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Waves propagating along the basilar membrane are amplified by an active nonlinear
process. The general aspects of the active amplification of periodic signals can be
discussed in the framework of critical oscillators. Here, we show how the concepts
of a traveling wave and of critical oscillators can be combined to describe the main
features of nonlinear wave propagation, energy flow and reflections in the cochlea.

1 Introduction

The cochlea acts as a spatial frequency analyzer which exhibits resonant vi-
brations at characteristic frequencies that vary with position along the basilar
membrane (BM) [1]. These vibrations are monitored by sensory hair cells [2].
This feature of the cochlea can be represented by a transmission line of resonant
elements which naturally accounts for the propagation of waves along the basilar
membrane which reach a peak amplitude near a position where the character-
istic frequency matches the stimulus frequency [3,4,5,6,7]. Active processes in
the cochlea play a role in the amplification of weak signals [8,2]. The signa-
tures of these active processes are an increased sharpness of frequency filtering,
the occurrence of oto-acoustic emissions and nonlinearities [9,10,11,12,13]. All
these signatures are physiologically vulnerable, pointing to an origin of these
phenomena in dynamic cellular processes. The compressive nonlinear nature of
the active process permits the ear to operate over a large dynamic range of 120
dB, by amplifying weak signals more than strong ones. This nonlinear response
of the basilar membrane is thus relevant even for weak stimuli and is connected
with interference effects between different frequencies in complex sounds, leading
to the generation of distortion products and combination tones [14].

The active nature of the cochlear response has been addressed in previous
theoretical work [15,16,17,18,19]. The nonlinear amplification of weak periodic
stimuli by active processes can be described generically in the framework of crit-
ical oscillators [20,21]. A resonant system generally operates linearly at small
stimulus intensities. If a nonlinear response is required in order to amplify weak
signals, the system must approach an oscillating instability. Active dynamic
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systems often exhibit such instabilities or Hopf bifurcations where spontaneous
oscillations appear. In the vicinity of this critical point, compressive nonlinear-
ities become important and are unavoidable. Their properties are generic, i.e.
they appear robustly in a way which is independent of many details of the molec-
ular and cellular processes which underly the oscillating instability. Operation
of the system at the oscillating side of the instability, however, compromises
signal amplification and detection since spontaneous oscillatory behaviors of the
active system interfere with the incoming signal. The ideal point of operation is
therefore the critical point itself, where weak signals are most strongly amplified
while strong stimuli only induce a behavior which resembles a passive response.
The observation of active nonlinear processes even for weak stimulus amplitudes
thus indicates that the cochlea contains dynamical systems which operate in the
vicinity of a Hopf bifurcation [22,20,21]. Self-regulation mechanisms could play
a role to ensure operation of oscillators sufficiently close to the critical point that
nonlinearities can become beneficial for the detection of weak signals [20].

The strength of the concept of critical oscillators is that it can capture many
important features of hearing. In particular the nonlinear response, the gener-
ation of distortion products and the active process are taken into account in a
concise and general way which is robust and applicable despite the complexity
and the diversity of underlying cellular processes. It thus provides a physical
scenario which can clarify general principles that underly signal amplification.
In order to discuss the cochlear response and the associated wave propagation,
it is therefore useful to combine the concept of critical oscillators with the wave
physics in the cochlea. This leads to a simplified description of cochlear vibra-
tions as nonlinear waves which result from the coupling of critical oscillators with
varying characteristic frequencies as a function of position and which are cou-
pled hydrodynamically. Here, we briefly outline the features of these nonlinear
waves and argue that this framework is ideally suited to discuss nonlinear effects,
energy flow and pumping of these waves as well as nonlinear wave reflections in
the cochlea.

