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Fig. S1. Relative uncertainty !(x) of the steady state concentration c(x) for the diffusion-degradation model with

disorder in one dimension (1). (A,B) The symbols indicate results from numerical calculations in which steady-state gradients

were calculated for many (typically 100,000) realizations of the disorder. The lines show the corresponding analytical results

(8) for !(x). The red lines show !(x) if only D is fluctuating, the blue lines if only k is fluctuating, the green lines if both D and

k are fluctuating, and the magenta lines if D and k are fluctuating in a fully correlated way. In A, the current j is imposed at x=0.

In B, the concentration c is imposed at x=0. Parameters are ! / a = 50, ! j / j0 = ! c0 / c0 = 0, !D /D0 = ! k / k0 = 0.1.  In the

fully correlated case 2!kD / k0D0 = ("D /D0 )2 + (" k / k0 )2  while "
kD

=0 otherwise. A Gaussian distribution was used for the

noise terms in the numerical calculations. Steady states were calculated on a linear chain of size 100a.
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Fig. S2. Relative uncertainty !(x) of the steady state concentration c(x) for the diffusion-degradation model with

disorder in two dimensions. The symbols indicate results from numerical calculations in which steady-state gradients were

calculated for many (typically 100,000) realizations of the disorder. The lines show the corresponding analytical results for !(x)

that follow from (10). The blue lines show !(x) if only k is fluctuating, the red lines if both D and k are fluctuating, the magenta

line if D and k are fluctuating in a fully correlated way, and the green lines if D, k and the respective quantity imposed at the

boundary at x=0 (j or c0 )  are fluctuating. (A) Relative concentration uncertainty !(x) with the current j imposed at x=0. (B)

!(x) with the concentration c0 imposed at x=0. (C) Like A, but with parameters corresponding to Fig. 2 of the main manuscript.

(D) Relative concentration uncertainty !(x) for the general case in which the hopping rates between two neighboring sites in

opposite direction are uncorrelated. Current j imposed at x=0. Compared to A-C, the magnitude of !(x) is increased in this

situation. Parameters as in Fig. S1, with ! j / j0 = ! c0 / c0 = 0.1  in A,B, ! j / j0 = 0.037  in C, ! j / j0 = 0.25  in D, and ! / a = 7

in C,D. A Gaussian distribution was used for the noise terms in the numerical calculations. Steady states were calculated on a

simple cubic lattice of size 100a"100a.
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Fig. S3. Relative concentration uncertainty !(x) for the diffusion-degradation model with disorder for different space

dimensionalities. All calculations were done with j imposed at x=0. (A) Logarithmic plot of !(x) in one dimension (red lines),

in two dimensions (blue lines), and in three dimensions (green lines). For the solid lines, only k is fluctuating and for the broken

lines both k and j are fluctuating. Shown are the analytical results for !(x) given by (8), (10) and (12) for the different space

dimensionalities respectively. (B) Double-logarithmic plot of !(x) for large x in one and two dimensions. In these calculations,

k and D are fluctuating. Numerical results are shown by symbols. In two dimensions, !(x) was multiplied by a factor of five.

For comparison, functions proportional to x
1/2

 and x
1/4

 are shown in red and blue, respectively. The inset shows the same data

using linear axes. Parameters as in Fig. S1 with ! j / j0 = 0.1  and  !kD = 0.  Steady states in two dimensions were calculated on

a simple cubic lattice of size 220a"100a.
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%!(x)  in presence of disk-to-disk variations of the current

imposed at x=0. For the solid line  ! j0 / j0
0 = 0,  for the dashed line  ! j0 / j0

0 = 0.1,  and for the dotted line
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0 = 0.2.  Remaining parameters as in Fig. 2 of the main manuscript.
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Fig. S5. Correlations between PMad and Dpp concentrations. Non-normalized PMad level of all nuclei shown in Fig. 5B of

the main manuscript correlated with the non-normalized GFP-Dpp level at the same distance from the source in the same wing

disk (R=0.63). Compare with Fig. 5C of the main manuscript, which shows the same plot for the normalized PMad data. These

data were obtained from a set of N=15 wing disks from dpp mutants rescued by a GFP-Dpp transgene using the UAS/Gal4

driver system.



