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The ear relies on nonlinear amplification to enhance its sensitivity and frequency
selectivity. In the bullfrog’s sacculus, a hair cell can mobilize active oscillatory
movements of its hair bundle to amplify its response to faint stimuli. Hair-bundle
oscillations can result from an interplay between a region of negative stiffness in the
bundle’s force-displacement relation and the Ca2+-regulated activity of molecular
motors. Within the framework of this simple model, we calculate a state diagram
which describes the possible dynamical states of the hair bundle in the absence of
fluctuations. Taking different sources of fluctuations into account, we find condi-
tions that yield response functions and spontaneous noisy movements of the hair
bundle in quantitative agreement with experiments. We show that fluctuations re-
strict the bundle’s sensitivity and frequency selectivity but find that a hair bundle
studied experimentally operates near an optimum of mechanosensitivity in our state
diagram.

1 Introduction

The mechanosensory hair cells of the vertebrate ear amplify their inputs to en-
hance sensitivity and frequency selectivity to weak oscillatory stimuli (reviewed
in [1]). Although the cellular mechanisms that mediate this active process have
remained elusive, in vitro [2] as well as in vivo [3] experiments have revealed that
the mechanosensory organelle of the hair cell - the hair bundle - can generate
active oscillatory movements. When mechanically stimulated near its frequency
of spontaneous oscillation, a hair bundle displays a compressive nonlinearity that
demonstrates amplified responses to faint stimuli [4]. It has been noticed that
this behavior resembles that of dynamical systems that operate in the vicinity
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of an oscillatory instability, a Hopf bifurcation (ref. [4] and references therein).
Hair-bundle oscillations are noisy [5]. Noise blurs the distinction between

active oscillations and fluctuations and thus conceals the bifurcation between
oscillatory and non-oscillatory states. We present here a theoretical description
of the effects of fluctuations on active hair-bundle motility.

2 Models and Results

2.1

Active hair-bundle oscillations are most convincingly explained by an interplay
between a region of negative stiffness in the bundle’s force-displacement relation
and the Ca2+-regulated activity of the molecular motors that mediate mechan-
ical adaptation [6]. This interplay can be described by two coupled equations:

λẊ = −Kgs(X − Xa − DPo) − KspX + Fext + η , (1)

λaẊa = Kgs(X − Xa − DPo) − γfmax(1 − SPo) + ηa . (2)

Eq. 1 describes the dynamics of the hair-bundle position X . The hair bundle is
subjected to friction, characterized by the coefficient λ, as well as to the elastic
forces −KspX and −KgsY , where Ksp and Kgs are the stiffness of stereociliary
pivots and that of the gating springs, respectively, and to the external force Fext.
The open probability of transduction channels is Po. Channel opening reduces
the gating-spring extension by a distance D. Active hair-bundle movements re-
sult from forces exerted by a collection of molecular motors within the hair bun-
dle. By adjusting the gating-spring extension, these motors mediate mechanical
adaptation to sustained stimuli (reviewed in [7]). The variable Xa can be inter-
preted as the position of the motor collection. Eq. 2 describes the mechanics
and the dynamics of these motors by a linear force-velocity relation of the form
λadXa/dt = −F0 + Fmot, where λa characterizes the slope of the force-velocity
relation. In the hair bundle, the motors experience an elastic force Fmot = KgsY .
At stall, these motors produce an average force F0 = γfmax(1 − SPo) , where
γ " 1/7 is a geometric projection factor, fmax is the maximum force that the
motors can produce and S represents the strength of Ca2+ feedback on the mo-
tor activity [8]. This last parameter is expected to be proportional to the Ca2+

concentration in endolymph [6]. Here we assumed that calcium dynamics at the
motor site is much faster than hair-bundle oscillations. Active force production
by the motors corresponds to motors climbing up the stereocilia, i.e. dXa/dt < 0.
In a two-state model for channel gating, the open probability can be written as

Po =
1

1 + Ae−(X−Xa)/δ
, (3)
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where A = exp([∆G + (KgsD2)/(2N)]/kBT ) accounts for the intrinsic energy
difference ∆G between the open and the closed states of a transduction channel
and δ = NkBT/(KgsD).

2.2 State Diagram in the Absence of Noise

To explore the dynamic behaviors of the system described by Eqns. 1-2, we
first ignore the effects of fluctuations and assume Fext = 0. Steady states satisfy
dX/dt = 0 and dXa/dt = 0. Linear stability analysis of these steady states
reveals conditions for stability as well as for oscillatory instabilities that lead
to spontaneous oscillations via a Hopf bifurcation. The state diagram exhibits
different regimes (Fig. 1). If the force fmax is small, the motors are not strong
enough to pull transduction channels open. In this case, the system is monostable
with most of the channels closed. Increasing fmax leads to channel opening. For
intermediate forces and weak Ca2+ feedbacks, the system is bistable, i.e. open
and closed channels coexist. For strong Ca2+ feedbacks, however, the motors
can’t sustain the forces required to maintain the channels open. Spontaneous
oscillations occur in a region of both intermediate forces and feedback strengths.
Note that there is no oscillation in the absence of Ca2+ feedback, i.e. for S = 0.
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Figure 1. State diagram of
a hair bundle. Lines of
equal open probability of the
transduction channels (dotted
lines) are superimposed and
are each indexed by the corre-
sponding value. The hair bun-
dle can be monostable with
transduction channels mostly
closed (MC) or mostly open
(MO), bistable (BI) or oscilla-
tory (grey area).

