties of protein
condensates [5]. Different future extensions of our study will
be of interest. These include a microscopic model of the pro-
tein condensate network, for example by building on models

for dynamic crosslinked networks such as Flory’s addition-
substraction network theory [32,33] and transient network
theory [34,35]. Moreover, another interesting extension would
be to consider the coupling between externally applied shear
stress and the unbinding rate of crosslinked proteins. This
could potentially provide insight into plastic events, a phe-
nomenon that has been investigated within the context of
amorphous materials [36,37] and particularly in connection
to aging [38].

A power-law dependence of the relaxation time on the
waiting time has been observed in a different system. The
aging exponent μ, which describes the growth of relaxation
time with waiting time as τc ∼ tμ

w has been introduced in
the seminal work [19]. In many polymeric materials, the
relaxation time grows sublinearly, μ � 0.5−1 [10]. In our
model μ = 1 − α [see Eq. (10)] and in the aging regime with
0 < α < 1, we find a sublinear dependence of τc on tw for a
Maxwell glass, consistent with the sublinear behavior seen in
many experiments on nonbiological materials.

Interestingly, recent experiments suggest that μ could be
larger than 1 in protein condensates. For example, for the
PGL-3 protein, μ � 6.4 and μ � 2.1 were estimated for
different salt conditions (150 mM KCl and 100 mM KCl,
respectively) [5]. Our current model does not account for
such high values of μ, as they would require negative values
of α and we currently do not have an explanation of this
discrepancy. There are only very few other systems where
μ > 1 was measured. An example is polycarbonate (see for
instance Fig. 15 in [19]). Further research will be required
to find out whether μ > 1 is a robust feature of biological
protein condensates, and if so, what is the origin of such a
different behavior in comparison to aging of non-biological
polymers. One possible explanation of the rapid aging ob-
served in protein condensates, is that the system may not
yet be exploring the tail of the distribution ρ(E ) for large E
within the experimental time scales. Instead, the system may
be exploring smaller E , where the distribution ρ(E ) might
not be a decreasing function of E . This could lead transiently
to a relaxation time that grows exponentially with age. The
functional form of the distribution ρ(E ) could be probed
experimentally, for example, through a measurement of the
distribution of protein trapping times.

Finally, we have obtained an exact relation between the
relaxation function and the mean-squared displacement of
particles in the aging regime [Eq. (19)]. This relation is similar
to the fluctuation-dissipation theorem that holds for equilib-
rium systems but it applies to the out-of-equilibrium Maxwell
glass. In out-of-equilibrium aging systems, the generalized
fluctuation-dissipation theorem has been hypothesized and
verified for various models, resulting in the definition of
an effective temperature [39–41]. The fluctuation-response
relation, given by Eq. (21), does not require an effective tem-
perature. Instead, it directly connects the response function to
the fluctuations observed in Maxwell glass.
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APPENDIX A: RHEOLOGY OF GLASSY MATERIALS

Soft materials, including protein condensates, behave as
viscoelastic fluids. We consider a material that was prepared
at t = 0 and start measuring the material properties after a
waiting time, t = tw. Linear viscoelasticity is characterized by
the linear constitutive relation between stress (σ ) and strain
(ε). We consider the stress and strain relative to t = 0, which
subsume the effect of stress and strain at t = 0 into σ (t ) and
ε(t ), respectively. The linear constitutive relation reads

σ (t ) =
∫ t

0
G(t, t ′)ε(t ′)dt ′, (A1)

where we consider a general case without time translation
symmetry [21]. Here, G(t, t ′) is dynamic modulus determin-
ing the linear relation between the shear strain and stress. We
can alternatively write the relation between stress and strain
rate,

σ (t ) =
∫ t

0
K (t, t ′)ε̇(t ′)dt ′, (A2)

where ε̇ is the rate of deformation. K (t, t ′) is called relaxation
function. We obtain the relation between G(t, t ′) and K (t, t ′)
by applying partial integration to Eq. (A2),

G(t, t ′) = −dK (t, t ′)
dt ′ + 2δ(t − t ′)K (t, t ′). (A3)

The factor 2 in the above relation is to account for the delta
function integrated at the boundary. We used the fact that
ε(0) = 0. We can also write the linear relationship between
stress and strain using the response function, χ (t, t ′),

