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Abstract
Many eukaryotic cells possess cilia which are motile, whip-like appendages that can oscillate
and thereby induce motion and fluid flows. These organelles contain a highly conserved
structure called the axoneme, whose characteristic architecture is based on a cylindrical
arrangement of nine doublets of microtubules. Complex bending waves emerge from the
interplay of active internal forces generated by dynein motor proteins within the structure.
These bending waves are typically chiral and often exhibit a sense of rotation. In order to
study how the shape of the beat emerges from the axonemal structure, we present a
three-dimensional description of ciliary dynamics based on the self-organization of dynein
motors and microtubules. Taking into account both bending and twisting of the cilium, we
determine self-organized beating patterns and find that modes with both a clockwise and
anticlockwise sense of rotation exist. Because of the axonemal chirality, only one of these
modes is selected dynamically for given parameter values and properties of dynein motors.
This physical mechanism, which underlies the selection of a beating pattern with specific
sense of rotation, triggers the breaking of the left–right symmetry of developing embryos
which is induced by asymmetric fluid flows that are generated by rotating cilia.
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1. Introduction

The generation of directed motion on the level of single cells
is in many cases achieved through the regular beating of whip-
like appendages called cilia or flagella [1]. Such actively
bending filaments emerged early in evolution, with a wide
range of different eukaryotic organisms possessing cilia and
flagella. (Note that many bacteria possess passive, whip-like
structures which are of fundamentally different morphology
but are also termed flagella.) Eukaryotic cilia and flagella
are motile organelles characterized by a common structure
called the axoneme, which consists of a regular cylindrical
arrangement of elastic filaments of the cytoskeleton, called
microtubules, crosslinked in a chiral fashion by motor proteins,
called dyneins (see figure 1) [2, 3]. In the axoneme the action
of crosslinking motor proteins—consuming the chemical
fuel adenosinetriphosphate (ATP)—generates internal stresses
which induce locally a relative sliding of microtubules [4, 5].
This relative sliding in turn leads to a bending and twisting of
the elastic axonemal structure.
1 Present address: Department of Systems Biology, Harvard University, 200
Longwood Ave, Boston, MA 02115, USA.

The motility of cilia not only drives the swimming of
many single-celled eukaryotic organisms such as protists and
spermatozoa [6], but also generates fluid flows relative to
cellular surfaces. A prominent example is the vertebrate
trachea, in which the collective beat pattern of a large number
of cilia induces an upward flow of mucus that forms an
important defence mechanism against infections [7]. Fluid
flows generated by beating cilia also play an important
role during the embryonic development: after the head–
tail (anterior–posterior) and the front–back (ventral–dorsal)
asymmetries of the developing embryo are established, the
final breaking of the left–right symmetry plane requires a
chiral process. For many vertebrate species, it has been shown
that the left–right symmetry is broken by a chiral fluid flow
in a leftward direction, generated by cilia tilted towards the
posterior and beating in a clockwise twirling manner [8–11].
(Clockwise when viewed from the distal end towards the base
of the cilium. This convention of clockwise and anticlockwise
will be used throughout this paper.) Hence, the sense of ciliary
rotation determines the direction of the fluid flow which in turn
is responsible for determining the left and right sides of the
embryo. It has therefore been suggested that the chirality of
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(A) (B)

Figure 1. Structure of the axoneme of motile cilia. (A) A computer-enhanced electron micrograph of a cross section displaying the
characteristic 9 + 2 arrangement of microtubules (as seen from the basal end). Reprinted from [2]. (B) Schematic illustration of the
three-dimensional axonemal geometry indicating the position of molecular motors and microtubule doublets.

the ciliary structure generates the left–right asymmetry of the
embryo, by imposing on the ciliary beat patterns a clockwise
sense of rotation [12]. However, how the chirality of the
axoneme which determines the sense of rotation of twirling
beats is not understood.

Periodic and wave-like beating patterns of cilia and
flagella are thought to emerge by self-organization from the
physical interactions between a large number of motor proteins
and the elastic microtubules held together by structural
elements such as elastic nexin links. Such self-organized
beating could occur in different ways [13–19]. Recent
evidence from planar beat patterns of beating bull sperm
supports the idea that motor activity is regulated by axonemal
sliding and that co-operative behaviour of many motors
generate axonemal oscillations [19].

In order to study the shapes and symmetries of helical
and rotating beating patterns, we develop a three-dimensional
description of axonemal dynamics which generalizes earlier
studies of self-organized beating and takes into account both
bending and twisting deformations. Our study differs from the
existing work for which the shape of the beat was determined
numerically in situations where the properties of the spatio-
temporal patterns of motor activity were predescribed [20, 21]
or determined by a curvature control mechanism [17].

In our description, both the beat pattern as well as
the patterns of motor activation emerge from molecular
properties of motors and other structural elements as well
as their interactions. In a previous study, self-organized
axonemal beat patterns were obtained numerically for a
model of axonemal dynamics, incorporating a sliding control
mechanism similar to that presented in this paper [22]. Here,
we perform an analytical study of linearly unstable modes.
This enables us to clarify the effects of axonemal chirality
on the shapes and symmetries of helical and twirling beat
patterns that result from self-organization of motors in the
axoneme. The structural chirality of the axoneme leads to an
average twist which is the origin of the chirality of the beat
pattern. We determine analytically the modes that become
unstable when the system approaches an oscillating instability
and find that in general both clockwise and anticlockwise
modes exist. Which mode is dynamically selected at the
instability depends on biophysical parameters characterizing
the molecular properties of individual dynein motors.