2.3 Effects of Fluctuations

Noise terms η, ηa in Eqns. 1-2 formally take into account the effects of various
sources of fluctuations on X and Xa, respectively. Noise terms are zero on aver-
age. Their strengths are characterized by autocorrelation functions, respectively
< η(t)η(0) > and < ηa(t)ηa(0) >. We assume that different noise sources are
uncorrelated and that noise is Gaussian.
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Assuming that the motors are deactivated (f = 0), we first discuss thermal
contributions to the noise. The noise term η in Eq. 1 then results from brownian
motion of fluid molecules which collide with the hair bundle and from thermal
transitions between open and closed states of the transduction channels. By
changing the gating-spring extension, this channel clatter generates fluctuating
forces on the stereocilia. The fluctuation-dissipation theorem implies that <
η(t)η(0) >= 2kBTλδ(t). The friction coefficient λ = λh + λc results from two
contributions: λh " 1.3 10−7N·s·m−1 accounts for hydrodynamic friction, which
depends on bundle geometry and fluid viscosity [9], whereas λc results from
channel clatter. The contribution λc can be estimated from the autocorrelation
function of the force ηc that results from stochastic opening and closing of N
transduction channels

< ηc(t)ηc(0) >" D2K2
gsPo(1−Po)N−1e−|t|/τc " 2D2K2

gsPo(1−Po)N−1τcδ(t) .
(4)

Assuming that < ηc(t)ηc(0) >" 2kBTλcδ(t), we define a hair bundle friction λc

which is associated to channel opening and closing. Using Eq. 4, we estimate

λc "
K2

gsD
2Po(1 − Po)τc

NkBT
. (5)

Using typical parameter values (see Table 1 in ref. [10]) our estimate reveals
that channel clatter dominates friction and λ " 3 10−6N·s·m−1.

The noise strength resulting from stochastic motor action can also be esti-
mated. Measurements of the initial adaptation rate as a function of the magni-
tude of step stimuli [8] imply that λa " 1.3 10−5N·s·m−1. The stochastic activity
of motors generates an active contribution ηm to ηa with

< ηm(t)ηm(0) >" γ2Nap(1 − p)f2e−|t|/τa " 2Naγ
2p(1 − p)f2τaδ(t) . (6)

Each motor can produce a force f and has a probability p to be bound. Here
we have assumed that the Na motors fluctuate independently and that relevant
time scales for a hair-bundle oscillation are longer than τa which is the charac-
teristic time of force production by the motors. This noise strength can be de-
scribed by introducing an effective temperature Tm defined by < ηm(t)ηm(0) >"
2kBTmλaδ(t). With f " 1pN, τa " 10ms and p " 0.05, we find Tm/T "
Naγ2p(1 − p)f2τa/(kBTλa) " 0.5. Writing < ηa(t)ηa(0) >= 2kBTaλaδ(t), we
thus get Ta " 1.5T .

2.4 Linear and Nonlinear Response Functions

Stochastic simulations of Eqns. 1-2 allow us to calculate linear and nonlinear
response functions of the model in the presence of periodic force stimuli [10]. The
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only free parameters are the Ca2+-feedback strength S and the maximal motor
force fmax. Along a line of constant open probability Po = 0.5, the characteristic
frequency of spontaneous oscillations varies between a few Hertz and about 50Hz
in the range fmax = 330 − 800pN within which a peak was detected in the
spectral density of spontaneous movements. We elected the value of the motor
force fmax " 352pN (see ◦ in Fig. 1) at which the linear response function had
the same shape as that observed experimentally [5]. At this operating point,
the system displayed noisy spontaneous oscillations X(t) that are similar to the
hair-bundle oscillations observed in the bullfrog’s sacculus [5,10].