I. THEORETICAL DESCRIPTION OF MORPHOGEN TRANSPORT IN A TIS-

SUE WITH CELL-TO-CELL VARIABILITY

We introduce cell-to-cell variability as random components to the diffusion coefficient and

the degradation rate in the diffusion-degradation equation which describes the time evolution

of the morphogen concentration profile, see equation (1) in the experimental procedure of

the main manuscript. This is done most naturally in a discrete description. We consider

a lattice with sites corresponding to individual cells. In one dimension, the morphogen

concentration on site n is denoted Cn, with n = 0, 1, 2, . . .. Molecules are transported to

neighboring sites with rates p+
n (from site n to n + 1) and p−n (for the transport from n + 1

to n). In addition, molecules on site n are degraded with a rate kn. Cell-to-cell variability

leads to variations of the rates p±n and kn as a function of n. To keep our discussion simple,

we restrict ourselves to the simpler situation where pn = p+
n = p−n , i.e. transport in opposite

directions between cells occurs at the same rate pn.

The concentrations Cn satisfy the kinetic equation

∂tCn = pn−1(Cn−1 − Cn) + pn(Cn+1 − Cn)− knCn, for n > 0, (1)

where ∂t = ∂/∂t. The lattice begins at site n = 0 corresponding to the morphogen source.

Two different boundary conditions are considered: fixed concentration C0
0 and a morphogen

source at n = 0 emitting morphogens at an imposed rate ν. The concentration C0 then

satisfies

∂tC0 = ν + p0(C1 − C0)− k0C0. (2)

This discrete description can be generalized to square (or cubic) lattices in two and three

dimensions (see Fig. 3 of the main manuscript).

In the absence of disorder (cell-to-cell variability) p = pn and k = kn are the same

for all sites. On large scales, the concentrations follow a diffusion-degradation equation

∂tc = D∇2c − kc with D = pa2 and degradation rate k. Here, c(x) = Cn with x = an.

Cell-to-cell variability corresponds to a situation where pn = p+ηn and kn = k+ζn. Here, ηn

and ζn are random variables with zero average. They are characterized by their correlators

which we choose to be 〈ηnηj〉 = σ2
D/a4δnj and 〈ζnζj〉 = σ2

kδnj. Here, the brackets 〈. . .〉 denote

an ensemble average over all realizations of the random variables. These relations imply that

the values of ηn and ζn at different bonds of the lattice are uncorrelated. The ηn and ζn can
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also be correlated at each lattice site: 〈ηnζj〉 = ρkD/a2δnj.

In addition to the rates pn and kn, the rate of ligand influx into the system ν can be

fluctuating, i.e. ν = ν0 + χ where χ is a random variable with 〈χ〉 = 0, 〈χ2〉 = σ2
j /a

2, and

〈χηn〉 = 〈χζn〉 = 0 for all n ≥ 0. In the case of a fixed concentration at n = 0, one can

introduce fluctuations at the boundary very similarly: C0 = C0
0 + γ with a random variable

γ satisfying 〈γ〉 = 0, 〈γ2〉 = σ2
c0 , and 〈γηn〉 = 〈γζn〉 = 0. The standard deviations σD/a2,

σk, σj/a, and σc0 of the noise terms ηn, ζn, χ, and γ are assumed to be small compared

to the mean values p, k, ν0, and C0
0 respectively. Our discussion is mostly independent

of the specific probability distributions of ηn, ζn, χ, and γ. It is only required that these

distributions are tightly localized around their mean value zero.

II. CONTINUUM LIMIT

In the presence of disorder, the kinetics of the concentration field can be described on

large scales in a continuum limit. In d dimensions, with )x describing a position in space, i.e.