2. Material reference frame

2.1. Axonemal geometry

The geometry of the axoneme can be characterized by
the ensemble of space curves describing the shapes of the
microtubule doublets in the axoneme. Given that the axonemal
radius a is approximately constant, we can represent the
axoneme by a cylindrical surface. Using a material reference
frame, this surface can be described by the following two-
dimensional parametrization:

R(s, φ) = r(s) + ae1(s) cos φ + ae2(s) sin φ, (1)

where r(s) is the centre line of the curved cylinder, and φ is the
angular position of a point on the cylinder. The centre line is
parametrized by its arc length s, measured from the base with
0 � s � L where L is the axonemal length. We have
introduced the right-handed orthonormal material reference
frame ei (s), where e3 ≡ ∂r/∂s is the tangent vector along
the centre line. The unit vector e1 is perpendicular to e3 and
identifies the position of a specific microtubule with respect to
the centre line. The right-handed reference frame is completed
by the unit vector e2 normal to the others, see figure 2(A). The
shapes of peripheral microtubule doublets correspond to the
space curves R(s, φn), with φn = 2πn/9 for n = 0, . . . , 8
[23] (see figure 2(B)).

The geometry of axonemal deformations is characterized
by the dependence of the material reference frame ei (s) on
the arc length s. This representation describes the larger scale
deformations of the structure ignoring details on the small
scales such as the twist of individual microtubule doublets.
The infinitesimal rotation of this set of unit vectors along the
central line is described by

dei

ds
= Ω × ei , (2)

where the vector Ω = ∑
i �iei can be expressed with respect

to the material frame. The quantities �1(s) and �2(s) then
characterize the local curvature of the axoneme, while �3(s)

is the twist density.
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Figure 2. Material reference frame used to describe axonemal deformations. (A) Axonemal cross-section with orthonormal unit vectors e1

and e2 with the former describing the position of a specific microtubule doublet relative to the centre. The unit vector e3 is the tangent to the
centre line and points into the plane from the base to the distal end. Edited from [2]. (B) The microtubule doublets define a cylindrical
surface. Indicated are the central line r(s) for a straight axoneme together with lines of constant angle for φn = 2πn/9 in the material
reference frame. These lines describe the shapes of the nine peripheral microtubule doublets.

2.2. Infinitesimal variations of the shape

In order to understand how changes in axonemal shape are
related to changes of the material reference frame, we consider
infinitesimal variations δr of the centre line and of the twist
angle δϑ = e2 · δe1, for which changes of the vectors ei obey

δe1 = δϑ e2 − (e1 · ∂s(δr))e3

δe2 = −δϑ e1 − (e2 · ∂s(δr))e3

δe3 = ∂s(δr) − (e3 · ∂s(δr))e3.

Note that under the above variations the arc length changes
according to δ(ds) = (e3 · ∂s(δr)) ds. The corresponding
variations of the curvatures and the twist density are given by

δ�1 = δϑ �2 − e2 · ∂2
s (δr) − 2�1e3 · ∂s(δr)

δ�2 = −δϑ �1 + e1 · ∂2
s (δr) − 2�2e3 · ∂s(δr) (3)

δ�3 = ∂s(δϑ) + (�1e1 + �2e2 − �3e3) · ∂s(δr).

These geometric relations define shape changes of the
cylindrical surface in a material reference frame and have been
derived previously in [24–27].

3. Energies, forces and moments

3.1. Bending and twisting

Ignoring details on small scales, the elastic properties of
the ensemble of microtubule doublets in the axoneme are
described by a coarse-grained elastic energy which depends
on the local curvatures and the twist density of the axonemal
cylinder:

E =
∫ L

0
ds

{
κ1

2
�1(s)

2 +
κ2

2
�2(s)

2 +
κ3

2
�3(s)

2

}
, (4)

where we have introduced the bending moduli κ1 and κ2

as well as a twist modulus κ3. Note that this energy
does not include the elasticity of elements connecting the
microtubule doublets such as nexin links. The effects of
elastic elements in the axonemal structure will be combined
with the description of motors which are also crosslinkers
between microtubule doublets, however with active properties.
Note also that we have neglected terms which could couple

n(s,φ)

R(s,φ)

Figure 3. Illustrating the direction n(s, φ) that is orthogonal to
∂sR(s, φ) and tangential to the axonemal surface at R(s, φ). The
grey dashed line indicates the circle of constant φ.

twisting and bending because the dominant coupling of twist
and bending is introduced by active elements. More general
energy functionals for filament bundles have been discussed in
[28, 29]. Starting from the energy (4), we can derive dynamic
equations which balance elastic, dissipative and active forces
which act inside and on the axoneme.

3.2. Relative microtubule sliding and work of internal forces

If the axoneme is bent and twisted, at any given point along
the axoneme characterized by the arc length s two adjacent
microtubule doublets n and n + 1 are displaced tangentially
relative to each other. We denote this sliding distance
�MT(s, n). This sliding distance can be expressed in terms
of the deformation of the cylinder by bending and twisting.
This relation can be derived by using differential geometry on
the surface of the curved cylinder, as follows. The arc length
	 of a microtubule doublet on the deformed cylinder measured
from the base as a function of the arc length s is given by

	(s, φ) =
∫ s

0
|∂s ′R(s ′, φ)| ds ′.