ε(t ) =
∫ t

0
χ (t, t ′)σ (t ′)dt ′. (A4)

When the probing material is in thermodynamic equilib-
rium and independent on initial conditions, the above response
functions depend only on the time interval t − t ′: G(t − t ′),
K (t − t ′), and χ (t − t ′), corresponding to the time transla-
tional invariance. Time translational invariance allows us to
apply the convolution theorem for the Laplace transform to
Eq. (A1)–(A4), leading to the simple expressions:

σ (s) = G(s)ε(s); (A5)

σ (s) = sK (s)ε(s); (A6)

and
ε(s) = χ (s)σ (s). (A7)

We specified the quantities in the Laplace space by the ar-
gument s. We use same convention to denote the quantities
in Laplace space (s) and in Fourier space (ω). Therefore
the response functions have relation G(s) = sK (s) = 1/χ (s)
when time translational invariance is satisfied. For causal
functions, such as G(t, t ′), K (t, t ′), and χ (t, t ′), the Fourier
transform is readily obtained from the Laplace transform, by
analytic continuation: s → iω. Thus, the analytic continuation
may give the equivalent relation in the Fourier space, G(ω) =
iωK (ω) = 1/χ (ω).

The dynamic modulus in Fourier space G(ω), is often
referred to as complex modulus [17]:

G(ω) = G′(ω) + iG′′(ω), (A8)

where the real part G′(ω) is the storage modulus, and the
imaginary part G′′(ω) is the loss modulus. The storage mod-
ulus and the loss modulus reflect the elastic and viscous
component of the material response, respectively. The moduli
G′(ω) and G′′(ω) may be obtained using active rheology.
Depending on the experimental setup, we can choose either
strain or stress as input and output signal. Here, we choose,
strain as the input and stress as the output. Using a sinusoidal
input strain with frequency ω, and amplitude ε(ω), one can
determine the moduli by measuring the steady-state output
stress, σ (ω), from the amplitude change and the phase shift:

G′(ω) = σ (ω)

ε(ω)
cos (δϕ(ω)); (A9a)

G′′(ω) = σ (ω)

ε(ω)
sin (δϕ(ω)), (A9b)

where δϕ is the phase difference between input and output
sinusoidal signals.

In contrast to a material at thermodynamic equilibrium,
glassy material, on the other hand, violates time translational
invariance due to the slow relaxation which implies that mem-
ory about the initial state is not lost. The consequence is the
explicit dependence on the two time scales in the complex
modulus and the relaxation function, G(t, t ′) and K (t, t ′). We
introduce the waiting time (tw), the time between the prepara-
tion of the material (t = 0) and the start of the measurement,
and the observation time τ during measurement, such that the
time is t = tw + τ . With the strain imposed starting at t = tw,
Eq. (A1) becomes

σ (t ) =
∫ t

tw

G(t, t ′)ε(t ′)dt ′. (A10)

Using the change of variables, τ = t − tw and τ ′ = t ′ − tw,

σ (tw + τ ) =
∫ τ

0
G(tw + τ, tw + τ ′)ε(tw + τ ′)dτ ′. (A11)

One approach to circumvent the complexity of the two time
scales is to use observation times τ much smaller than time
scale associated with the change in rheological properties. For
such a measurement time, G(tw + τ, tw + τ ′) � G(tw, tw +
τ ′ − τ ) obeys time translational invariance for τ . We denote
the resulting dynamic modulus as Gtw (τ − τ ′) ≡ G(tw, tw +
τ ′ − τ ). Then Eq. (A11) is approximated as

σtw (τ ) �
∫ τ

0
Gtw (τ − τ ′)εtw (τ ′)dτ ′, (A12)

where σtw (τ ) ≡ σ (tw + τ ) and εtw (τ ) ≡ ε(tw + τ ). Once we
approximate the modulus to have time translational invariance
for τ , one can obtain the storage and loss modulus for waiting
time t = tw using the same procedure as for the equilibrium
case. Repeating this procedure for different tw, we obtain the
tw-dependent material properties. We remark that the assump-
tion that the observation time τ is appreciably smaller than
the dynamics of the glassy material is not a priori justified
and must be checked posteriorly.