)x = (x, y) in d = 2 and )x = (x, y, z) in d = 3, the concentration field c(t, )x) obeys

∂tc(t, )x) = ∇ · [(D0 + η()x))∇c(t, )x)]− (k0 + ζ()x)) c(t, )x) (3)

Here η()x) and ζ()x) denote noise terms with zero average and correlators 〈η()x)η()x′)〉 =

σ2
Dadδ()x − )x′), 〈ζ()x)ζ()x′)〉 = σ2

ka
dδ()x − )x′), and 〈η()x)ζ()x′)〉 = ρkDadδ()x − )x′). These

correlators express the continuum limits of the expressions introduced in the discrete case.

The amplitude of the fluctuations of D is σD and accordingly σk for k. A possible correlation

of the fluctuations of D and k at a given position is measured by ρkD.

The fluctuations of the secretion rate of the source cells located at x < 0 are captured by

imposing a current

(D0 + η()x)) ∂xc()x, t)
∣∣∣
x=0

= −j0 − χ()x)
∣∣∣
x=0

(4)

across the boundary surface at x = 0, where χ()x) is a noise term with 〈χ()x)χ()x′)|x=0〉 =

σ2
j a

(d−1)δ(d−1)()x− )x′)|x=0.

A. Effects of disorder on steady state gradients

The steady state solutions c()x) of (3) depend on the particular realization of the disorder,

reflecting the effects of cell-to-cell variability. The average gradient c̄(x) = 〈c()x)〉 is given by
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an ensemble average over all possible realizations of the disorder. Alternatively, in a two-

dimensional geometry with a line source at x = 0, the average gradient can be determined

by averaging along the y direction for given x in a single realization of the disorder.

We first discuss the problem in d = 1. It is assumed that the amplitude of the noise is

small, i.e. σD/D0 ! 1 and σk/k0 ! 1. We calculate the variance of the concentration

σ2
c (x) = 〈(c(x)− c̄(x))2〉 (5)

by using a perturbation expansion to first order in the small parameters σD/D0 and σk/k0.

Note that to first order the average concentration is given by c̄(x) = c0e−x/λ where λ =
√

D0/k0 is the diffusion length and c0 = j0/
√

k0D0.

The results of this calculation can be expressed in terms of Green’s functions G(x, x′) of

the linear operator (D0∂2
x− k0) which satisfy (D0∂2

x− k0)G(x, x′) = δ(x−x′). To satisfy the

two different boundary conditions at x = 0, two Green’s functions G±(x, x′) with G−(0, x′) =

0 and ∂xG+(x, x′)|x=0 = 0 respectively are needed. In one dimension these functions are given

by

G±(x, x′) =
−1

2
√

k0D0

(
e−|x−x′|/λ ± e−(x+x′)/λ

)
. (6)

To first order in our perturbation expansion, the variance of the concentration is given

by

〈σ±
c (x)2〉 = D2

0

(
∂x′G±(x, x′)

∣∣∣
x′=0

)2
σ2

c0 + G±(x, 0)2σ2
j

+a
∫ ∞

0
dx′

(
σ2

Dc̄′(x′)2(∂x′G±(x, x′))2 + σ2
kG±(x, x′)2c̄(x′)2

+2ρkDG±(x, x′)c̄(x′)c̄′(x′)∂x′G±(x, x′)
)
. (7)

Here, we use a condensed notation for both choices of the boundary condition at x = 0:

σ+
c denotes the solution for a fixed current and σ−c the solution for a fixed concentration at

x = 0. Using the explicit expressions for the Green’s functions and c̄(x), this integral can

be solved and expressed in terms of elementary functions. As discussed in the main text, a

dimensionless measure of the relative concentration uncertainty at x is

Σ(x) =

〈
(c(x)− c̄(x))2

〉1/2

c̄(x)
=
〈σc(x)2〉1/2

c̄(x)
.