We define a unit vector n(s, φ) that is normal to the
microtubule doublet, such that n · ∂sR = 0, and tangential
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to the cylinder, see figure 3. Introducing the contravariant
components of n, we write n = ns∂sR + nφ∂φR, which allows
us to define a local displacement density by

�(s, φ) = ns∂s	 + nφ∂φ	, (5)

where ns, nφ and ∂φ	, ∂s	 are derived explicitly in appendix A.
The sliding displacement between neighbouring microtubule
doublets can then be defined as

�MT(s, n) = a

∫ φn+1

φn

�(s, φ) dφ. (6)

The sliding displacements between adjacent microtubule
doublets n and n + 1 are driven by relative forces per
microtubule length fMT(s, n) which are exerted by elastic
linkers such as nexins (see above) and by dynein motors. Note
that the shear force density between microtubules includes
friction forces from internal dissipation due to relative sliding.
The total work performed by the relative inter-doublet forces
fMT is given by

W = −
∫ L

0
ds

8∑
n=0

fMT(s, n)�MT(s, n). (7)

We therefore define a piecewise constant function f (s, φ) =
fMT(s, n) for φn � φ < φn+1 and n = 0, . . . , 8, such that the
work can be conveniently written as

W = −a

∫ L

0
ds

∫ 2π

0
dφ f (s, φ)�(s, φ)

= −
∫ L

0
ds

[
2πa�0f0 + πa

∞∑
k=1

(
�

(k)
1 f

(k)
1 + �

(k)
2 f

(k)
2

)]
,

(8)

where we have introduced the discrete Fourier modes in the
angle φ such that

�(s, φ) = �0(s) +
∞∑

k=1

�
(k)
1 (s) cos kφ +

∞∑
k=1

�
(k)
2 (s) sin kφ,

(9)

and correspondingly for the function f (s, φ).
In the following, we assume for simplicity, that the motor

activity and the resulting sliding displacements are dominated
by the modes �(k)(s) and f (k)(s) of low orders k. The modes
with k = 0 correspond to equal activity independent of φ while
the mode k = 1 implies that sliding and forces alternate on
opposite sides of the axoneme. Higher modes correspond to
more complex activation patterns around the circumference of
the axoneme that could play a role in very complex beating
patterns but are not considered here. We therefore focus on
�0, f0,�1,2 ≡ �

(1)
1,2 and f1,2 ≡ f

(1)
1,2 where we have dropped

the superscript to keep the notation simple.
For a straight, untwisted axoneme the microtubule arc

length 	 is independent of φ, which implies that the sliding
density � vanishes for a straight, untwisted axoneme. For
nonzero curvatures and twist density, the dimensionless sliding
density � can therefore be expanded in powers of the
dimensionless curvatures and twist density a�i . Making use
of the results described in appendix A, equation (5) yields to
lowest order

ξ||

ξr

Figure 4. The hydrodynamic effects of the surrounding fluid on the
cilium are approximated by local friction coefficients describing
perpendicular, longitudinal and rotational motion.

�0(s) = −a�3(s) (10)

�1,2(s) =
∫ s

0
�1,2(s

′) ds ′ + O
(
a2�2

i

)
. (11)

The enthalpy functional G = E − W can now be written
as

G � E −
∫ L

0
ds{
(s) + 2πa2�3(s)f0(s)

+ aπ�1(s)F1(s) + aπ�2(s)F2(s)}, (12)

where we have introduced the relative forces

F1,2(s) = −
∫ L

s

f1,2(s
′) ds ′

as well as the Lagrange multiplier function 
(s) to impose
a constraint of local inextensibility as an approximation
for the situation where microtubule stretching can be
neglected. Although strictly speaking it is the individual
microtubules that are constrained, for realistic values of
twist the assumption that the individual microtubules are
incompressible is approximated by the condition that the
central line of the axonemal cylinder is incompressible. This
enthalpy functional is an extension of previous work discussing
planar axonemal beat patterns to three dimensions [18, 30].
Alternatively it can also be thought of as a generalization of
the dynamics of passive elastic filaments in three dimensions
[24] to actively bending filaments.

4. Hydrodynamic forces and mechanical work

The dynamics of the axonemal shape changes are driven
by changes of the functional G. Ignoring hydrodynamic
interactions, we introduce local hydrodynamic friction
coefficients ξ||, ξ⊥ and ξr for parallel, perpendicular and
rotational motions of the cylinder with respect to the fluid (see
figure 4). Balancing the axonemal forces δG/δr and δG/δϑ

with viscous friction forces, we obtain the following equations
describing axonemal dynamics

∂tr = −
(

1

ξ⊥
(e1 ⊗ e1 + e2 ⊗ e2) +

1

ξ‖
e3 ⊗ e3

)
· δG

δr
(13)

∂tϑ = − 1

ξr

δG

δϑ
. (14)

In order to find expressions for the axonemal forces
δG/δr, δG/δϑ in the above equations, we make use of the
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geometric relations (3). Integration of δG obtained from (12)
by parts leads to

δG

δr
= ∂s[e1(2πa2f0�1 − aπ(F1�3 + f2)

−�1�3(κ3 − κ1) + κ2∂s�2)

+ e2(2πa2f0�2 − aπ(F2�3 − f1)

− (κ3 − κ2)�2�3 − κ1∂s�1) − e3τ ] (15)

δG

δϑ
= aπ(F2�1 − F1�2) + 2πa2∂sf0

−κ3∂s�3 + (κ1 − κ2)�1�2, (16)

where the tension τ(s) along the axoneme is given by

τ(s) = −
 − κ1

2
�2

1 − κ2

2
�2

2 − κ3

2
�2

3. (17)

The corresponding boundary terms are presented in
appendix B.

5. Equations of motion

5.1. Dynamic equations for the shape

The equations of motion for the curvatures and the twist
variables �i can be obtained by making use of (3) and the
incompressibility constraint

e3 · ∂t∂sr = 0, (18)

which determines the Lagrange multiplier function 
(s). This
leads to

∂t�1 = ∂tϑ − e2 · ∂2
s ∂tr

∂t�2 = −∂tϑ − e1 · ∂2
s ∂tr (19)

∂t�3 = ∂s∂tϑ + (�1e1 + �2e2) · ∂s∂tr.