An alternative way to obtain the time-dependent material
properties during aging, which does not require repeated anal-
ysis for different waiting times tw, is to generalize the complex
modulus G(ω) to time-dependent sectra [21] (Appendix E).
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The viscoelastic spectra explicitly represent the time-varying
material properties, but their computation from experiments is
not straightforward. We introduce, in Sec. III C, the instanta-
neous complex modulus to characterize the rheology of aging
materials. We show in Appendix E that the instantaneous com-
plex modulus and the viscoelastic spectra are closely related.
The instantaneous complex modulus does not require the as-
sumption for the observation time scale and thus captures the
full spectrum of the aging material.

APPENDIX B: DECOMPOSITION IN DYNAMIC MODES

We study the relaxation dynamics of Eq. (1) to the asymp-
totic solutions for equilibrium and aging regime by defining
eigenmodes and eigenvalues. First, we make the transfor-
mation qb(E , t ) = pb(E , t )e−βE/2/

√
ρ(E ), to transform the

operator Hermitian, and rewrite Eq. (1) as

1

�0

∂qb(E , t )

∂t
= −qb(E , t )e−βE + Pu(t )

√
ρ(E )e−βE/2,

(B1a)

1

�0

∂Pu(t )

∂t
= −Pu(t ) +

∫ ∞

0
dEqb(E , t )

√
ρ(E )e−βE/2.

(B1b)

We introduce eigenfunctions qb
λ(E ) and Pu

λ of the linear oper-
ator defined in Eq. (B1). These eigenfunctions obey

− 1

�0
λqb

λ(E ) = −qb
λ(E )e−βE +

√
ρ(E )e−βE/2Pu

λ , (B2a)

− 1

�0
λPu

λ = −Pu
λ +

∫ ∞

0
dE

√
ρ(E )qb

λ(E )e−βE/2, (B2b)

where λ denotes the corresponding eigenvalue.
We can eliminate qb

λ from Eq. (B2) which leads to the
condition

(
1 − 1

1 − λ/�0

∫ ∞

0
dE

ρ(E )e−βE

e−βE − λ/�0

)
Pu

λ = 0. (B3)

In order to find the eigenfunctions, we distinguish two cases.
Case (I): Pu

λ = 0. In this case Eq. (B2) reduces to

− 1

�0
λqb

λ(E ) = −qb
λ(E )e−βE , (B4a)

0 =
∫ ∞

0
dE

√
ρ(E )qb

λ(E )e−βE/2. (B4b)

This can be solved by the ansatz, qb
λ(E ) = aδ(E − Eλ) +

δ′(E − Eλ), where a is a constant. From Eq. (B4b) we obtain

a = β − β0

2
, (B5)

leading to

qb
λ(E ) = β − β0

2
δ(E − Eλ) + δ′(E − Eλ), (B6)

with the eigenvalues, λ = �0e−βE .

FIG. 4. Eigenvalue λ as a function of α obtained by numerically
solving Eq. (B8). �0 is set to unity. λ determines the relaxation rate to
the asymptotic solutions in equilibrium and aging regime (see Fig. 2).

Case (II): Pu
λ 
= 0 and

∫ ∞
0 dE ρ(E )e−βE

e−βE −λ/�0
= 1 − λ/�0. Using

the variable transform x = e−βE , we find
∫ ∞

0
dE

ρ(E )e−βE

e−βE − λ/�0

= β0

β

∫ 1

0
dx

x
β0
β

x − λ/�0

= −β0

β

�0

(1 + β0/β )λ 2F1

(
1,

β0

β
+ 1,

β0

β
+ 2,

�0

λ

)
, (B7)

where 2F1 is the Hypergeometric function [42]. Therefore the
corresponding eigenvalue obeys the equation:

α

1 + α 2F1

(
1, α + 1, α + 2,

�0

λ

)
= λ

�0

(
λ

�0
− 1

)
, (B8)

where α = β0/β. Because Pu
λ = 0 for case (I), the relaxation

dynamics of Pu(t ) is fully determined by the eigenvalue sat-
isfying Eq. (B8), which depends on α. Figure 4 shows the
eigenvalue λ as a function of α.

