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Abstract

Tissues can be characterized by their homeostatic stress, i.e. the value of stress for which cell division
and cell death balance. When two different tissues grow in competition, a difference of their
homeostatic stresses determines which tissue grows at the expense of the second. This then leads to the
propagation of the interface separating the tissues. Here, we study structural and dynamical properties
of this interface by combining continuum theory with mesoscopic simulations of a cell-based model.
Using a simulation box that moves with the interface, we find that a stationary state exists in which the
interface has a finite width and propagates with a constant velocity. The propagation velocity in the
simulations depends linearly on the homeostatic stress difference, in excellent agreement with the
analytical predictions. This agreement is also seen for the stress and velocity profiles. Finally, we
analyzed the interface growth and roughness as a function of time and system size. We estimated
growth and roughness exponents, which differ from those previously obtained for simple tissue
growth.

1. Introduction

The mechanics of growing tissues has received much attention recently from physicists and biologists alike. For
example, in the case of cancer tissue growth is determined by the competition for space between a tumour and
healthy host tissue. A key characteristic determining which tissue can grow as the expense of the other was
proposed to be the homeostatic stress [1]. It is defined as the value of the stress for which cell division and cell
death balance, corresponding to a homeostatic state with constant cell number and cell density.

For larger (expansive) stresses, the balance is shifted towards cell division, while for lower (compressive)
stresses, it is shifted towards cell death. Therefore, if homeostatic stresses are isotropic and if we ignore surface
effects, the tissue with the lower homeostatic stress in general grows while the one with larger homeostatic stress
disappears by cell death.

Tissue growth is affected by boundary effects and by external mechanical forces [2—5]. Such effects also play a
role at interfaces that separate different tissues [6, 7]. A simple mechanical argument shows how the interface
between a tissue and surrounding liquid, or a tissue-air interface, could affect tissue growth: a cell has to increase
its volume in order to grow and divide. Considering a growing cell for simplicity as a strain dipole, we can discuss
the work associated with the insertion of the strain dipole into the tissue. It can be shown that to insert a strain
dipole near the surface (where a part of the strain field does not contribute to the work) requires less mechanical
work as compared to the case where the dipole is inserted in the bulk. As a consequence, cell division and growth
occur at alarger rate near the surface. This effect has been demonstarted by mesoscale simulations of growing
tissue spheroids [8].

The population dynamics of two competing tissue layers growing on a substrate has been studied recently by
a generalized Fisher—Kolmogorov equation that takes into account the effects of tissue stresses [9]. The Fisher—
Kolmogorov equation was originally proposed to describe the kinetics of spreading of advantageous alleles in a
population [10]. The resulting traveling-wave solutions are driven by diffusion. Therefore, for vanishing
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diffusion coefficient, the velocity of these waves approaches zero. In this work, we explore the properties of
pressure-driven tissue competition by combining mesoscale simulations of a cell-based model with continuum
theory. We find that the tissue with the lower homeostatic stress takes over the system via the propagation of a
growth front that moves with constant velocity. The main characteristics of the moving tissue—tissue interface in
the simulations, namely the stress and velocity profiles, agree very well with analytical calculation in the
continuum theory. Over time, a finite interface width develops. This interface width exhibits a power-law scaling
with system size that characterizes interface roughness.

2. Cell-based mesoscopic model

In order to study the competition between tissues, we used the simulation approach introducedin[11, 12]. A
growing cell is represented by two point particles i and j that are pushed apart by a growth force