The above expressions together with the force and moment
balancing equations (13) and (14) define the nonlinear dynamic
equations for the unknowns �i as presented in full in [31].

5.2. Boundary conditions

The equations of motion are complemented by boundary
conditions that follow from physical conditions imposed at the
ends of the axoneme. The boundary conditions are obtained
by matching the external forces and torques with the boundary
terms of the variations of G given in appendix B. Here, we
assume that the base of the axoneme (s = 0) is held fixed,
such that it cannot move, tilt or rotate. Assuming that the
motion of the distal end (s = L) is unconstrained (i.e. that no
external torques and forces are applied), we obtain the set of
boundary conditions, detailed in table 1.

6. Spontaneous motion

6.1. Force generation by motor proteins

In order to discuss oscillatory beat patterns, we express the
time-dependent quantities as a discrete temporal Fourier series,

�i(s, t) =
∞∑

n=−∞
�̃

(n)
i (s) einωt

Table 1. Boundary conditions that correspond to a clamped base
and a free distal end of the axoneme.

At s = 0
∂tr = 0 ∂t∂sr = 0 ∂tϑ = 0

At s = L
�1 = 0 �2 = 0 τ = 0
∂s�1 = aπf1

κ1
∂s�2 = aπf2

κ2
�3 = 2πa2

κ3
f0

and similarly for f (s, t), �(s, t), τ (s, t). In the following,
we focus on the fundamental modes with n = 1 and drop
the superscript, such that �̃i(s), τ̃ (s), �̃i(s), f̃ (s) refer to the
fundamental Fourier amplitudes of the corresponding time-
dependent quantities.

The density of shear forces f (s, φ) is a result of passive
crosslinkers between microtubule doublets as well as the action
of dynein motor proteins. For small oscillatory amplitudes and
forces, the relation between the fundamental Fourier modes of
f (s, φ) and �(s, t) can be expressed in the form

f̃ = χ�̃ + O(�̃3), (20)

where the linear response coefficient χ is a complex number
with negative real and imaginary parts. The phase and
amplitude of χ results from the combination of passive
crosslinkers and collectively operating motors which connect
the microtubule doublets [18, 19]. Examples for microscopic
mechanisms leading to such a response have been suggested
in the form of a relation between motor activity and their
sliding rate, alternatively termed ‘shear rate control’ [13, 22]
or ‘sliding control’ [18, 19]. The linear response coefficient χ

characterizes the mechanical properties of shear forces in the
active axoneme. It can be represented in terms of a frequency-
dependent negative stiffness K(ω) and negative friction λ(ω)

such that χ(ω) = K(ω) + iωλ(ω).
Making use of (11) we can substitute the mechanical

relation (20) into the dynamic equations (18) and (19) to
obtain a set of nonlinear partial differential equations in �i

and τ describing axonemal dynamics, as detailed in [31]. In
the following, we discuss spontaneous movements of a cilium
in three dimensions that are generated near an oscillatory
instability for symmetric bending rigidities (κ ≡ κ1 = κ2).

6.2. Collective modes

By performing a stability analysis of a straight and stationary
axonemal configuration, we identify the time-periodic modes
which become unstable to linear order. These modes
represent examples of self-organized axonemal beating
patterns. Stationary axonemal configurations are obtained
if all motors generate the same stationary force density f̂ 0,
which leads to a straight, but twisted stationary configuration
of the axoneme with �1,2 = 0 and �3 = A ≡ 2πa2f̂ 0/κ3.
Note that this stationary state is explicitly chiral and differs in
a left or a right-handed reference frame. This is because of
the chiral structure of the axoneme where motors are oriented
in a specific sense of rotation, i.e. the axonemal cross-section
does not look the same when viewed from the different ends
(see figure 1). In our equations this chirality is apparent in the
average twist of the axoneme described by A.
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Linearizing the dynamic equations around this state, we
find two coupled ordinary differential equations describing the
fundamental modes �̃1,2(s̄). They read in dimensionless form

iω̄�̃1 = −∂4
s̄ �̃1 + χ̄∂2

s̄ �̃1 + 4Ā
(
∂3
s̄ �̃2 − χ̄∂s̄�̃2

)
(21)

iω̄�̃2 = −∂4
s̄ �̃2 + χ̄∂2

s̄ �̃2 − 4Ā
(
∂3
s̄ �̃1 − χ̄∂s̄�̃1

)
,

where we have introduced the rescaled arc length s̄ = s/L and
the dimensionless parameters ω̄ = ωL4ξ⊥/κ, Ā = AL, and
χ̄ = πa2L2χ/κ . To linear order these two modes decouple
from the twist dynamics

iω̄ξ̄ �̃3 = (κ̄3 + 2χ̄ ā2)∂2
s̄ �̃3 (22)

where we have introduced ξ̄ = ξr/(ξ⊥L2), κ̄ = κ3/κ

and ā = a/L. The boundary conditions complementing
equations (21) and (22) are given in appendix B. Bending
waves of the axoneme can occur via instabilities of the
stationary reference configuration which are described as
nontrivial solutions to (21). The resulting spatio-temporal
patterns are chiral and exhibit a handedness which will be
discussed in the following section. Note that the twist can
exhibit separate instabilities described by (22) which are not
addressed here. Also note that in the limit of a strongly
anisotropic axoneme with bending rigidities κ2 � κ1 and
small twist Ā = 2πa2Lf̂ 0/κ3 	 1, the dynamics of a cilium
is described by equation (21) with small Ā and �̃2, which
corresponds to the equation of motion for planar beat patterns
of sperm flagella presented in [19]. Note that if Ā and �̃2 are
small but finite, the beat plane is slightly twisted which leads
to a helical swimming trajectory typical for sperm [32].