APPENDIX C: SOLUTIONS OF DYNAMIC EQUATIONS
USING LAPLACE TRANSFORMS

In this Appendix, we solve Eq. (1) using the Laplace
transform and obtain asymptotic solutions for long time.
Because of the conservation of probabilities, Pu(t ) +∫ ∞

0 dE ′ pb(E ′, t ) = 1, Eq. (1) can be written in one equation,

1

�0

d

dt
pb(E , t ) = −e−βE pb(E , t )

− ρ(E )
∫ ∞

0
pb(E ′, t )dE ′ + ρ(E ). (C1)

We take the Laplace transform of Eq. (C1) with respect to t
and solve for pb(E , s),

pb(E , s) = − ρ(E )C(s)

s/�0 + e−βE
+ pb(E , 0)/�0

s/�0 + e−βE

+ ρ(E )

(s/�0 + e−βE )s
, (C2)
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where

C(s) =
∫ ∞

0 dE ′ pb(E ′,0)/�0+
s/�0+e−βE ′ + ∫ ∞

0 dE ′ ρ(E ′ )
(s/�0+e−βE ′ )s

1 + ∫ ∞
0 dE ′ ρ(E ′ )

s/�0+e−βE ′
. (C3)

Equations (C2) and (C3) with Pu(s) = 1/s − ∫ ∞
0 dE pb(E , s)

give the complete solution of Eq. (1) in Laplace space.
We first derive the expression of Pu(s) for s → 0. Integrat-

ing Eq. (C2) for E to obtain

Pb(s) = −C(s)Qρ (s) + Q0(s) + 1

s
Qρ (s), (C4)

where

Qρ (s) ≡
∫ ∞

0
dE

ρ(E )

s/�0 + e−βE
; (C5)

Q0(s) ≡
∫ ∞

0
dE

pb(E , 0)/�0

s/�0 + e−βE
; (C6)

and

C(s) = Qρ (s)

s(1 + Qρ (s))
+ Q0(s)

1 + Qρ (s)
. (C7)

Pb(s) simplifies to

Pb(s) = Qρ (s)

s(1 + Qρ (s))
+ Q0(s)

1 + Qρ (s)
, (C8)

and

Pu(s) = 1

s
− Pb(s)

= 1

s

1

1 + Qρ (s)
− Q0(s)

1 + Qρ (s)
. (C9)

The term containing Q0(s) in the second line of Eq. (C9) is
the contribution from the initial distribution giving subordi-
nate contribution for long time. Here it is set to 0 because
pb(E , 0) = 0, leading to

Pu(s) = 1

s

1

1 + Qρ (s)
. (C10)

One can explicitly evaluate Qρ (s) for s → 0 as follows for
equilibrium case (I) and aging case (II).

Equilibrium case (I). For the equilibrium case one can
expand Qρ (s) as follows for s → 0,

Qρ (s) =
∫ ∞

0
dE

β0e−β0E

s/�0 + e−βE

� β0

β0 − β
− s

�0

β0

β0 − 2β
+ O(s2). (C11)

We substitute the first term of the expansion into Eq. (C10) to
obtain

Pu(s) � β0/β − 1

s(2β0/β − 1)
. (C12)

Inverting to the real space, we have

Peq
u = α − 1

2α − 1
, (C13)

where α = β0/β > 1.

Aging case (II). For the aging case, we first make variable
transforms to extract the power law form of s:

Qρ (s) =
∫ ∞

0
dE

β0e−β0E

s/�0 + e−βE

= β0

β

∫ 1

0
dx

x
β0
β

−1

s/�0 + x

= β0

β

(
s

�0

) β0
β

−1 ∫ �0/s

0
dy

y
β0
β

−1

1 + y
. (C14)

In the second line, we used the change of variables x = e−βE

and the third line, y = x�0/s. In the limit of s → 0, we can
extend the upper bound of the integral in the third line to ∞:

∫ ∞

0
dy

y
β0
β

−1

1 + y
= π csc

(
β0

β
π

)
. (C15)

Thus, in the limit of s → 0,

Qρ (s) � β0

β

(
s

�0

) β0
β

−1

π csc

(
β0

β
π

)
. (C16)

Noting that β0/β − 1 < 0 in the aging regime, 1 + Qρ (s) �
Qρ (s) for s → 0. From Eq. (C10),

Pu(s) � 1

sQρ (s)
=

β�0 sin
(

β0

β
π

)
β0(s/�0)

β0
β π

. (C17)

By taking the inverse Laplace transform we obtain the result
for long time

Pu(t ) = sin(απ )

