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Supplementary Text 

In our two-dimensional representation, the cell is characterized by a circle with radius R 

(Fig. 1c,d). The spindle geometry is described by two poles, arranged symmetrically with 

respect to the cell centre, with a separation 2a. Astral microtubules radiate from these poles 

with a uniform distribution within a finite angular interval chosen such that microtubules 

radiating from each pole reach half of the circular perimeter. The orientation of this spindle 

geometry is described by the angle φ between the spindle axis and the x-axis (Fig. 1c).  Each 

point R
r
on the cell cortex is described by a cortical angle ψ as 
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R (ψ) = R
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sinψ
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We introduce the unit vector   

                                                       

  

r 
m (ψ,φ) =

cosγ(ψ,φ)

sinγ(ψ,φ)
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 
 
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 
  ,                                           (S2) 

that points in the direction of the astral microtubules that reach the cortex at the angle ψ, for a 

given spindle orientation φ. Here γ=α(θ)+φ  is the angle between the x-axis and the local 

microtubule orientation (Fig. 1c). The angle α is a function of θ=ψ−φ. Cortical forces exerted 

per angular element on the spindle in a direction tangential to the astral microtubules are 

given by 

                                             .),(m )-( )F(),(f φψφψρψφψ rr

MT=                                    (S3) 

Here F(ψ) denotes the magnitude of the force acting per microtubule at the cortical angle ψ, 

and ρMT(θ) is the angular density of microtubules reaching the cell cortex at an angle 

θ relative to the spindle axis: 
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Here, NMT is the total number of microtubules emerging from one spindle pole in the 

planar projection. The total force exerted by the force generators on the spindle acts to 

displace the spindle off the centre of the rounded cell until it is balanced by a centring force 

due to microtubule compression and buckling
1
. As shown in supplementary Fig. S2, spindle 

displacements in HeLa cells are very small and can be neglected. However, the force 

generators also exert a net torque which is given by 

                                             ∫
−

−=
π

π

ψφτ )()( xyyxz fRfRd ,                                            (S5) 

where the vector  

r 
R (ψ), with components Rx and Ry, points from the cell centre to the cortical 

position with angle ψ (Fig. 1c). Note that in equation (2) in the main text the vectors   

r 
R (ψ) 
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and ),(f φψ
r

 have an additional z-component which is zero in order to permit a condensed 

notation. The torque zτ depends only on the spindle orientation φ. It is convenient to define the 
effective energy landscape  

                                                     . d )()(
2/

φφτφ
φ

π

′′−= ∫
−

zW                                               (S6) 

Stable spindle orientations thus correspond to minima of the potential W(φ). Our key 

assumption, that retraction fibres locally activate cortical force generators, can be written in 

the form  

                                                           F(ψ) ∝ ρr(ψ) ,                                                     (S7) 

in which ρr(ψ) denotes the angular density of retraction fibres reaching the cortex radially at 

angle ψ. The angular distribution ρr(ψ) of retraction fibres depends on the pattern geometry. It 

can be estimated using the contour line of the pattern shape along which retraction fibre attach 

(indicated by a red pattern outline in Fig. 1d and in Figs. 2-4) and the position of the cell 

centre on the pattern. We parameterised the shape of this adhesive boundary line (shown as 

red outlines in Figs. 1-4) by the positions (x(ψ),y(ψ)) measured from the cell centre. The local 

density of retraction fibres at the cell cortex ρr(ψ) ∝  g(ψ) is then proportional to the 

dimensionless quantity 

                                           g(ψ) =  
1

R
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Therefore, we can express the force per microtubule as 

                                                           ,)g(  )F( ψψ C=                                                    (S9) 

in which we have introduced the coefficient C that has units of force. It characterizes the 

activation of force generators by the density of retraction fibres. With these definitions, we 

can calculate the angular torque τz(φ) for any given pattern geometry, using the centre of mass 

of the pattern as an estimate for the average position of the cell centre on the pattern (see 

supplemental Fig. S1). Note that the cortical forces, which determine spindle orientation, are 

purely internal to the cell, while the cell position is determined by the balance of external 

forces which are not the subject of this work. 