6.3. Twirling beat patterns

The general solution to the homogeneous boundary value
problem (21) is given by(

�̃1(s)

�̃2(s)

)
=

n=4∑
n=1

c+
n

(
1
i

)
eqns̄ + c−

n

(
1
−i

)
e−qns̄ , (23)

where qn are the four complex solutions to the characteristic
polynomial

q4 − q2χ̄ − 4iĀ(q3 − qχ̄) + iω̄ = 0. (24)

The eight boundary conditions on �̃i given in table B1
determine the eight complex coefficients c±

n , as detailed in
appendix C.

Non-trivial solutions to (23) which satisfy the boundary
conditions exist only for a discrete set of specific complex
values of χ̄ = χ̄±

k , k = 0, 1, 2, . . . . For each k, two different
solutions exist: for χ̄+

k a mode with c+
n 
= 0, c−

n = 0 and for
χ̄−

k a mode with c+
n = 0, c−

n 
= 0. Each of these critical values
χ̄±

k thus corresponds to a linearly unstable beating mode of the
system.

For given k, the pair of solutions characterized by the
values χ̄±

k according to (23) satisfy �̃1(s) = ±i�̃2(s). The
phase difference of ±π/2 between the two fundamental
Fourier modes of the curvatures �1 and �2 implies that the
time evolution of the shape corresponds to clockwise and
anticlockwise helical waves, respectively. This can be shown
by defining amplitudes and phases H±(s) and θ±(s) of the

(A)

(B)

Figure 5. Shape of the linearly unstable modes corresponding to
twirling beat patterns in a cilium of length L = 3 µm beating with
frequency ω/2π ≈ 10 Hz given a twist of Ā = 0.20. Note that
despite the axoneme’s chirality, which fixes the sign of the twist Ā,
both clockwise as well as anticlockwise helical waves can become
unstable. (A) A twirling beat pattern, corresponding to �+

1
exhibiting a clockwise rotation. (B) A twirling beat pattern,
corresponding to �−

1 exhibiting an anticlockwise rotation. For the
purpose of this illustration, the amplitude of the depicted unstable
modes was fixed arbitrarily.

curvature waves by H±eiθ± = ∑
n c±

n e±qns . We can then
write(

�±
1 (s, t)

�±
2 (s, t)

)
= Mrot(∓ωt)

(
H±(s) cos θ±(s)

∓H±(s) sin θ±(s)

)
(25)

where Mrot(α) is the two-dimensional rotation matrix defined
in appendix B. The unstable modes with time evolution
�±

i (s, t) lead to a helical bending wave that corresponds to
twirling beat patterns in which the tip of the cilium follows a
rotational path in the clockwise (�+

i ) or anticlockwise (�−
i )

direction (as seen from the distal end). It is important to note
that despite the axoneme’s chirality, which fixes the sign of the
twist, both clockwise as well as anticlockwise helical waves
can become unstable.

Examples of such bending modes on the branch of
instabilities for χ̄±

1 for values of the parameters corresponding
to nodal cilia are illustrated in figure 5. Here, we have used
Ā = 0.20. This is of the order of the twist that can maximally
be generated by dynein motors, based on estimates for the
time-independent motor activity (f c

0 ≈ 6 ×10−4 N m−1, which
corresponds to ten dynein heads per 96 nm structural repeat
[33] generating a force of 6 pN) and the twist rigidity of the
axoneme (κ3 ≈ 10−21 N m2) [23]. Changing the magnitude of
the twist Ā does not qualitatively change our results about the
stability of helical ciliary beat patterns. These spontaneously
twirling solutions reproduce qualitatively the experimentally

6
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0

Figure 6. The clockwise twirling modes �+
1(s, t) and anticlockwise

twirling modes �−
1 (s, t) correspond to critical values of χ̄(ω̄) for

which the system of equations has nonzero solutions. Displayed are
the leading pair of critical branches χ̄±

1 (ω̄) for 0 � ω̄ � 0.10.

observed vortical beat patterns of nodal cilia [10, 11] and other
9 + 0 monocilia [9].

The critical values of the linear response coefficient χ̄ are
functions of the frequency, defining pairs of branches χ̄±

k (ω̄)

that originate from the points χ̄±
k (0) = −((2k + 1)π/2)2 on

the real axis. The leading pair χ̄±
1 (ω̄) is depicted in figure 6

for small values of ω̄. For completeness the first three pairs of
branches are displayed in appendix C for a larger range of ω̄,
indicating the structure of instabilities in the space of complex
χ̄ values.

6.4. Sense of rotation

Note that the above description of unstable modes is generic
insofar as it is independent of the detailed microscopic motor
dynamics. Each linear mode corresponds to a given bifurcation
frequency, and which frequency (and therefore which mode)
becomes unstable is determined by the following microscopic
condition: at the instability, the linear response function χ̄ (ω)

matches a critical value χ̄(ω) = χ±
k (ω), which selects the

frequency and the mode that becomes unstable for a given
linear response function χ̄ (ω) of the motor collection within
the axoneme. The frequency of the beat at the instability is
therefore not generic but depends on the properties of the active
motor molecules. Using models for motor co-operativity, one
can find explicit expressions for χ̄ (ω) [18, 19, 34, 35]. A
typical example is given by

χ(ω) = K + iωλ − ρkε
iωτ̄ + (ωτ̄ )2

1 + (ωτ̄ )2
, (26)

where k is a stiffness of a motor domain, ρ the density of
motors along the axoneme, K and λ the internal elasticity and
friction associated with microtubule sliding, τ the correlation
time of motor attachments and detachments and ε denotes a
dimensionless control parameter [18, 19]. For such a specific
example, we can find the critical values of ε for which the
modes �̃±

i (s) become unstable. Using estimates for the values
for the microscopic parameters [18, 19], we find that the