E}g =G/(rj + n )zf‘ij. Here G is the strength of this repulsion, r;; is the distance and #;; the unit displacement
vector between the centers of particles i and j, and ry is a length scale at which the force saturates. This growth
force is opposed by external stresses, and cell-internal friction . This internal friction sets the growth velocity
together with the growth strength G. Upon reachinga certain critical size r, the cell divides. Division implies that
new particles are added in very close proximity to 7 and j which then define two separate cells. Apoptosis is
introduced as a constant rate k, at which particles corresponding to a cell disappear. These are the only active
processes in the model; the remaining passive interactions resemble soft sticky spheres. The impenetrability of
cells is ensured through the volume exclusion force Fj = f, (R° / ri? — 1)#; with the cell—cell potential coefficient
fo and the range R of all pair potentials acting on all pairs of particles 7, j that do not belong to the same cell.
Adhesion is represented by a simple constant force Fj = —f #;;, where f; denotes the adhesion strength, again
acting only on all pairs of particles 7, j not belonging to the same cell. Additionally, cells dissipate momentum
and energy on the tissue scale by a friction ~, with neighbouring cells. All dissipative forces are accompanied by
appropriate random forces. Noise intensity is strong enough to break local minima, but small enough to have
otherwise no noticeable effect. In particular it is not strong enough to lead to significant cell diffusion by itself. So
far the model is identical to the one presented in [11-13]. Here however, we focus onthe competition between
cell sheets, growing on a substrate. Thus, the simulations are restricted to two-dimensions and a friction force
F' = —~, Vi is introduced describing the interaction with a substrate. In the supporting information (SI) we
provide a comprehensive list of all parameters. This in-silico tissue grows in number of cells until it fills all
available space. When the compartment is filled, the pressure increases and slows down divisions to the point
where they are exactly balanced by apoptosis. The pressure at this stationary state is the homeostatic pressure Py,
or equivalently the homeostatic stress oy = —Py.

The homeostatic stress oy of the tissue depends on the choice of model parameters. In particular, it can be
varied by changing the growth-force strength G, as shown in [13]. In the remainder of this work, we measure
space in units of the particle interaction range R, time by the apoptosis rate k, (per definition equal to the division
rate in the homeostatic state), and force in units of G,/R?, where G = Gj for the weaker tissue in all simulations
of competing tissues. Thus we report stresses normalized by R*/Gy. All rescaled quantities are denoted by an
asterisk, e.g. 0¥ = o R*/G,.

The spatially resolved stress tensor at any point Pis obtained through a virial method similar to the one
described in [14] (see SI for details). Note that in our case all forces, in particular the growth force, arise from pair
interactions and contribute to the stress. This is different from simulations of active micro swimmers, where an
additional swim stress contributes to the overall stress of the system [15, 16].

For computational efficiency, we designed a set-up with a co-moving simulation box, which we call
treadmilling. The simulation box consists of bounce-back boundaries in x- and periodic boundaries in
y-direction, and is initially filled with one type of cell (A) which is grown until it reaches its homeostatic state.
Then, all cells with r, < L,/2 are changed to another type of cell (B) that has the same interaction parameters,
but an increased growth force G, balanced by an increased intra-cell friction coefficient 4, to generate
approximately the same free growth rate. Thus, B has a smaller homeostatic stress than A. The system size L, is
chosen such that both tissues reach their homeostatic state sufficiently far from the interface. Since the tissue
with the lower homeostatic stress (larger homeostatic pressure) pushes aside the other, the interface is kept at
L,/2 by displacing all cells every 1000 integration steps by L,/2 — (h), where (h) refers to the current averaged
interface position. In order to remove the excess number of cells of the stronger tissue, all cells entering a small
region near the hard wall are taken out of the simulation. The background friction near this region is
continuously increased to ten times its bulk value, such that cell velocities become negligible in accordance with
abulk situation. The weaker tissue simply replenishes itself by growing into the free space that opens up after the
cell displacement step (see SI for further details). We verified the validity of this approach by comparing the
results to those of fixed boundaries simulations (see SI).
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Figure 1. Properties of a quasi one-dimensional competition. (a) Simulation snapshots at early and late times for relatively thin channels
(L/R = 20). The image shown is zoomed in into the interface region (Aol = Aoy R*/Gy = 0.18, width L,/R = 20, total length
Ly/R = 140, only central region |s/R| < 30 is shown). The stronger tissue (red, og R*/Gy ~ —0.78) invades into the weaker tissue
(blue, o R*/Gy ~ —0.6). The initially flat interface roughens over time, while propagating to the right. Note that the scale is the same
as for (c) and (e). (b) Interface height i (average position of the interface) as a function of time ¢ for three different homeostatic stress
differences Adf; = Aoy R*/Gy. (c) Velocity profile v,(s) as a function of position s. Solid blue line represents analytical prediction,
where the parameters are obtained by separate independent simulations. (d) Interface width w as a function of time ¢ for three different
homeostatic stress differences Adi;. (e) Stress o, = 0, R*/ Gy asafunction of position s. The dashed lines correspond to the
homeostatic stresses of the two tissues. Solid blue line as in (c). (f) Interface velocity v, as a function of the homeostatic stress difference
Ac* (solid blue line as in (c)). (c) and (e) correspond to time averages of one simulation with a run length of Tk, = 80 and a system
width L/R = 20. Each point and line in (b) and (d), (f) correspond to a single simulation.