In order to determine the distribution of spindle orientations, we write a dynamic 

equation for the spindle orientation angle 

                                                        . )()(
d

d
t

t
z ξφτφη +=                                                (S10) 

Here η is an effective friction coefficient for spindle rotations, and ξ(t) is a random torque 

with zero average that is added to the average torque τ and accounts for the effects of 
fluctuations in the system. Using for simplicity a Gaussian white noise with variance 
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                                                  ξ(t)ξ( ′ t ) = 2Dηδ(t − ′ t ) ,                                       (S11) 

and noise strength D, the orientation φ reaches for long times a stationary angular distribution  

                                                      P(φ) = N exp −W (φ)

D

 
 
 

 
 
  ,                                          (S12) 

Here N is a normalization factor. In order to compare these calculated angular distributions 

with experiments, we introduce the dimensionless energy profile,  

                                                       ,)( 
R  

2
)( φπφ W

NC
w

MT

=                                           (S13) 

that only depends on the pattern geometry and the ratio a/R. We can write 

                                                      ( ) , /)(exp)( dwNP φφ −=                                        (S14) 

in which 

                                                              
R  

  2

MTNC

D
d

π=                                                  (S15) 

is a dimensionless coefficient which combines the effects of many unknown details. These 

include the noise strength, the friction coefficient, as well as the strength of the coupling of 

retraction fibres to the activity of force generators and the number of force generators. The 

latter two are both described by the parameter C. 
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Supplementary Discussion 
 

Our model did not account quantitatively for the exact points at which transitions of 

orientation angles occurred when the H-shaped pattern was continuously deformed. However, 

these transitions result from a subtle balance of opposing torques that can be captured 

qualitatively in our very simple description. Similarly, to describe the delicate balance that 

governs the transition of the preferred spindle orientations between the arrow- and the 

crossbow-shaped patterns, the adhesive pattern outlines used in the calculations was slightly 

adjusted, in accordance with the experimentally observed retraction fibre distributions (Fig. 

4). Close to such transitions of spindle orientation, details of the retraction fibre distributions 

and of the molecular processes governing activation of force generators become important for 

a fully quantitative description. To incorporate such details requires a refined analysis of the 

distribution of retraction fibres. It could also involve nonlinear corrections to our simple linear 

relation between cortical pulling force and the density of retraction fibres. 

 

Our model is based on the hypothesis that the activity of cortical force generators 

depends on the local density of retraction fibres. How this is achieved needs to be 

investigated
2
. The activation as well as the recruitment of cortical force generators could be 

associated with well characterised cortical cues such as the presence of complexes associated 

to heterotrimeric G proteins known to regulate spindle orientation
2-8

. In vivo, any source of 

cortical heterogeneity, either due to external chemical gradients or non homogeneous spatial 

distribution of cell contacts, that leads to a differential activation or recruitement of cortical 

force generators could guide spindle orientation according to our theoretical model. 

 

  

doi: 10.1038/nature05786  SUPPLEMENTARY INFORMATION

www.nature.com/nature 5



Supplementary Notes 

This work was supported by a grant from the Human Frontier Science Program, ref 

RGP0064/2004. 

1. Grill, S. W., Kruse, K. & Julicher, F. Theory of mitotic spindle oscillations. Phys Rev 

Lett 94, 108104 (2005). 

2. Thery, M. & Bornens, M. Cell shape and cell division. Curr Opin Cell Biol 18, 648-57 

(2006). 

3. Du, Q. & Macara, I. G. Mammalian Pins is a conformational switch that links NuMA 

to heterotrimeric G proteins. Cell 119, 503-16 (2004). 

4. Izumi, Y., Ohta, N., Hisata, K., Raabe, T. & Matsuzaki, F. Drosophila Pins-binding 

protein Mud regulates spindle-polarity coupling and centrosome organization. Nat 

Cell Biol 8, 586-93 (2006). 

5. Sanada, K. & Tsai, L. H. G protein betagamma subunits and AGS3 control spindle 

orientation and asymmetric cell fate of cerebral cortical progenitors. Cell 122, 119-31 

(2005). 

6. Colombo, K. et al. Translation of polarity cues into asymmetric spindle positioning in 

Caenorhabditis elegans embryos. Science 300, 1957-61 (2003). 

7. Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and 

differentiation of mammalian skin. Nature 437, 275-80 (2005). 

8. Yamashita, Y. M., Jones, D. L. & Fuller, M. T. Orientation of asymmetric stem cell 

division by the APC tumor suppressor and centrosome. Science 301, 1547-50 (2003). 

 

 