απ�[α]
(�0t )α−1, (C18)

where α = β0/β < 1.
One can find complete solutions for special cases, infinite

temperature (β = 0) and zero temperature (β = ∞). For the
infinite temperature case, solving Eqs. (C2) and (C3) and
taking the inverse Laplace transform, we obtain,

Pb(t ) = 1
2 (1 + e−2�0t (−1 + 2Pb(0))),

Pu(t ) = 1
2 (1 − e−2�0t (−1 + 2Pb(0))). (C19)

For the zero temperature case, solving Eqs. (C2) and (C3) and
taking inverse Laplace transform, we obtain,

Pb(t ) = 1 − Pu(0)e−�0t ,

Pu(t ) = Pu(0)e−�0t . (C20)

This suggests that the dynamics is completely frozen for zero
temperature.

APPENDIX D: CHANGE OF ELASTICITY
IN AGING REGIME

In the aging regime the fraction of the bound crosslinker
(1 − Pu(t )) quickly converges towards 1. This can be substan-
tiated by the numerical values of Pu(t ) presented in Fig. 2(b),
which are several orders of magnitude smaller than 1. In the
equilibrium regime, the Pu(t ) value is constant, and so any
change to G0 would also be constant. As such, the effect
of (1 − Pu(t )) on the modulus G0 does not alter the overall
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FIG. 5. Left: Comparison of the resulting stresses σ1 and σ0 obtained from the model with effective elastic modulus Gc = G0/(1 − Pu(t ))
(blue dashed line) and Gc = G0 (orange solid line), respectively. The value of frequency ω = π/5 used in this example is the highest frequency
presented in Fig. 3, for which the difference between σ1 and σ0 is most pronounced. Right: The square root of difference between σ1 and σ0.
The dashed line is Pu(t ) determining the decay of the difference.

behavior of the system. We numerically test the effect of
the correction term Pu(t ) by imposing a periodic shear strain
in the model with Gc = G0/(1 − Pu(t )) and Gc = G0, and
calculating the resulting stresses, see Fig. 5. We find that the
magnitude of difference between the two stresses is bounded
by Pu(t ) → 0.

APPENDIX E: HILBERT TRANSFORM, ANALYTIC
SIGNAL, AND RHEOLOGY

We refer to Refs. [43,44] for the theory and various ap-
plications with a comprehensive table of Hilbert transform.
We discuss here the basic definition of Hilbert transform and
analytic signal, and the connection to rheology. The Hilbert
transform of a function, f (t ), is defined as

H[ f ](t ) = 1

π
p.v.

∫ ∞

−∞

f (t ′)
t − t ′ dt ′, (E1)

where p.v. denotes Cauchy principle value. Fourier transform
(F) of Hilbert transformed signal is the ±90 degrees phase
shift, depending on the sign of the frequency ω, of the original
signal, namely,

F[H[ f ]](ω) = −isgn(ω)F[ f ](ω), (E2)

where sgn is signum function. Using the Hilbert transform,
analytic representation of f (t ) is

fa(t ) = f (t ) + iH[ f ](t ). (E3)

In the context of the active rheology of aging material, the
following theorem is useful.

Bedrosian’s theorem [45]: Suppose a low-pass signal, l (t ),
and high-pass signal, h(t ), have Fourier transforms L(ω)
and H (ω), respectively, where L(ω) = 0 for |ω| > ω0 and
H (ω) = 0 for |ω| < ω0. Then,

H[l (t )h(t )] = l (t )H[h(t )]. (E4)

Namely, the product of a low-pass and a high-pass signal with
nonoverlapping spectra is obtained by the product of the low-
pass signal and the Hilbert transform of the high-pass signal.
In the context of rheology, Bedrosian’s theorem requires the

spectra of the aging to have a maximum spectrum smaller than
the frequency of input sinusoidal shear strain.