Due to overhangs and island formation (see figure 1(a) and SI movies S1 and S2) a unique interface position
is not easily defined. Apart from utilizing the cell number fraction, defined below, to characterize the interface
position and width, we also employ Voronoi tesselations, which are determined by the program Triangle [17].
All Voronoi edges that separate particles of different tissue types are therein defined as part of the interface.

3. Tissue competition

3.1. Interface dynamics in the mesoscopic simulations

Simulating two tissues that only differ by their homeostatic pressure, we find a stable steady-state interface in a
co-moving simulation box. Starting from an initially flat interface, we observe a roughening over time, with
interface width reaching a finite plateau on longer time scales (see figure 1). The interface moves with a constant
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velocity v, that depends on the homeostatic stress difference Aoy. The local average cell velocity v, in the lab
frame depends on the distance from the interface. It decays from the interface velocity v, to zero on a finite length
scale A\/R ~ 10 for increasing distance from the interface. The coordinate s refers to cell position in a comoving
coordinate system s = x — vyt, with s = 0 describing the interface position. The stress profile o, (s) varies on
the same length scale from one homeostatic stress to the other as shown in figure 1(e). Note that both tissues
indeed reach their respective homeostatic stresses far away from the interface. In the sections below, we study the
competition and interface properties using our simulations and analytic theory. We focus on competition of
tissues growing on a substrate in two-dimensions, and analyze the emerging stress and velocity profiles as well as
the interface propagation and interface width.

3.2. Velocity and stress profiles

The velocity and stress profiles can be understood using a simple continuum model in one-dimension. The
competition between two incompressible tissues A and B with constant density is governed by the cell-number
balance equation

Orpy + voxpy = (k* — kB (1 = @), 1)
where we have neglected for simplicity terms corresponding to cell diffusion. Here
na (x,
o (x, 1) = 4 (5 1) @

Ny (X, t) + ng (x) t)

is the number fraction of A type cells, where . (x, t) is the total number density of cells of type ¢ = {A, B} at
time fand position x. The velocity field v is determined by a generalized incompressibility condition

axV = kASOA + kB(l - QOA), 3)

which relates the velocity gradient to the growth rates k “. The growth rates k, in turn, depend on the local
stress o

k¢(0) = —k(ofy — o), (4)

where we have expanded to linear order and neglected higher order terms, see [1]. The growth coefficients x*
and homeostatic stresses of; are tissue properties and the only model parameters. Equation (1) is solved ina
comoving coordinate system s = x — vyt by ¢, (s) = ©O(s), the Heaviside step function describing a sharp
interface, where v, is the interface velocity. Force balance implies

050 (s) = 2py, gV (5) 5)

with the cell density p,, and the substrate friction coefficient -, o The velocity v(s) is determined by equation (3),
which then results in the stress profile

oA _ B
© o+ s /\j+)\: exp (Aiﬂ) fors <0, ©
S) =
0 A4+ M B Texp(—2) fors >0
on A &P (=) fors .