2 Cochlear waves

The basic physics of cochlear waves may be described most succinctly by a
one-dimensional model [3,4,5,6,7]. The BM separates the cochlear duct into two
channels which are connected at the apex by a small aperture, the helicotrema. A
sound stimulus impinging on the oval window, at the base of the cochlea, causes
changes in the pressures P1(x, t) and P2(x, t) in both channels. Here t is the
time and x is the position along the cochlea, with the oval window at x = 0 and
the helicotrema at x = L. The pressure gradients induce longitudinal currents
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J1(x, t) and J2(x, t), which flow in opposite directions in the two channels. We
define the relative current j ≡ J1 − J2 and the pressure difference p ≡ P1 − P2.
The balance of pressure gradients and inertial forces in the fluid together with
the fluid incompressibility and viscosity leads to a relation for the BM motion
and the pressure gradients

2ρb∂2
t h + η∂th = ∂x [bl∂xp] . (1)

Here, h(x, t) is the height profile of the BM, characterizing local displacements;
b and l denote the width and height of the cochlear channels, respectively. The
damping coefficient η is proportional to the fluid viscosity. The pressure dif-
ference p acts to deform the BM. If the response is passive (e.g. in the dead
cochlea), close to the basal end, it takes the simple form p = Kh.

3 Critical oscillators

In the active cochlea, the passive response is amplified by a force-generating
system. This system comprises a set of mechanical oscillators which are sup-
ported on the BM, and which are positioned in such a way that they can drive
its motion. The characteristic frequency ωr(x) of the oscillators is a function of
position along the membrane. We assume here, that active elements do not oscil-
late spontaneously but that they operate in the vicinity of a critical point. If the
BM contains such critical oscillators, its deformation h in response to pressure
differences across the membrane p has characteristic properties as a function of
frequency and amplitude, and nonlinear amplification occurs. This can be dis-
cussed most easily for a single, isolated oscillator. Its characteristic response to
a periodic stimulus pressure p(t) = p̃e−iωt + c.c. at frequency ω with Fourier
amplitude p̃ can be expressed in a general form as [20]

p̃ = A(ω)h̃ + B|h̃|2h̃ + O(h̃5) . (2)

Here, h̃ is the Fourier amplitude of the resulting periodic vibration h(x, t) #
h̃(x)e−iωt + c.c. and A and B are complex coefficients.

This expression follows from a systematic expansion in the oscillation ampli-
tude h̃ (comparable to a Landau expansion of the free energy of thermodynamic
systems near a critical point) and is valid near a Hopf bifurcation. Further away
from the bifurcation on the non-oscillating side, the nonlinearities become unim-
portant while away from the bifurcation on the oscillating side higher order terms
can become relevant. Proximity to an oscillatory instability thus automatically
provides for nonlinearities which are inherently linked to the active process and
thus are not related to the passive nonlinearities properties of the material which
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appear for large deformations. Note, that for critical oscillators, the dominant
nonlinearity is cubic.

The linear response function A(ω) = A′(ω)+ iA′′(ω) is a complex coefficient
with real part A′ and imaginary part A′′. For a critical oscillator, it vanishes
at the characteristic frequency, A(ωr) = 0. Thus, at this particular frequency,
the response becomes essentially nonlinear for small amplitudes. The shape of
the resonance, for nearby frequencies, is described by A(ω) # α(ω − ωr) close
to the characteristic frequency ωr, where α is a complex number. Furthermore,
by its definition as a linear response function, A obeys A(ω) = A∗(−ω). As a
consequence, A′(0) = K is the passive stiffness of the system and A′′(0) = 0.
The real and imaginary parts of A(ω) thus have the general form as displayed
in Fig. 1.

Figure 1. Schematic representation of the real and imaginary parts of the linear response
function A(ω) = A′ + iA′′ of a critical oscillator with frequency ωr .