Using (7), one obtains to first order in perturbation theory

Σ±(x) =
(
Σ±

B(x)2 + Σ±
k (x)2 + Σ±

D(x)2 + Σ±
kD(x)

)1/2
, with
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Σ+
B(x)2 =

(
σj

j0

)2

Σ−
B(x)2 =

(
σc0

c0

)2

Σ±k (x)2 =
a

8λ

(
σk

k0

)2 (
1 ± 2∓ e−2x/λ +

2x

λ

)

Σ±D(x)2 =
a

8λ

(
σD

D0

)2 (
1∓ 2 ± 3e−2x/λ +

2x

λ

)

Σ±kD(x) =
a

4λ

ρkD

k0D0

(
1 ± e−2x/λ − 2x

λ

)
. (8)

As the relative concentration fluctuations become arbitrarily large for large x, these results

are only valid in a finite region 0 ≤ x ≤ M for some M > 0.

The steady state of (3) for d = 2 can be calculated iteratively as in the one dimensional

situation. The free Green’s function for the operator (D0(∂2
x + ∂2

y)− k0) satisfying (D0(∂2
x +

∂2
y)− k0)G0(%x, %x′) = δ(%x− %x′) is

G0(%x, %x′) =
−1

2πD0
K0(|%x− %x′|/λ),

where K0 is a modified Bessel function of the second kind [1]. Using a mirror image tech-

nique, one can construct Green’s functions G±(%x, %x′) that satisfy G−(%x, %x′)|x=0 = 0 and

∂xG+(%x, %x′)|x=0 = 0 respectively:

G±(x, y, x′, y′) = G0(x, y, x′, y′) ± G0(x, y,−x′, y′). (9)

To first order, the variance of c(%x) is

〈σ±c (%x)2〉 = a
∫ ∞

−∞
dy′

(
σ2

c0D
2
0

(
∂x′G±(%x, %x′)

∣∣∣
x′=0

)2
+ σ2

j G±(x, y, 0, y′)2
)

+a2
∫ ∞

0
dx′

∫ ∞

−∞
dy′

(
σ2

kG±(%x, %x′)2c̄(x′)2 + σ2
Dc̄′(x′)2(∂x′G±(%x, %x′))2

+2ρkDc̄(x′)c̄′(x′)G±(%x, %x′)∂x′G±(%x, %x′)
)
. (10)

The resulting relative concentration uncertainty grows asymptotically as Σ(x) =

〈σc(%x)2〉1/2/c̄(x) ∼ x1/4. The first term in (10) is due to the fluctuations of the current

across the boundary line at x = 0 or the concentration that is fixed there. This term alone

decreases as Σ(x) ∼ x−1/4 for large x. Positive correlations between the fluctuations of k0

and D0 increase the precision as in the one dimensional case.

One can calculate the standard deviation of the concentration in d = 3 as well. We are

interested in the steady state solution of (3) with %x = (x, y, z) and ∇ = (∂x, ∂y, ∂z) in the
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half-space x ≥ 0. Either the concentration or the current is imposed on the boundary plane

x = 0, i.e. c(!x)|x=0 = c0 + γ(y, z) or ∂xc(!x)|x=0 = −D−1
0 (j0 + χ(y, z)).

The Green’s functions for the two boundary conditions at x = 0 can again be constructed:

G±(!x, !x′) =
−1

4πD0

(
e−r/λ

r
± e−rm/λ

rm

)

, (11)

with r = ((x− x′)2 + (y − y′)2 + (z − z′)2)1/2 and rm = ((x + x′)2 + (y − y′)2 + (z − z′)2)1/2.

The result for the variance of c(!x) to first order in perturbation theory is

〈σ±c (!x)2〉 = a2
∫ ∞

−∞
dy′

∫ ∞

−∞
dz′

(
σ2

c0D
2
0 (∂x′G±(!x, !x′))2 + σ2

j G±(!x, !x′)2
) ∣∣∣

x′=0

+a3
∫ ∞

0
dx′

∫ ∞

−∞
dy′

∫ ∞

−∞
dz′

(
σ2

kG±(!x, !x′)2c̄(x′)2 + σ2
Dc̄′(x′)2(∂x′G±(!x, !x′))2

+2ρkDc̄(x′)c̄′(x′)G±(!x, !x′)(∂x′G±(!x, !x′))
)
. (12)

We have integrated (12) numerically. The resulting relative concentration uncertainty Σ(x) is

shown in Suppl. Fig. 3 A for a fixed current at the boundary. Asymptotically, Σ(x) ∼ ln(x).