The characteristic length scale A2 = (12 P Vog )~ !is fixed by the friction -, - the bulk density p,, and the growth

coefficients x¢. Note that o (0) = (U{f‘l g + Uﬁ A1)/ (Aa + Ap) is the weighted average of the homeostatic
stresses, which simplifies to o (0) = (o1; + o5)/2 for Ay &~ Ap. The finite length ), leads to interface motion
with a constant interface propagation velocity

1
zpf}/bg

. AO’H
ZPng()\A + )\B)

Vo

o0 ‘ 7
0

that depends linearly on the difference in the homeostatic stresses, Aoy = oy — o5

We find the prediction for the stress profile to be in very good agreement with the simulation results (see
figure 1). In order to make such a comparison, we characterized the tissues used in the simulations by the
methods outlined in [13], which result in the growth rate coefficients ¢, the homeostatic stresses oy, and the
bulk density py, (see SI). The velocity profile, which can be obtained analytically from equations (5) and (6), also
agrees very well with the simulations (see figure 1(b)) without adjusting any parameters. Furthermore, the linear
dependence of the interface velocity v, on the homeostatic pressure diffrence Aoy in the simulations can be
understood by the analytical calculation (see figure 1(c)).

3.3. Interface width
Opver the course of the simulations, we observe a finite steady-state width of the interface that mainly depends on
the channel width L. Figure 2(a) shows a typical snapshot of the interface for a relatively wide channel. To
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Figure 2. Interface width and saturation width as a function of time, system size and homeostatic stress difference. (a) Snapshot of an
interface for a wider system with L/R = 100. (b) The interface width w as a function of time ¢ for different homeostatic stress
differences Ac* = AoR*/G, forasystem size L = 20. Note the double logarithmic scale. The inset shows the same data with a linear
scale. (c) The saturation width wy,, for different homeostatic stress differences Ac™ as a function of the system size L. Dashed lines
represent power laws. (d) The dynamic structure function S(k ) as a function of the wave vector k for L = 100 and different Ac*. All
error bars represent standard deviation.

quantify the interface width, we define w (¢) = /(h*) — (h)?, with the interface function h(y, t). The first two
moments of this function are determined by (see SI)
Ly
(h) = j; P dx, ©)
Ly
(h*) =2 j; xp, dx. 9)

We can then follow the evolution of the interface width w(f) over time, as shown in figure 2(b). For small times t,
wdisplays a power-law increase with time, w (t) ~ t” (with growth exponent (3), as might be expected by
analogy with othergrowing interfaces. For two identical tissues, one would expect an ever growing interface
width. However, a difference solely in their respective homeostatic stresses, is enough for interface width to
saturate over time (see figure 2(b) and inset). This saturated interface width grows with the system size L, and
seemingly obeys a scaling relation wy, ~ L* [18], where «vis called the roughness exponent (see figure 2(c)). We
obtain « from a fit of w,, (L) and a fit of the structure factor

S(k) = (h(k)h(—k)) oc k-@a+D (10)

in the steady state (see [ 19-22] for details). Here, h(k, t) denotes the Fourier transformation of the height
field h(y, t).

From such fits, we obtain roughness exponents « in the range of 0.2—0.4 and growth exponents Gin the
range of 0.4—0.5 (see figures 2(c) and (d)). Both exponents do not vary systematically with either the homeostatic
stress difference Aoy or the system size L. In the case of AoR*/ G,y = 0.18 system size was varied between
L/R = 6and L/R = 400 (in the case of AcR*/G, = 0.08/0.36 between L/R = 10 and L/R = 200), thus,
covering nearly three orders of magnitude.

3.4.Island formation
The simulations revealed another interesting phenomenon: the interface is not a single-valued function, but we
furthermore observe islands of weaker tissue left behind in the stronger tissue, (see figure 3(a) and SI movie S1).
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a)

Figure 3. Island formation. (a) Snapshot of the simulation data for L/R = 20 and AoR*/G, = 0.18. Note the islands that detach
from the interface and move away. (b) Interface determined by a Voronoi tessellation for the same data as in (a).
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Figure 4. Island formation rate. (a) Average number of islands per system size L as a function of L for different homeostatic stress
differences Ad¥; = AoiR*/G,. (b) Same asin (a) but as a function of the homeostatic stress difference Adf; for two different system
sizes L. The solid blue line is a guide to the eye. All error bars represent standard deviation.