4 Active nonlinear traveling waves

We describe the basilar membrane by Eq. (1) using Eq. (2) for the local mechani-
cal response properties. Motivated by the observed variation of the characteristic
frequency along the BM, we assume that the position dependence of character-
istic frequencies is given by ωr(x) = ω0e−x/d.We thus obtain a nonlinear wave
equation for the BM deformation. In frequency representation, it reads [19]

−2ρbω2h̃ − iωηh̃ = ∂x

[
bl∂x

(
A(x, ω)h̃ + B|h̃|2h̃

)]
. (3)

The complex solutions of this equation h̃(x) = H(x)eiφ(x) describe the ampli-
tude H and the phase φ of the BM displacement elicited by a periodic stimulus
with incoming sound pressure p(x = 0, t) = p̃(0)eiωt. For simplicity, we take
the coefficient B, describing the nonlinearity close to resonance, to be a purely
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imaginary constant, B = iβ. This simple choice ensures that Eq. (2) has no
spontaneously oscillating solution for p̃ = 0. Examples for solutions to the wave
equation are displayed in Fig. 2

The wave equation Eq. (3) describes traveling waves which are linear for
small vibration amplitudes h̃ at locations far from the resonance point xr where
ω = ωr(xr). As the wave enters at x = 0, it encounters oscillators which locally
have a high characteristic frequency as compared to the wave frequency ω < ωr.
Consequently, the imaginary part A′′(ω) < 0 and energy is pumped into the
wave by the active process (see Fig. 1). This pumping of the wave can cancel or
even overcome the effects of viscous friction and thus enhance wave propagation
and energy flow, but is not related to any unstable behavior of the wave.

x=0 x=L x=0 x=L

Figure 2. Nonlinear active traveling waves for three different stimulus frequencies (f = 370
Hz, 1.3 kHz and 4.6 kHz) and two different sound pressure levels (40 dB and 80 dB). Note that
the waveform depends on stimulus intensity.

As the wave propagates towards the apex, its wavelength diminishes and its
amplitude builds up, until it approaches the place of resonance. In the immediate
vicinity of the characteristic place, |A| becomes small while h̃ increases. Thus
the cubic term in Eq. (3) rapidly becomes more important than the linear term.
This leads to a strongly nonlinear BM response. The wave peaks at x = xp < xr,
where the response displays the characteristic nonlinearity of critical oscillators,
h̃(xp) ∼ p̃(xp)1/3. However, the vibration amplitude as a function of sound
pressure level at a fixed position can exhibit responses which are not simple
power laws. At positions beyond the characteristic place, x > xr , A′ becomes
negative and consequently the wave number q ∼ ω/

√
A′ becomes imaginary,

indicating the breakdown of wave propagation. The wave is thus reflected from
the characteristic place and the BM displacement decays very sharply for x > xr.
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5 Discussion

Critical oscillators provide a general framework for the description of active am-
plification of sounds by cellular processes. While this description does not provide
insights into the specific active processes which underly mechanical amplification
on the cellular and molecular levels, it captures the general features in a simple
and physically consistent way. The nonlinear wave equation which we present
here provides a simple theoretical description of the nonlinear and active nature
of the cochlear amplifier [19]. This framework can be extended to describe the
BM motion elicited by stimuli containing multiple frequencies, by considering the
generic nonlinear coupling of frequency components by critical oscillators [14].
The suppression of the response to one tone by the presence of a second tone,
and the generation and wave-like propagation of distortion products, are natural
consequences of this description. Furthermore, the flow of energy in the wave, as
well as the pumping of the wave by active processes, can be clearly defined in this
framework, taking into account nonlinear effects and energy supply by the active
systems. The nonlinear wave described here has similarities to a laser cavity [23];
wave reflections along the basilar membrane and especially at the characteristic
place lead to interesting and nonlinear reflection phenomena which will be dis-
cussed elsewhere. It has been suggested that oto-acoustic emissions are related
to modes in the cochlea which result from constructive interference of forward
and backward traveling waves. Such modes also occur naturally in our nonlinear
active wave description. Therefore, the framework of critical oscillators coupled
hydrodynamically on the basilar membrane is consistent with the interpretation
of oto-acoustic emissions as active wave resonances in the cochlea discussed in
Ref. [23].
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