Time-varying viscoelastic spectrum. We illustrate the con-
nection of the analytic signal to the time-dependent rheology
of aging materials. Let us consider the relation between the
stress and strain rate of a material with a relaxation function
K (t, t ′):

σ (t ) =
∫ t

0
K (t, t ′) ˙̄ε(t ′)dt ′. (E5)

We apply the sinusoidal strain having frequency ω start-
ing at t = tw: ε̄(ω, t, tw ) = �(t − tw )ε(t ) where ε(t ) =
�[ε0ei(ωt+ϕ0 )] and �(t ) is Heaviside step function. Substitut-
ing ε(ω, t, tw ) to Eq. (E5) leads to

σ (ω, t, tw ) = �[
ε0ei(ϕ0+ωt )G∗(ω, t, tw )

]
, (E6)

where

G∗(ω, t, tw )

≡ iω
∫ t

tw

e−iω(t−t ′ )K (t, t ′)dt ′ + e−iω(t−tw )K (t, tw ). (E7)

G∗(ω, t, tw ) is the time-varying viscoelastic spectrum [21].
We show that the time-varying viscoelastic spectrum may

be obtained from the method of analytic signal. The analytic
signal of the input strain, �[ε0ei(ωt+ϕ0 )], is εa(t ) = ε0ei(ωt+ϕ0 ).
Taking the Hilbert transform of Eq. (E6),

H[σ (ω, t, tw )] = �[H[εa(ω, t )G∗(ω, t, tw )]]. (E8)

Assuming the spectra of G∗(ω, t, tw ) for t and spectra of the
input shear strain, ω, satisfy the Bedrosian’s theorem,

H[σ (ω, t, tw )] = �[H[εa(ω, t )]G∗(ω, t, tw )]

= �[−iεa(ω, t )G∗(ω, t, tw )]

= �[εa(ω, t )G∗(ω, t, tw )]. (E9)

Thus, from the definition of analytic signal [Eq. (E3)] with
Eqs. (E6) and (E9), the analytic signal of σ (ω, t, tw ) is written
as

σa(ω, t, tw ) = εa(ω, t )G∗(ω, t, tw ). (E10)
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Therefore the definition of the instantaneous complex modu-
lus, Eq. (11), gives

G(ω, t, tw ) ≡ σa(ω, t, tw )

εa(ω, t )
= G∗(ω, t, tw ). (E11)

This shows that, under the Bedrosian’s theorem, the instan-
taneous complex modulus and the viscoelastic spectra are
identical.

It may be instructive to consider the simple Maxwell fluid.
Because the Hilbert transform is a linear transform, we can
write the constitutive equation of simple Maxwell fluid using
analytic signal,

ε̇a(t ) = σa(t )

η0
+ σ̇a(t )

G0
. (E12)

Let us consider the input stress σ (ω, t ) = σ0 cos(ωt ). The
analytic signal of σ (ω, t ) is σa(ω, t ) = σ0eiωt . The explicit
integration of right-hand side, setting integration constant 0,
to obtain εa(ω, t ) leads to εa(ω, t ) = σ0eiωt (1/G0 − i/(η0ω)).
Therefore G(ω, t )=σa(ω, t )/εa(ω, t )=1/(1/G0−i/(η0ω)),
which is the complex modulus of Maxwell fluid which does
no have time dependence. Therefore, Eq. (11) recovers the
definition of conventional complex modulus.

APPENDIX F: AGING FLUCTUATION-DISSIPATION
THEOREM FOR MAXWELL GLASS

We first obtain the strain-stress response function, χ (t, t ′),
for the constitutive equation, Eq. (4):

ε(t ) =
∫ t

0
�(t − t ′)

(
Pu(t ′)
η0

+ 1

G0

d

dt ′

)
σ (t ′)dt ′

=
∫ t

0

(
�(t − t ′)

Pu(t ′)
η0

+ 2δ(t − t ′)
G0

)
σ (t ′)dt ′, (F1)

where �(t ) is the Heaviside step function. The factor 2 in front
of the delta function is to account for the boundary. Therefore
the response function is given as

χ (t, t ′) = �(t − t ′)
Pu(t ′)
η0

+ 2δ(t − t ′)
G0

. (F2)

On the other hand, using Eq. (17) and the constant
4kBT/G0, we compute

�(t − t ′)
d

dt ′ 〈�x2(t ′)〉

= �(t − t ′)
(

2D0Pu(t ′) + d

dt ′
4kBT

G0

)

= 2kBT

(
�(t − t ′)

Pu(t ′)
η0

+ 2δ(t − t ′)
G0

)
, (F3)

where we used integration by parts from the second line to the
third line and the Einstein relation D0η0 = kBT [46]. There-
fore we obtain the fluctuation-response relation, Eq. (21).