These islands consist of cells of the weaker tissue that eventually die due to their higher homeostatic stress. We
characterize the island formation using Voronoi tesselation (see figure 3(b)), as outlined in the methods section.
The average number of islands (n;) per unit length is independent of the system size L but seems to vary non-
monotonically with the homeostatic stress difference Aoy (see figures 4(a) and (b)). In the limitof Ao = 0,
both tissues are the same and thus would mix completely on large time scales, i.e. the number of islands is
expected to diverge as Ao approaches zero. For larger Ao, on the other hand, the increasing interface
propagation velocity may explain the higher detachment rate and thereby an increased number of islands.

3.5. Stress across interface
So far, we have only considered the principal stress oy, in the direction perpendicular to the interface. The
interface, on the other hand, breaks the x—y isotropy, which results in a surface tension

r:fgww—%@m (11)

(see e.g. [23]). In our simulations, however, the interactions between all cells (even of different type) are exactly
the same and, thus, no ‘static’ interface tension should be observed. On the other hand, the anisotropic active
growth of the cells have to be considered for the overall stress. We write the stress equations for an anisotropically
growing material in 2d under the assumption of incompressibility (see [24])

6



10P Publishing

NewJ. Phys. 18 (2016) 083020 N Podewitz et al

—0.2 1 !

a) b)
0.2 0 @~ J
0.02 - e 5 0
. . ,S 0.16 .
* > 2
© 5012 1
E
*5—-0.02 . £ 0.08 .
Acj = 0.08 — 5
oo L Aot =018 — | £ 0.04 1
0.04 q
1 Il AJH |: 0.36 l_ 0 Il 1 1
=30 =20 -10 O 10 20 30 0 0.1 0.2 0.3 0.4
Position s/R Homeostatic stress difference Aoy,
c) d)
0’2 I 1 1 L) 4 1 1 1 1
L/R=10 r@~
8 = L/R=20
S 01f 4 3
Z 383 ]
E p
= 0 i)
: ;
s E? ]
< —0.1 Acjy = 0.08 — A .
3 Acsy =018 — 3 P
n
Aoy = 0.36 — . . . . .
=30 —20 -10 0 10 20 30 0 0.04 0.08 0.12 0.16 0.2

Position s/R Interfacial tension I'™*
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system sizes L. (c) Order parameter Q. as a function of position s for L = 20 and three homeostatic stress differences Adf;. (d) The
saturation width w,, as a function of the interface tension I'* = I'R*G, for two system sizes L. Solid blue lines in (b) and (d) are guides
to the eye. Stress and order in (a) and (c) have been averaged over the channel width y, simulation time and eight ensembles. All error
bars represent standard deviation.

1
Oap = _P(Saﬂ + U(aaVG + 3@%) - //('kgEQa,H (12)

Here, — P represents the isotropic part of the stress tensor, 77is the shear viscosity, k, is the growth rate, 11 is the
strength of the anisotropic growth, and Q.3 = 2p,p; — 1is the nematic-order tensor thatis often used in the
context of liquid crystals to characterize nematic order (p is a unit vector describing the preferred axis of growth;
in the simulations it is the vector connecting the particles constituting one cell). We consider k, to be a constant
since in our simulations all cells always grow until they divide; there is no distinction between the different
phases of the cell cycle. Thus, all cells contribute to anisotropic part of the stress, independent of the actual
division rate. Hence we shorthand i/ = fik in the remainder. In the integral (see equation (11)) all but the
anisotropic part of the active stress drop out. We thus arrive at an interface tension, which is active in nature
because it is caused by the anisotropic active growth of the cells.

We measured the difference in the principal stresses oy, — 0y, as well as the order parameter Q,, asa
function of the distance s to the interface in our simulations (see figures 5(a) and (b)). Both seem to show the
same behavior. Neglecting shear viscosity and assuming p' = p/(s) = 4, (s) + p'2(1 — ¢, (s)) tobe
proportional to the concentration profile ¢, (s), where p' are the directed growth coefficients that differ for
both tissues, we write the difference in principal stresses as

Ty (8) — 0 (5) = 2[p"P (1 = 4 () + 1104 ()] Qux (5) 13)

Aleast-squares fit of 0,, — 0y, as afunction of Q,.(s) and ¢, (s) results in coefficients 1/ that are roughly
constant for different system sizes L, but differ considerably for different growth force strengths G, as would be
expected (see SI). This leads to an effective surface tension that arises from the directed growth of cells. We find
the surface tension to grow with the homeostatic stress difference, while it is roughly independent of the system
size (see figures 5(c) and SI figure S7).