Figure 7. Stability diagram in the (ε, λ) plane where ε denotes the
dimensionless control parameter in arbitrary units and λ is the
internal passive sliding resistance λ in the axoneme. Displayed are
the lines of instability which correspond to clockwise (solid line,
red) and anticlockwise (dashed line, blue) twirling patterns.
Parameter values are L = 3 × 10−6 m, κ = 1.7 × 10−21 kg m3 s−2,
ξ⊥ = 2.5 × 10−3 kg m−1 s−1, K = 103 kg m−1, τ = 5 × 10−3 s,
a = 90 × 10−9 m.

clockwise (as seen from the distal end) twirling beat patterns
corresponding to �̃+

i (s) become unstable first. This is shown
in figure 7 where for the purpose of the illustration we present a
region of the stability diagram where the two lines of instability
can be clearly distinguished. This region corresponds to small
values of λ and large values of the bifurcation frequency. As
λ increases, the frequency of the bifurcation decreases. Our
estimates of the parameter values of cilia correspond to values
of λ � 5 × 102 N s m−2 for which the frequency is ω/2π �
10 Hz.

7. Discussion

The motility of cilia and flagella lies at the heart of many
biological processes, relevant to fields as diverse as the
swimming of microorganisms, developmental biology and
medicine. In this paper, we present a theoretical description
of the ciliary dynamics, in which the axoneme is represented
by a cylinder, the surface of which can be mapped to the
nine circumferential microtubule doublets. Spatio-temporal
activation patterns of dynein motors in the axoneme are
then described by time-dependent distributions of shear force
density on the cylinder surface and induce bending and twisting
deformations of the cylinder.

We analysed the dynamics of cilia, neglecting
hydrodynamic interactions and considering the simplest case
of an axoneme with isotropic bending stiffness (κ1 = κ2).
We derived equations of motion (21) for the fundamental
modes which emerge by self-organization for a given
physical feedback between motor activity and relative sliding
displacement of microtubule doublets. Our approach allowed
us to show analytically that self-organized twirling beat
patterns can emerge from a generic feedback between motor
activity and local sliding displacement.

Key to the chirality of emergent beat patterns is the fact
that motor activity in the axoneme leads to an average twist A

as a result of the chiral asymmetry of the axonemal structure.
In previous work, it was suggested that this effect is weak

7



Phys. Biol. 5 (2008) 016003 A Hilfinger and F Jülicher

[23]. Here, we have shown that this motor-induced twist is
important for the selection of a definite sense of rotation of
twirling motion. Note that the average twist A discussed in
this work follows directly from the known properties of dynein
activity within the axoneme and has a definite sign, unlike the
twist introduced in [22].

The general framework we develop here can also be
related to planar beat patterns such as those of many sperm.
A planar beat can emerge in situations where the bending
rigidity is anisotropic such that bending is facilitated in a fixed
direction with respect to the material reference frame. This
corresponds in our description to a case where the two bending
moduli have very different values (κ2 � κ1). Such a strong
bending anisotropy could result from structural constraints
which suppress relative sliding of one pair of microtubule
doublets [23, 36–39]. If there is no twist in the axoneme,
the equations described here approach in this case of strong
anisotropy the limit of a two-dimensional planar beat [18].
In this limit, our theory can be directly and quantitatively
compared to experimentally observed beat patterns, which
provides strong evidence for the sliding control mechanism
of motors in sperm [19].

Because of the chiral structure of the axoneme, in general
a small twist will occur as a consequence of average motor
activity. If the average twist density Ā is small, the beat plane
will twist slightly, but the beat pattern look almost planar. This
is consistent with the commonly observed helical swimming
paths of many sperm with almost planar beat patterns [32, 40].

The equations for linearly unstable modes have two types
of helical wave solutions which rotate in either clockwise or
anticlockwise direction (see figure 5). Because of the
axonemal chirality, modes with one sense of rotation become
unstable first and the selected rotating wave has a definite
sense of rotation. However, this sense of rotation is selected
dynamically and depends on the details of the properties of the
feedback which is described by the linear response function
χ(ω). Therefore, by changing parameter values such as the
internal shear resistance or motor properties such as on- and
off-rates, the sense of rotation can in principle be inverted even
though the structural chirality is not changed. This dynamic
selection of asymmetric states is similar in its nature to how
the direction of motion of motor proteins along a filament
is determined by the spatial asymmetry of the filament. In
the case of a motor-filament system, the filament polarity
determines the direction of motion of a given motor, but
different motors can move in opposite directions because the
directionality of motion depends on both structural and kinetic
properties of motors and filaments [34, 41, 42].

Analysing a simple model of collective motor action,
we find that the clockwise twirling beat patterns become
unstable first and thus represent the principal beating mode.
This corresponds to the predominantly clockwise twirling
beat patterns observed of monocilia lacking the central pair
of microtubules (9 + 0 cilia) [9–11]. As mentioned above,
interestingly the system can also become unstable with respect
to anticlockwise twirling patterns, despite the axoneme’s
chirality that selects a preferred twist. Note that anticlockwise
beat patterns have been reported in a small number of cilia

in mutant (inv) mouse embryos [10], and individual cilia in
developing rabbit embryos have been observed to infrequently
undergo transitions from clockwise to anticlockwise beat
patterns and back [43].