The calculated linear response function χ0 as a function of frequency agrees
quantitatively with the experimental observations [5]. At the characteristic fre-
quency of the spontaneous oscillations, the sensitivity of the system to mechani-
cal stimulation exhibits the three regimes observed experimentally [4] as a func-
tion of the stimulus amplitude (Fig. 2C ): a linear regime of maximal sensitivity
|χ̂0| = 8.5km·N−1 at ω = ω0 for small stimuli, a compressive nonlinearity for in-
termediate stimuli and a linear behavior of low sensitivity for large stimuli. The
maximal sensitivity as well as the breadth of the nonlinear region are in quan-
titative agreement with experiments. An important parameter that influenced
the system’s maximal sensitivity is the stiffness of the load to which the hair
bundle is coupled. For fmax " 352pN, power spectra of spontaneous oscillations
and response functions were not significantly affected by varying Po in the range
0.2-0.8. Agreement between simulations and experiments thus did not qualify a
particular value of Po.
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Figure 2. Response functions calculated from stochastic simulation of Eqns. 1-2 in presence
of a periodic stimulus force. (A) Real part χ′

0 of the linear response function. (B) Imaginary
part χ′′

0 of the linear response. (C) nonlinear response function at a fixed frequency (8Hz) near
that of the system’s spontaneous oscillations.
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3 Discussion

We have presented a physical description of active hair-bundle motility that em-
phasizes the role played by fluctuations. The mechanical properties of oscillatory
hair bundles in the presence of a periodic stimulus force can be described quanti-
tatively only if fluctuations are taken into account. In the absence of fluctuations,
an operating point on the line of Hopf bifurcations in the state diagram would
result in diverging sensitivity, infinite frequency selectivity and a compressive
nonlinearity over many decades of stimulus magnitudes. This situation is ideal
for detecting oscillatory stimuli [11,12,13]. As exemplified by our analysis, fluc-
tuations restrict the system’s sensitivity and frequency selectivity to oscillatory
stimuli as well as the range of stimulus magnitudes over which the compressive
nonlinearity of the bundle’s response occurs. Despite fluctuations, a single hair
bundle amplifies its response to small stimuli and, correspondingly, the char-
acteristic compressive nonlinearity that arises near a Hopf bifurcation remains.
One can define the gain of the amplificatory process as the ratio of the sensitivity
at resonance to small stimuli and that to intense stimuli. Both experiments and
simulations indicate that active hair-bundle motility provides a gain of about
ten. Our theoretical analysis demonstrates that significant amplification hap-
pens inside the area of the state diagram where the noiseless system oscillates
[10]. Interestingly, the global optimum of mechanosensitivity is obtained at an
operating point located near the center of the oscillatory region in the state dia-
gram (see $ in Fig.1), thus far from the line of Hopf bifurcations of the noiseless
system. Furthermore, the sensitivity is largest if the open probability of the
transduction channels is 0.5.

The ability of a single hair bundle to detect oscillatory stimuli using critical
oscillations is limited by fluctuations which conceal the critical point. This lim-
itation could be overcome if an ensemble of hair cells with similar characteristic
frequencies were mechanically coupled, as they probably are in an intact organ.
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Comments and Discussion 

M. van der Heijden: The dynamical range of the mechanisms you describe is limited to 
20 dB or so at the lower end. Of course, one could invoke "shifts in the operating point" 
to extend the dynamical range. But that seems to serve no practical purpose. 
Compression on the BM extends to very high sound levels, but you don't need ears to 
perceive such loud sounds. There exists no noise problem at 85 dB SPL - if anything 
those poor hair bundles should be protected against the destructive effects of the 
acoustic power. Do you really think that the reaction forces of these tiny transducer 
channels operate over a dynamic range of 80 dB, that is, a 100,000,000-fold power 
range?  

Answer: In the absence of noise, a dynamical system that operates near an oscillatory 
instability becomes arbitrarily sensitive as the magnitude of the sinusoidal stimulus 
becomes smaller (provided that the system is stimulated at the characteristic frequency 
of the instability).  If there were no noise, it would thus be no problem to get a dynamic 
range of 80 dB with the mechanism that produces active hair-bundle oscillations.  
Fluctuations restrict the range of the compressive nonlinearity by limiting the sensitivity 
to LOW stimuli but have no effect for intense stimuli. With fluctuations included, there 
is no operating point that yields the essential compressive nonlinearity, which 
characterizes the noiseless system.  In fact, we suggest that the oscillatory hair bundles 
that we have studied operate near an optimum of mechanosensitivity; hence one would 
NOT observe a dramatic extension of the dynamical range by shifting the operating 
point.  In an intact organ in vivo, the limiting effects of noise might be circumvented if 
the hair-bundle oscillator were coupled to other oscillators of similar characteristic 
frequencies, either within the same hair cell or in neighboring hair cells. 

B. Brownell: What effect would a change in temperature have in your model and do 
your experiments show the predicted effect?  

 

Answer: All our experiments have been done at room temperature and we have thus not 
tested the effect of temperature on a bundle’s sensitivity to oscillatory stimuli. 

 

R. Chadwick: Does a hair-bundle need to be in the oscillatory portion of the state 
diagram in order to exert an active force?  

Answer: A hair bundle that operates in the stable regions of the state diagram (Fig 1) 
can indeed exert active forces in response to an external stimulus.  Within the 
framework of our model, an external stimulus (a step force for instance) evokes an 
active movement of molecular motors that affects the tension in elastic gating springs, in 
turn producing a force on the hair bundle.  Our analysis shows, however, that, in the 
presence of noise, the system is more sensitive to small oscillatory stimuli if it operates 
within the oscillatory region of the state diagram. 
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