It has been shown previously that velocity gradients can align cell divisions [25] and, indeed, we find Q,, to
be proportional to J,v,. The proportionality constant, however, depends on the absolute value of the stress.
Similar to the island formation, vanishing homeostatic stress difference leads to vanishing surface tension, but
diverging interface width (see figure 5(d)). With increasing homeostatic stress difference the interface tension
increases, and the with first decreases, but than increases again for larger differences in homeostatic stress. It is
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important to note that the saturated interface width wy,, and its scaling is not dominated by the aforementioned
interfacial tension I'. We observe no systematic decrease of w,, with I" as would be expected for surface tension
dominated scaling, but instead a slight increase of the interface width for higher tension (see figure 5(d)).

4. Summary and conclusions

We have investigated the interface dynamics of two competing tissues with different homeostatic stresses. In the
context of the continuum theory of growing tissues, this difference leads to a take-over of the tissue with the
lower homeostatic stress [9]. We have shown by analytical calculations for the interface dynamics in one
dimension that an interface propagates at a constant velocity even in the simple case of vanishing diffusion. The
interface velocity depends linearly on the difference in the homeostatic stresses of the tissues.

We employ an established simulation method to model the competition of tissues growing on a substrate in
two-dimensions. We find the analytical predictions to capture the stress and velocity profiles of our simulations
qualitatively and even quantitatively. For the latter, a few tissue characteristics are obtained from independent
single-tissue simulations. Furthermore, the linear take-over and, in particular, the linear dependence of the
interface velocity on the homeostatic stress difference are reproduced in our simulations as well.

The initially flat interface profile grows in witdth with a power law for short times, saturating on longer time
scales. This saturation width obeys a power-law growth with the system size. Lacking published experimental
data of tissue competition on substrates, we compare the scaling with colonies growing freely, i.e. notin
competition with second tissue. The obtained exponents clearly differ significantly from those previously
determined for free in vitro growth of 15 different cell lines as well as in vitro growth of 16 different tumors [22]
(6 = 3/8,a = 3/2).In order to calculate the roughness exponent for real tumors, slices through surgically
removed tumors were analyzed. Furthermore, the roughness exponent found in freely growing bacterial
colonies [26] (« & 0.78) is still much larger than the one we estimated. Instead, our results are more similar to
those obtained by a cellular automaton model of a single growing tissue [21] which shows Kardar—Parisi-Zhang
(KPZ) scaling [27] (B = 1/3, a = 1/2). KPZis one of the standard theories for growing interfaces, like in
ballistic deposition.More recent experiments on growing microbial colonies [28] also indicate a KPZ scaling.
However, it is important to note that the typical length scale on which the stress changes across the interface in
our simulations is of the order of \/R = 10, such that even the largest feasible simulations with L/R = 400 are
only one order of magnitude above this length scale.

Although cell—cell interactions in our simulations are identical even between different cell types, a non-zero
interface tension is found in our simulations. This interface tension can be understood qualitatively by the
anisotropic active cell growth. It is thus fundamentally different from thermodynamic interface tension and
results from anisotropic active stresses at the interface. Futhermore, our findings show that this interface tension
does not control the scaling of the saturation width of the interface.

These findings suggest that competition experiments provide a powerful tool to study the growth dynamics
of tissues. In particular we find that interface velocity, velocity decay length, island formation, and the stress
profile are to alarge degree independent of the system size. We show that they depend in a well-defined, algebraic
maner on tissue properties (homeostatic stress, background friction, growth coefficient). Traction force
microscopy of growing and competing tissue colonies [29—31] could shed light on the role of homeostatic
pressure on growth.

Our work brings the by-now classical field of nonequilibrium interface dynamics [20] to intrinsically
growing systems. It results in novel dynamical interface features yet to be studied on a fundamental level.
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