8. Conclusion and outlook

During the development of many vertebrate species, groups of
cilia on the surface of the embryo rotate in a chiral manner. The
sense of rotation of these nodal cilia generates a chiral fluid
flow which in turn controls the left–right symmetry breaking
of the developing embryo. Therefore, the question of how the
sense of rotation of 9 + 0 cilia is selected is fundamentally
linked to developmental processes. In the developmental
context, many rotating cilia interact hydrodynamically. In
this situation, a definite chirality of the net flow emerges from
an array of twirling cilia [44–46]. It will be of interest to
extend our analysis to include hydrodynamic interactions,
by incorporating our description of self-organized three-
dimensional axonemal beat patterns into the framework
of existing studies on synchronization phenomena in cilia
[44, 45, 47].

Our analysis focuses on the lowest order temporal and
angular Fourier modes of the beat, which dominate for simple
rotating or helical waves. More complex beating patterns
that are strongly non-harmonic, such as the complex beating
pattern of cilia which generate an active stroke and a recovery
stroke near a surface, involve higher order Fourier modes.
The same arguments also apply for the angular Fourier modes
around the axoneme. While for harmonic helical or rotating
modes only the lowest Fourier modes are relevant, higher
modes become important for more complex beat patterns.
Furthermore for beat patterns with large amplitude, the effect
of nonlinearities cannot be neglected.

Previous numerical studies of the nonlinear dynamics of
twirling axonemes suggest that clockwise and anticlockwise
rotating solutions could coexist for certain parameter values
[22]. Such coexistence of modes is a global property of
the dynamic system which is not described by a linear
stability analysis but in general results from the nature of
nonlinearities. In a sliding control model for axonemal
oscillations, nonlinearities are expected to be dominated by
collective nonlinearities of motors which depend on details
of motor properties and their interactions [34]. The role of
motor-induced nonlinearities can be studied systematically.
For planar sperm beats these and other nonlinearities do not
significantly affect the waveform but determine the amplitude
of the beat [48].

A numerical study of the full nonlinear equations of
ciliary dynamics in three dimensions, including motor-
generated nonlinearities, is therefore of interest to describe
large amplitude oscillations and the dynamics of higher order
modes. Together with our present work, such full simulations
of nonlinear axonemal dynamics could in the future clarify
the role of nonlinearities for the observation of coexistence of
clockwise and anticlockwise rotating patterns in simulations
[22].

8
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To make quantitative comparisons between Fourier modes
of observed ciliary beat patterns and theoretical ones, similarly
to the work on planar beat patterns of bull sperm [19] will be
difficult, as improving current light microscopy methods to
reach the necessary spatio-temporal resolution would push the
available experimental techniques to their limits. However,
one of the main predictions of our work is raising the possibility
of transitions between clockwise and anticlockwise rotations.
We therefore suggest that careful observations of beating
nodal cilia should be made in order to study their sense
or rotation and switching events between different rotation
senses. It would be interesting to do so in varying conditions,
for example examining the effect of changes in intracellular
salt concentrations, which can affect the motor dynamics and
therefore potentially alter the dynamic mode selection.

Recent work has shown that the mechanical properties of
the basal connection between microtubules can fundamentally
influence the shape of the planar axonemal beat [19]. In
the present work describing three-dimensional ciliary beat
patterns, we have considered only the simplest case where
no sliding exists at the base. Further work will be necessary
to examine the effects of elastic and viscous properties of the
basal connection varying around the basal circumference of
the axoneme. Based on the analysis of planar beat patterns
[19] and the observation that ‘the diversity of structural
organization of the basal apparatus between different animals
is considerable’ [49], we speculate that the properties of
structural elements at the base and their spatial organization
could control the shape and asymmetry of three-dimensional
beat patterns, the sense of rotation and the degree of planarity
of initially helical waves.

9. Supplementary material

• Movie S1. Animation of a theoretical beat pattern,
corresponding to the unstable mode �+

1(s, t)

presented in figure 5(A). (52 KB MOV)
stacks.iop.org/PhysBio/5/016003

• Movie S2. Animation of a theoretical beat pattern,
corresponding to the unstable mode �−

1 (s, t)

presented in figure 5(B). (52 KB MOV)
stacks.iop.org/PhysBio/5/016003
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Appendix A. Differential geometry on the axoneme

In order to determine the partial derivatives ∂s	, ∂φ	 and the
contravariant components ns, nφ we make use of

∂φR = −ae1 sin φ + ae2 cos φ

∂sR = −e1a�3 sin φ + e2a�3 cos φ

+ e3(1 − a(�2 cos φ − �1 sin φ))

∂s∂φR = −a�3(e1 cos φ + e2 sin φ)

+ ae3(�1 cos φ + �2 sin φ)

∂sR · ∂sR = 1 − 2a(�2 cos φ − �1 sin φ)

+ a2
(
�2

3 + (�2 cos φ − �1 sin φ)2
)

∂φR · ∂φR = a2

∂sR · ∂φR = a2�3

∂sR · ∂s∂φR = a(1 − a(�2 cos φ − �1 sin φ))

× (�1 cos φ + �2 sin φ).

These quantities then straightforwardly define the partial
derivatives

∂s	 =
√

∂sR · ∂sR (A.1)

∂φ	 =
∫ s

0
ds ′ ∂sR · ∂s∂φR√

∂sR · ∂sR
. (A.2)

The contravariant components follow from the orthonormality
condition for n and can be written in terms of the above
quantities as

ns = − 1

|∂sR|
∂sR · ∂φR√|∂sR|2|∂φR|2 − (∂sR · ∂φR)2

(A.3)

nφ = |∂sR|√|∂sR|2|∂φR|2 − (∂sR · ∂φR)2
. (A.4)

Equations (A.1)–(A.4) define the vector n which characterizes
the direction from which motors attach to microtubule doublets
in the axoneme (see figures 1 and 3). The sign of n and of the
sliding displacement density � given by (5) corresponds to the
chiral structure of the axoneme as follows: choosing the sign
of f such that active motors generate positive force density
f , the sliding displacement between microtubule doublets �

is negative while the resulting twist density �3 and the work
W are positive. This corresponds to the axonemal situation
in which the peripheral microtubule doublets describe a right-
handed helix around the central axis, and where the minus
end directed motor proteins move towards the base, causing
relative sliding in the chiral arrangement shown in figure 1.