The response function χ (t, t ′) is related to the dynamic
modulus G(t, t ′) by inverse, thus uniquely determined. To
see this we notice that the shear strain ε(t ) is written using

Eqs. (A1) and (A4) as

ε(t ) =
∫ t

0
dt ′χ (t, t ′)

∫ t ′

0
dt ′′G(t ′, t ′′)ε(t ′′)

=
∫ t

0
dt ′′ε(t ′′)

∫ t

t ′′
dt ′χ (t, t ′)G(t ′, t ′′). (F4)

By direct calculation using Eqs. (F2) and (A3) and using
that the general form of K (t, t ′) in our model [Eq. (6)] has
exponential form, we obtain∫ t

t ′′
dt ′χ (t, t ′)G(t ′, t ′′) = 2δ(t − t ′′), (F5)

leading to the consistent expression for Eq. (F4). Note that the
factor 2 accounts for the integration of the delta function at
the boundary. Equation (F5) shows that χ (t, t ′) and G(t, t ′)
are related by inverse and uniquely determined.

APPENDIX G: NUMERICAL PROCEDURE TO SOLVE THE
TRAP MODEL FOR THE PROTEIN CONDENSATES

To numerically solve the dynamical equations describing
trap dynamics Eq. (1) we discretize the time and energy. In
particular, we use the time step �t = 0.01/�0 and the energy
step �E/(kBT ) = 0.02. We choose units of time and energy
by setting 1/�0 = 1 and kBT = 1. For the numerical compu-
tation it is necessary to introduce the cutoff for the energy.
We set the maximum energy to be EM = 100 in units of kBT .
We evaluate integrals numerically as a sum of the discretised
integrand values multiplied by �E . We use the Euler method
for the integration over time.

APPENDIX H: NUMERICAL PROCEDURES TO COMPUTE
INSTANTANEOUS COMPLEX MODULUS

To compute the instantaneous complex modulus
G(ω, t, tw ), we employed the analytic signal approach to
obtain the instantaneous amplitude and phase of the input and
output signals. Specifically, we utilized the Python package
“scipy.signal.hilbert” [47] to extract the instantaneous
amplitude and phase for the input shear strain and output
shear stress, as illustrated in Fig. 6. This method allowed us
to accurately capture the time-varying behavior of the signals
and determine the complex modulus at any given time and
frequency.

The computation of the instantaneous complex modulus
G(ω, t, tw ), as defined in Eq. (11), requires the input shear
strain ε(ω, t ) to span from t = −∞ to t = ∞. Practically,
when implementing the numerical computation of instanta-
neous complex modulus, we extrapolate the input shear strain
used in the rheology experiment. Here we extended the im-
posed sinusoidal shear strain starting t = tw and ending t =
t f : ε(ω, t )�(t − tw )�(t f − t ), to the signal from t = tw − τ

to t = t f + τ , where τ = t f − tw is the duration of the shear
strain. For the output shear stress, we inserted 0 from t =
tw − τ to t = tw and from t = t f to t = t f + τ , to adjust the
length of the input and output signals. After the extension of
the input shear strain and output shear stress we computed
Hilbert transform and then extracted back the original, ex-
perimentally relevant, part of the signal defined from t = tw
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FIG. 6. An example of the instantaneous amplitude and phase extraction using analytic signal. Left: Amplitude extraction from the data
using analytic signal. The solid line in cyan is the input strain ε̄(ω, t ), and the solid orange line is the output stress σ (ω, t ). Dashed curves are
the instantaneous amplitude of ε̄(ω, t ) and σ (ω, t ), computed using analytic signal. Right: Instantaneous phase for ε(ω, t ) (cyan) and σ (ω, t )
(orange), computed using analytic signal.

to t = t f . We computed the instantaneous complex modulus
using the obtained analytic signal for the input shear strain
and output shear stress.

The Hilbert transform, computed using Fourier transform
as shown in Eq. (E2), may produce unwanted oscillations,
known as the Gibbs phenomenon, due to the finite discontinu-
ous signal (as illustrated in Fig. 6). To obtain accurate results,

we truncated the two edges of the complex modulus, i.e., the
initial and final times where the artifact is most prominent.
Additionally, we convolved the resulting G(ω, t, tw ) with a
box kernel whose length was identical to the wavelength of
the input shear strain to mitigate the oscillations caused by the
Gibbs phenomenon. This step helped to improve the accuracy
of our results, shown in Fig. 3.
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