The contribution from the boundary term alone decreases asymptotically as Σ(x) ∼ x−1/2.

B. Effects of disk-to-disk variations of the morphogen secretion rate

As discussed in the main text, the total fluorescence intensity (FI) of the non-normalized

GFP-Dpp FI profiles measured experimentally varies considerably from disk-to-disk. This

is most likely due to variations in the secretion rate of morphogens from the source cells

between wing disks from different larvae.

Such disk-to-disk variations can easily be included in our theoretical description. In

addition to the cell-to-cell fluctuations which are already taken into account in (4), we

assume that the current imposed at x = 0 fluctuates with a standard deviation σj0 about

its mean value j0
0 for different gradients in our ensemble. We further assume that these

fluctuations are not correlated with any of the cell-to-cell fluctuations in the system. The

relative concentration uncertainty Σ̃(x) that takes disk-to-disk variations of the morphogen

secretion rate into account is then

Σ̃(x) =
√

(σj0/j
0
0)2 + Σ(x)2, (13)

where Σ(x) is the relative concentration uncertainty in the absence of disk-to-disk variations

of the morphogen secretion rate which was calculated above. In Suppl. Fig. 4, we show
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Σ̃(x) for different values of σj0 . While the behavior of Σ̃(x) is qualitatively the same as that

of Σ(x), the minimum of Σ̃(x) is less and less pronounced in relative terms for increasing

values of σj0 .

III. NUMERICAL SIMULATIONS

We have performed numerical calculations of the discrete description (1) for the two

different boundary conditions at x = 0 in one and two dimensions. At the remaining bound-

aries, we imposed zero flux boundary conditions. A large number of steady state gradients

was calculated for different realizations of the disorder using a Gaussian distribution for the

random variables. From these, the average value and standard deviation of Cn at all lattice

sites n were calculated. The resulting relative concentration uncertainty is shown in Suppl.

Fig. 1 for the different boundary conditions in d = 1 and in Suppl. Fig. 2 for d = 2. A good

agreement with the results of the perturbative calculation is found.

Furthermore, we have numerically calculated the relative concentration uncertainty Σ(x)

in the general case in which the rates of transfer in opposite directions between neighbor-

ing sites are uncorrelated. In one dimension this implies p+
n != p−n (Fig. 1C of the main

manuscript). Suppl. Fig. 2D shows that while the qualitative features of Σ(x) remain the

same in this situation, the uncertainty is about an order of magnitude larger than in the

case p+
n = p−n for the same noise amplitude σD/D0 = 0.1. This implies that the values of

Σ(x) are comparable to those observed experimentally.

[1] E. Weisstein, Mathworld, http://mathworld.wolfram.com/, wolfram Research, Inc.
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Table S1. Average values and variability of the key quantities discussed in the main text 
Quantity Mean value [!m] Standard deviation [!m] Variation coefficient 

GFP-Dpp decay length "Dpp 17.0 4.3 0.26 
PMad decay length "PMad 25.2 4.5 0.18 
Sal range x* 39.1 6.1 0.16 
Wing disk size L 132.6 21.0 0.16 
These results were obtained from a set of N=15 wing disks from dpp mutants rescued by a GFP-Dpp transgene using the UAS/Gal4 driver 
system.  

 



 
 

Table S2. Correlation indices R of the key quantities discussed in the main text 
 !Dpp !PMad x* L IDpp 

!PMad –0.04     
x* 0.39 0.49    
L 0.14 0.03 0.56   
IDpp 0.13 0.30 0.26 –0.22  
IPMad 0.18 0.33 0.58 0.55 0.29 
The strongest correlations are observed between the disk size L and Sal range x*, the total PMad level IPMad and x* and between IPMad and L. 
These results were obtained from a set of N=15 wing disks from dpp mutants rescued by a GFP-Dpp transgene using the UAS/Gal4 driver 
system. 

 