Appendix B. Boundary terms

B.1. Boundary forces and torques

The boundary terms generated by the partial integration of the
enthalpy functional (12) correspond to the forces and torques
at the ends of the axoneme and are given by[

δG

δr
· (δr) + (κ3�3 − 2πa2f0)(δϑ) + (e1(κ2�2 − πaF2)

− e2(κ1�1 − πaF1)) · (δ∂sr)
]s=L

s=0

.

B.2. Linear modes boundary conditions

The boundary conditions that complement the dynamic
equations (21) and define the linearly unstable bending modes
are summarized in table B1.
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Figure B1. The conditions for nonzero solutions to exist are det Q(+)
mn(χ̄ , ω̄) = 0 or det Q(−)

mn (χ̄ , ω̄) = 0, and lead to a discrete spectrum of
values for χ̄(ω̄) for which the system of equations has nonzero solutions. Here we show the leading branches of critical values χ̄±

k for
k = 0, 1, 2 starting from ω̄ = 0 on the real axis. The red dashed lines in (A) correspond to det Q(+)

mn(χ̄ , ω̄) = 0 and �+
1(s, t) solutions, while

the blue dashed lines in (B) correspond to det Q(−)
mn (χ̄ , ω̄) = 0 and �−

1 (s, t) solutions. The grey circles indicate the region magnified in
figure 6.

Table B1. Boundary conditions satisfied by the linearly unstable
bending modes.

At s̄ = 0 at s̄ = 1

∂2
s̄ �̃1 = χ̄�̃1 + 2Ā∂s̄�̃2 �̃1 = 0

∂2
s̄ �̃2 = χ̄�̃2 − 2Ā∂s̄�̃1 �̃2 = 0

∂3
s̄ �̃1 = χ̄∂s̄�̃1 + 3Ā(∂2

s̄ �̃2 − χ̄�̃2) ∂s̄�̃1 = χ̄
∫ 1

0 �̃1(s̄) ds̄

∂3
s̄ �̃2 = χ̄∂s̄�̃2 − 3Ā(∂2

s̄ �̃1 − χ̄�̃1) ∂s̄�̃2 = χ̄
∫ 1

0 �̃2(s̄) ds̄

Table B2. Boundary conditions satisfied by the linearly unstable
twist modes.

At s̄ = 0 at s̄ = 1

(κ̄3 + 2χ̄ ā2)∂s̄�̃3 = 0 �̃3 = 0

B.3. Twist instability

Independent of the bending instabilities the twist density �3

can become unstable, as defined by the boundary conditions
of table B2, complementing equation (22).

Appendix C. Unstable modes

C.1. Boundary value problem

The dynamics equations (21) together with the boundary
conditions summarized in table B1 lead to a set of two
uncoupled matrix equations of the form Q(+)

mn(χ̄ , ω̄)c+
n = 0

and Q(−)
mn (χ̄ , ω̄)c−

n = 0, where the matrices Q(±)
mn (χ̄ , ω̄) are

given by

Q
(+)
1,n = χ̄ − q2

n + 2Aiqn

Q
(+)
2,n = χ̄qn − q3

n + 3Ai
(
q2

n − χ̄
)

Q
(+)
3,n = eqn

Q
(+)
4,n = χ̄

qn

(eqn − 1) − qn eqn + Ai eqn

Q
(−)
1,n = χ̄ − q2

n + 2Aiqn

Q
(−)
2,n = χ̄qn − q3

n + 3Ai
(
q2

n − χ̄
)

Q
(−)
3,n = e−qn

Q
(−)
4,n = χ̄

qn

(e−qn − 1) − qne−qn + Ai e−qn .

where n = 1, 2, 3, 4 and qn = qn(χ̄, ω̄) are the four complex
roots of the characteristic polynomial (24). For nonzero
solutions to exist, one of the matrices Q(±)

mn has to be singular,
which leads to a discrete spectrum of χ̄±

k values as illustrated
in figure B1.

C.2. Rotation matrix

The two-dimensional rotation matrix is defined as

Mrot(α) =
(

cos α −sin α

sin α cos α

)
.

Glossary

• Microtubules. Cytoskeletal filaments with a diameter of
about 25 nm. They behave as elastic rods and have a
persistence length of several millimetres. Their structural
polarity provides a directionality for motor proteins.

• Dynein. Molecular motor that converts chemical energy
in the form of ATP into work. It generates motion along
microtubules in the direction towards the minus end.

• Axoneme. Evolutionary highly conserved structure
that consists of nine cylindrically arranged microtubule
doublets, linked by dynein motors and passive elastic
elements. Constitutes the motile element of cilia and
flagella.

• Sliding control. General mechanism by which the activity
of motors within the axoneme is related to the forces
exerted by the motors due to the local shear-rate.

• Nodal cilia. Rotating cilia that generate a directed fluid
flow during embryonic development in many vertebrate
species and thereby break the left–right symmetry axis.
Due to their chiral structure and their ability to break the
left–right symmetry, prime candidates to encode the third
body axis with respect to the earlier established head–tail
and front–back body axes.
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• Clockwise/anticlockwise. In this paper, all beat patterns
and their sense of rotation are described when viewed
from the distal end of the axoneme towards the base.
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