doi: 10.1038/nature05786  SUPPLEMENTARY INFORMATION

www.nature.com/nature 6



0 8 16 24 32
0

8

16

24

32

0 4 8 120

8

16

24

32

40

48

56

0

8

16

24

32

0 8 16 24 320

8

16

24

0 8 16 24
0

8

16

24

32

0 8 16 24 32

0

8

16

24

0 8 16 24
0

8

16

24

0 8 16 24
0

8

16

24

0 8 16 24
0

8

16

24

0 8 16 24

0

10

20

30

0 10 20 30

0

10

20

30

0 10 20 30 0

10

20

30

0 10 20 30

0

10

20

30

0 10 20 30
0

10

20

30

0 10 20 30 40
0

10

20

0 10 20 30 40

average position
x=6.2, y=28.1, n=141

pattern center of mass
x=6, y=28

average position
x=15.2, y=14.6, n=310

pattern center of mass
x=15, y=15

average position
x=12.6, y=12.1, n=430

pattern center of mass
x=11.9, y=11.9

average position
x=10.1, y=9.5, n=255

pattern center of mass
x=9.8, y=9.8

average position
x=14.5, y=14.3, n=271

pattern center of mass
x=15.1, y=15.1

average position
x=15.2, y=15.3, n=252

pattern center of mass
x=15, y=15

average position
x=11.1, y=10.8, n=186

pattern center of mass
x=10.6, y=10.6

average position
x=14.8, y=14.9, n=185

pattern center of mass
x=15, y=15

average position
x=15.1, y=15.2, n=387

pattern center of mass
x=15, y=15

average position
x=18.4, y=18.2, n=252

pattern center of mass
x=18, y=18

average position
x=18.7, y=17.0, n=257

pattern center of mass
x=19, y=17

average position
x=19.8, y=15.5, n=306

pattern center of mass
x=20, y=16

average position
x=21.8, y=14.7, n=169

pattern center of mass
x=22, y=15

average position
x=13.4, y=13.2, n=125

pattern center of mass
x=15.5, y=15.5

average position
x=14.1, y=19.1, n=126

pattern center of mass
x=14.8 , y=19

average position
x=17.3, y=19, n=436

pattern center of mass
x=17.8  , y=19.5

0

10

20

30

0 10 20 30
average position
x=17.4, y=19.1, n=559

pattern center of mass
x= 19 , y=18.7

0

10

20

30

0 10 20 30

σ =1.9,x σ =1.9y σ =2.6,x σ =2.4y

σ =1.8,x σ =1.8yσ =3.6,x σ =3.4y σ =2.0,x σ =3.7yσ =2.4,x σ =2.9y

σ =1.6,x σ =4.8y

σ =2.3,x σ =2.5y σ =2.9,x σ =2.6y

σ =2.0,x σ =4.7y

σ =3.0,x σ =3.2y

σ =3.4,x σ =4.3y σ =5.2,x σ =3.6yσ =4.1,x σ =4.5y

σ =3.1,x σ =3.4y σ =4.1,x σ =4.3y
σ =3.9,x σ =3.8y

Supplementary Figures and legends

Figure S1. Positions of cell centres on different patterns.
Experimentally observed positions of the centres of mitotic cells (blue dots) on the different micro-patterns 
(orange). Cell centres are clustered near the geometric centre the patterns (red cross). This geometric centre
 is calculated as the centre of mass assuming a constant surface mass density on the pattern. The positions 
of the centre of mass, the average position of cell centres and the standard deviations of the distributions 
are indicated.

doi: 10.1038/nature05786  SUPPLEMENTARY INFORMATION

www.nature.com/nature 7



-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

∆y = -0.05 ± 0.08 µm 

∆x = -0.20 ± 0.07 µm
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

∆x = -0.11 ± 0.05 µm 

∆y = -0.07 ± 0.04 µm

n=90 n=93

a

b

theory

experiment

y

x

y

x

Figure S2. Metaphase plate displacements with respect to the cell centre, determined for symmetric and 
asymmetric spindle orientations
a, The net force exerted by cortical force generators can induce spindle displacements. Such spindle displacements 
can lead to shifts in the position of the metaphase plate in a direction of the average cortical force. We calculated 
the direction of the average force for two pattern shapes (orange). The orientation of the force vector is shown 
(red arrow) to indicate the direction of the expected average displacement of the metaphase plate (blue bar). 
b, The positions of the centre of the cell (determined by a phalloidin staining of the cortex), and of the metaphase 
plate (determined by Hoechst staining of DNA), were determined, using an automated threshold and morphometric 
image analysis. The measured positions of the metaphase plates with respect to the cell centre (at the origin of the 
x-y coordinate system) are shown for two different patterns (red dots). Distances are given in microns. The average 
displacements   and  in x and y directions and the standard deviations of displacements are indicated for both 
patterns. Average displacements were small (less than 200nm) compared to the cell radius (10µm), which shows 
that spindle displacements can be neglected in our theoretical analysis. Note that the metaphase plate is displaced 
on average in the negative x-direction, consistent with the direction of the average total force calculated in our 
model (see a).
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Figure S3. Spindle orientation on various pattern geometries
Our theory can quantitatively account for the observed spindle orientation angles on many different patterns studied 
experimentally. For each pattern geometry (orange), the convex outline of the pattern (which corresponds to the line 
of attachment of retraction fibres) is indicated (red). Based on this geometry, we calculate the energy profiles w(φ) 
(blue) that characterized the spindle orientations. The angular probability density P(φ)=N exp(-w(φ)/d) (red curve) 
is related to the potential profile by the parameter d. We fit the calculated angular distribution to the experimentally 
measured angular histogram using d as a single fit parameter. The number n of cells used to obtain the histograms 
and the best fit values of d are indicated for each pattern.
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